ستاره فشرده

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به ناوبری پرش به جستجو
فارسیEnglish

در علم نجوم، عبارت ستارهٔ فشرده (بعضی اوقات جسم فشرده) (به انگلیسی: Compact star) به منظور اشاره گروهی به کوتوله‌های سفید، ستاره‌های نوترونی، ستاره‌های غیرعادی و چگال دیگر و سیاه چاله‌ها استفاده می‌شود. بیشتر ستاره‌های فشرده نقطهٔ پایان فرگشت ستاره‌ای هستند و به همین دلیل اغلب به عنوان بقایای ستاره‌ای معرفی می‌شوند؛ شکل بقایا در مرتبهٔ اول به جرم ستاره در زمانی که تشکیل شده است بستگی دارد. این اجسام همگی نسبت به جرم خود دارای حجم کوچکی هستند که این موضوع چگالی زیادی به آن‌ها می‌بخشد. عبارت ستارهٔ فشرده اغلب زمانی استفاده می‌شود که طبیعت دقیق ستاره نامعلوم است، اما شواهد نشان می‌دهد که این ستاره، بسیار سنگین و دارای شعاعی کوچک است، به همین خاطر یکی از دسته‌های مذکور در بالا را می‌رساند. یک ستاره فشردهٔ که یک سیاه چاله نیست، ممکن است یک ستارۀ نامتعارف لقب داده شود.

ستاره‌های فشرده نقطه پایان تحولات ستاره‌ای[ویرایش]

پایان عادی تکامل ستاره‌ای تشکیل یک ستارهٔ فشرده است. اتم‌های هیدروژن، تحت فشار فوق العادهٔ نیروی جاذبه یک ستاره، فرایند همجوشی هسته‌ای را طی می‌کنند که باعث کاهش جرم و حجم ستاره می‌شود. در اقدامی برای خنک کردن خود، ستاره انرژی را به شکل درخشش سطح، از خود ساطع می‌کند. این از دست رفتگی جرم و انرژی موجب کاهش انرژی پتانسیل گرانشی می‌شود. اندازهٔ ستاره کاهش می‌یابد و ستاره افزایش نیروی گرانشی به سمت داخل را که ابتدا موجب همجوشی هسته‌ای شده بود، ادامه می‌دهد.[۱] این چرخه تا زمانی ادامه پیدا می‌کند که فشار گاز بخش‌های داخلی دیگر توان تحمل وزن ستاره را نداشته باشد. ستاره در فرایندی معروف به مرگ ستاره‌ای به حالتی بسیار چگال تر، ستاره‌ای فشرده فرو می‌پاشد. ستاره فشرده هیچ گونه تولید داخلی انرژی ندارد، اما ممکن است تا میلیون‌ها سال به تابش خود با گرمای اضافی باقی حاصل از فروپاشی ادامه دهد.

دوره عمر[ویرایش]

هرچند شاید ستارگان فشرده تابش‌هایی از خود داشته باشند، و به همین ترتیب خنک شده و انرژی از دست بدهند، اما آن‌ها بر خلاف ستارگان عادی وابسته به دماهای بالا برای حفظ ساختار خود نیستند. آن‌ها می‌توانند تقریباً تا ابد وجود خود را حفظ کنند مگر اینکه دچار تعرضات بیرونی و فرسودگی باریونی شوند. سیاه چاله‌ها اما، به‌طور کلی اعتقاد بر این است که نهایتاً به خاطر تابش هاوکینگ پس از تریلیون‌ها سال محو خواهند شد. بر طبق مدل‌های استاندارد کنونی مان از کیهان شناسی فیزیکی، تمامی ستارگان در پایان تدریجاً به ستارگان فشردهٔ سرد و تاریکی مبدل خواهند شد، تا زمانی که جهان اصطلاحا به دورهٔ منحط در آینده‌ای بسیار دور وارد شود. گونهٔ گسترده‌تر تعریف اجسام فشرده اغلب شامل اجسام جامد کوچک‌تر نظیر سیارات، سیارک‌ها، و ستاره‌های دنباله دار می‌شود. گونه‌های قابل توجهی از ستارگان و دیگر خوشه‌هایی از مواد داغ وجود دارند، اما بر طبق نظریهٔ ترمودینامیک، همه اجرام جهان بایستی در نهایت به شکل‌هایی از جسم فشرده ختم شوند.

کوتوله‌های سفید[ویرایش]

سحابی اسکیمو توسط کوتولهٔ سفید مرکزش روشن گشته است.

ستارگان ملقب به کوتوله‌های منحط یا متداولا، کوتوله‌های سفید عمدتا از جرم منحط تشکیل یافته‌اند—به‌طور معمول هسته‌های کربن و اکسیژن در دریایی از الکترون‌های منحط. کوتوله‌های سفید از هسته‌های ستارگان رشته اصلی به وجود می‌آیند و به همین خاطر زمانی که ایجاد می‌شوند بسیار داغ هستند. آن‌ها در طی خنک شدن سرخ و کم نور می‌شوند تا زمانی که در نهایت به صورت کوتوله‌های سیاه در آیند. کوتوله‌های سفید در قرن ۱۹ ام مشاهده شدند، اما چگالی و فشار زیادی که دارا بودند تا سال ۱۹۲۰ بدون توضیح باقی ماند. معادلهٔ حالت برای جرم منحط «نرم» است، یعنی اضافه کردن جرم بیشتر مسبب جسمی کوچکتر خواهد شد. با ادامه دادن افزودن جرم به چیزی که اکنون یک کوتولهٔ سفید است، جسم فشرده و چگالی مرکزی بسیار بیشتر می‌گردد، به همراه انرژی‌های بالای الکترون‌های منحط. شعاع ستاره اکنون فقط به چندهزار کیلومتر کاهش یافته‌است، و جرم در حال نزدیک شدن به حد نظری بالای جرم یک کوتولهٔ سفید، حد چاندراسخار، حدودا ۱٫۴ برابر جرم خورشید است (M).

اگر ما می‌توانستیم از هستهٔ کوتولهٔ سفیدمان جرم برداریم و آهسته شروع به فشردن آن کنیم، ابتدا الکترون‌ها را می‌بینیم که مجبور به آمیزش با هسته‌ها می‌شوند و پروتون هایشان را توسط فرسودگی معکوس بتا به نوترون‌ها تبدیل می‌نمایند. تعادل به سمت سنگین تر، هسته‌های غنی تر از لحاظ نوترون انتقال می‌یابد که در چگالی‌های معمولی پایدار نیست. با افزایش چگالی، این هسته‌ها هنوز بزرگتر گشته و کمتر خوب پیوند یافته‌اند. در یک چگالی بحرانی حدود ۴·1014 kg/m³، به نام خط سرریزی نوترون، هسته اتم تمایل می‌یابد تا به پروتون‌ها و نوترون‌ها تفکیک شود. در نهایت ما به نقطه‌ای می‌رسیم که جرم برپایهٔ (~۲·1017 kg/m³) جرم یک هسته اتم است. در این نقطه جرم عمدتا نوترون‌های آزاد، با مقدار اندکی از پروتون‌ها و الکترون هاست.

ستارگان نوترونی[ویرایش]

در ستاره‌های دوتایی معینی شامل یک کوتولهٔ سفید، جرم از ستارهٔ همراه بر روی کوتولهٔ سفید انتقال می‌یابد و نهایتاً به سمت حد چاندراسخار می‌کشاند. الکترون‌ها به منظور ایجاد نوترون‌ها، با پروتون‌ها واکنش داده و در نتیجه دیگر فشار لازم را برای مقاومت در برابر جاذبه فراهم نمی‌آورند که این، فروریختن ستاره را به دنبال دارد. اگر مرکز ستاره غالبا از کربن و اکسیژن تشکیل یافته باشد آنگاه این فروریختگی گرانشی، همجوشی خارج از کنترل کربن و اکسیژن را جرقه خواهد زد و موجب پدید ابرنواختر نوع la می‌گردد که در آن ستاره تماما از هم منفجر می‌شود، قبل از این که فروریختگی غیرقابل بازگشت شود. اگر مرکز ستاره بیشتر از منیزیم یا عناصر سنگین تر تشکیل یافته باشد، فروریختگی ادامه می‌یابد.[۲][۳][۴] با افزایش بیشتر چگالی، الکترون‌های باقی‌مانده با پروتون‌ها واکنش داده تا نوترون‌های بیشتری تولید شوند. فروریختگی ادامه می‌یابد تا زمانی که (در چگالی بالاتر) نوترون‌ها منحط گردند. یک تعادل جدید پس از اینکه ستاره به میزان توان سه از پایهٔ ده، به شعاعی بین ۱۰ تا ۲۰ کیلومتر فشرده شود ممکن است. این یک ستارهٔ نوترونی است. هرچند اولین ستارهٔ نوترونی تا سال ۱۹۶۷ - زمانی که اولین تپ اختر رادیویی کشف شد - مشاهده نگشت، اما ستارگان نوترونی توسط باده و زویکی در سال ۱۹۳۳ مطرح شدند، فقط یک سال پس از آنکه نوترون در سال ۱۹۳۲ کشف شد. آن‌ها به این پی بردند که چون ستارگان نوترونی بسیار چگال هستند، فروریختن یک ستاره معمولی به یک ستاره نوترونی مقدار عظیمی از انرژی پتانسیل گرانشی را آزاد خواهد کرد که توضیح احتمالی را برای ابرنواختر فراهم می‌آورد.[۵][۶][۷] این توضیح ابرنواخترهای نوع lc، lb و ll است. این گونه ابرنواختر زمانی که هسته آهنی یک ستاره سنگین از حد چاندراسخار بگذرد رخ می‌دهد و به ستاره‌ای نوترونی فرو می‌ریزد. همانند الکترون‌ها، نوترون‌ها از فرمیون‌ها به حساب می‌آیند. آن‌ها به همین خاطر فشار انحطاط نوترونی را فراهم می‌آورند تا از ستاره نوترونی در برابر فروریزش نگاهداری کنند. علاوه بر این، کنش‌های تدافعی نوترون – نوترون فشار اضافه فراهم می‌آورد. همانند حد چاندراسخار برای کوتوله‌های سفید، یک حد جرمی برای ستارگان نوترونی وجود دارد: حد تولمان–اپنهیمر–ولکف، که این نیروها دیگر برای پابرجا نگه داشتن ستاره کافی نیستند. به دلیل اینکه نیروهای موجود در جرم چگال هادرونی به خوبی شناخته نشده‌اند، این حد به‌طور دقیق نامعلوم است ولی حدس زده می‌شود که بین ۲ تا ۳ برابر جرم خورشید (M) باشد. اگر جرم بیشتری بر روی ستارهٔ نوترونی افزوده شود، نهایتاً به این حد جرمی خواهد رسانده خواهد شد. اینکه بعد از آن چه اتفاقی می‌افتد کاملاً واضح نیست.

اجسام فشرده نسبی و اصل کلی عدم قطعیت (GUP)[ویرایش]

بر پایه اصل کلی عدم قطعیت (GUP)، که با دستیابی به جاذبهٔ کوانتومی نظیر نظریه‌های ریسمان و نسبیت خاص مضاعف مطرح شده‌است، تأثیر GUP روی ویژگی‌های ترمودینامیکی ستارگان فشرده با دو جزء مختلف به تازگی مورد مطالعه قرار گرفته‌اند.[۸] تاوفیک ات آل. متوجه شد که وجود اصلاح جاذبهٔ کوانتومی تمایل دارد بر فروریختگی ستارگان مقاومت کند اگر پارامتر GUP مقدارهای بین معیار پلنک و معیار الکتروضعیف را بگیرد. در مقایسه با دیگر روش‌ها، مشخص شد که شعاع ستارگان فشرده بایستی کوچکتر باشد و افزایش انرژی، شعاع ستارگان فشرده را کاهش می‌دهد.

ستارگان بیگانه[ویرایش]

یک ستارهٔ بیگانه ستارهٔ فشرده ایست که از چیزهایی به جز الکترون‌ها، پروتون‌ها، و نوترون‌ها تشکیل شده‌است و در برابر فروریختگی ناشی از جاذبه توسط فشار انحطاط یا ویژگی‌های کوانتومی دیگر در تعادل قرار گرفته‌اند. این‌ها شامل ستارگان عجیب (تشکیل یافته از مادهٔ عجیب) و گونه بیشتر توصیفی ستارگان پرونی (متشکل از پرون‌ها) است. ستارگان بیگانه تا حد زیادی بر مبنای نظری هستند، اما مشاهدات منتشر شده توسط رصدخانه اشعه ایکس چاندرا در ۱۰ آپریل ۲۰۰۲ دو نامزد برای ستارگان عجیب شناسایی کرد، به نام‌های آرایکس جی۱۸۵۶٫۵-۳۷۵۴ و ۳سی ۵۸، که قبلاً تصور می‌شد ستارگان نوترونی هستند. بر پایهٔ قوانین شناخته شده فیزیک، اولی بسیار کوچک‌تر و دومی بسیار سردتر از آن چیزی که باید باشند ظاهر شدند که این را می‌رساند که آن‌ها از ماده چگال تر از نوترونیم تشکیل یافته‌اند. اما، این مشاهدات با شک و تردید از جانب پژوهشگرانی رو به رو شد که می‌گفتند نتایج قاطع نبود.

ستارگان کوارکی و ستارگان عجیب[ویرایش]

اگر نوترون‌ها به مقدار کافی در دمایی بالا فشرده شوند، به اجزایشان، کوارک‌ها تجزیه خواهند شد و چیزی که به عنوان مادهٔ کوارک شناخته می‌شود شکل می‌یابد. در این حالت، ستاره بیشتر فشرده شده و چگال تر می‌گردد، اما به جای فروریزش تمام به یک سیاه چاله، این امکان هست که شاید ستاره خود را پایدار نگه داشته و برای مدتی تا آنجا که جرم بیشتری به آن اضافه نگردد در این حالت باقی بماند. چنین ستاره تا حدودی به شکل یک هسته عظیم در آمده‌است. یک ستاره در این حالت مفروض، یک ستارهٔ کوارکی یا به‌طور خاص یک ستاره عجیب نامیده می‌شود. تپ اخترهای آرایکس جی۱۸۵۶٫۵-۳۷۵۴ و ۳سی ۵۸ به عنوان ستارگان کوارکی احتمالی پیشنهاد شده‌اند. اعتقاد بر این است که بسیاری از ستارگان نوترونی هسته‌ای از مادهٔ کوارکی دارند، اما ثابت شده‌است که مشخص کردن این از طریق مشاهده، دشوار است.

ستارگان پرونی[ویرایش]

یک ستارهٔ پرونی گونه‌ای مفروض از ستارهٔ فشردهٔ متشکل از پرون هاست، گروهی از ذرات زیراتمی فرضی. پیش‌بینی می‌شود که ستارگان پرونی چگالی‌های عظیمی متجاوز از 1023 کیلوگرم بر مترمکعب دارا باشند – میانه ستارگان کوارکی و سیاه چاله‌ها. ستارگان پرونی می‌توانند از انفجارهای ابرنواختر یا انفجار بزرگ سرچشمه گرفته باشند؛ اما، مشاهدات کنونی از شتاب دهنده‌های ذرات، بر ضد وجود پرون‌ها سخن می‌گوید.

ستارگان کیو[ویرایش]

ستارگان کیو ستارگان نوترونی فشردهٔ فرضی و سنگین تر هستند، با ماده‌ای از حالتی ناشناخته که تعداد ذرات حفظ شده‌است. ستارگان کیو "خاکستری چاله" هم نامیده می‌شوند.

ستارگان الکتروضعیف[ویرایش]

یک ستارهٔ الکتروضعیف نوعی فرضی از ستارهٔ بیگانه است، به گونه‌ای که توسط فشار تشعشع به وجود آمده از سوزش الکتروضعیف، که انرژی آزاد شده از تبدیل کوارک‌ها به لپتون‌ها از طریق نیروی الکتروضعیف است، از فروپاشی ستاره بر اثر جاذبه جلوگیری می‌شود. این فرایند در حجمی در هسته ستاره تقریباً به بزرگی یک سیب رخ می‌دهد که جرمی به اندازه دو کره زمین را داراست.[۹]

ایده‌های دیگر[ویرایش]

[۱۰][۱۱]

سیاه چاله‌ها[ویرایش]

یک سیاه چاله شبیه‌سازی شده با ده مرتبه از جرم خورشید، در فاصلهٔ ۶۰۰ کیلومتری.

با انباشته شدن جرم بیشتر، تعادل در برابر فروریزش جاذبه‌ای به نقطهٔ شکست می‌رسد. فشار ستاره برای مقابله با جاذبه نارساست و فروریزشی فاجعه بار بر اثر جاذبه در چند میلی‌ثانیه رخ می‌دهد. سرعت گریز روی سطح که از قبل ۱/۳ سرعت نور بود، به زودی به سرعت نور می‌رسد. هیچ انرژی یا ماده‌ای نمی‌تواند فرار کند: سیاه چاله ای خلق شده‌است. تمامی نورها در حصار افق رویداد به دام خواهند افتاد، و نتیجتا یک سیاه چاله واقعا سیاه نمایان می‌شود، به جز در مورد امکان تابش هاوکینگ. به نظر می‌رسد فروریختن همچنان ادامه خواهد داشت. در نظریه کلاسیک نسبیت عام، یک انفراد گرانشی تشکیل خواهد شد که بیش از نقطه ای را اشغال نمی‌کند. شاید وقفه جدیدی در فروریزش ناگهانی در اندازه‌ای قابل مقایسه با طول پلانک وجود داشته باشد، اما در چنین اندازه‌هایی نظریهٔ گرانشی شناخته شده‌ای برای پیش‌بینی چیزی که اتفاق خواهد افتاد وجود ندارد. اضافه کردن جرم بیشتر به سیاه چاله موجب رشد خطی شعاع افق رویداد با جرم انفراد مرکزی خواهد شد. این موجب تغییرات معینی در ویژگی‌های سیاه چاله خواهد بود، از قبیل کاهش فشار جزر و مدی نزدیک افق رویداد، و کاهش قدرت میدان گرانشی در افق. اما، دیگر تغییرات کیفی فراتری در ساختار، در ارتباط با افزایش جرم وجود نخواهد داشت.

مدل‌های جایگزین سیاه چاله[ویرایش]

منابع[ویرایش]

  1. Tauris, T. M.; J. van den Heuvel, E. P. (20 Mar 2003). "Formation and Evolution of Compact Stellar X-ray Sources". arXiv. Bibcode:2006csxs.book..623T.
  2. Hashimoto, M.; Iwamoto, K.; Nomoto, K. (1993). "Type II supernovae from 8–10 solar mass asymptotic giant branch stars". The Astrophysical Journal. 414: L105. Bibcode:1993ApJ...414L.105H. doi:10.1086/187007.
  3. Ritossa, C.; Garcia-Berro, E.; Iben, I. , Jr. (1996). "On the Evolution of Stars That Form Electron-degenerate Cores Processed by Carbon Burning. II. Isotope Abundances and Thermal Pulses in a 10 Msun Model with an ONe Core and Applications to Long-Period Variables, Classical Novae, and Accretion-induced Collapse". The Astrophysical Journal. 460: 489. Bibcode:1996ApJ...460..489R. doi:10.1086/176987.
  4. Wanajo, S.; et al. (2003). "Ther‐Process in Supernova Explosions from the Collapse of O‐Ne‐Mg Cores". The Astrophysical Journal. 593 (2): 968. arXiv:astro-ph/0302262. Bibcode:2003ApJ...593..968W. doi:10.1086/376617.
  5. Osterbrock, D. E. (2001). "Who Really Coined the Word Supernova? Who First Predicted Neutron Stars?". Bulletin of the American Astronomical Society. 33: 1330. Bibcode:2001AAS...199.1501O.
  6. Baade, W.; Zwicky, F. (1934). "On Super-Novae". Proceedings of the National Academy of Sciences of the United States of America. 20 (5): 254–9. Bibcode:1934PNAS...20..254B. doi:10.1073/pnas.20.5.254. PMC 1076395. PMID 16587881.
  7. Baade, W.; Zwicky, F. (1934). "Cosmic Rays from Super-Novae". Proceedings of the National Academy of Sciences of the United States of America. 20 (5): 259. Bibcode:1934PNAS...20..259B. doi:10.1073/pnas.20.5.259.
  8. Ahmed Farag Ali and A. Tawfik, Int. J. Mod. Phys. D22 (2013) 1350020
  9. Shiga, D. (4 January 2010). "Exotic stars may mimic big bang". New Scientist. Retrieved 2010-02-18.
  10. Visser, M.; Barcelo, C.; Liberati, S.; Sonego, S. (2009). "Small, dark, and heavy: But is it a black hole?". arXiv:0902.0346 [hep-th].
  11. Barcelo, C.; Liberati, S.; Sonego, S.; Visser, M. (30 September 2009). "How Quantum Effects Could Create Black Stars, Not Holes". Scientific American.

In astronomy, the term compact star (or compact object) refers collectively to white dwarfs, neutron stars, and black holes. It would grow to include exotic stars if such hypothetical, dense bodies are confirmed to exist. All compact objects have a high mass relative to their radius, giving them a very high density, compared to ordinary atomic matter.

Compact stars are often the endpoints of stellar evolution, and are in this respect also called stellar remnants. The state and type of a stellar remnant depends primarily on the mass of the star that it formed from. The ambiguous term compact star is often used when the exact nature of the star is not known, but evidence suggests that it has a very small radius compared to ordinary stars. A compact star that is not a black hole may be called a degenerate star.

Formation

The usual endpoint of stellar evolution is the formation of a compact star.

Most stars will eventually come to a point in their evolution when the outward radiation pressure from the nuclear fusions in its interior can no longer resist the ever-present gravitational forces. When this happens, the star collapses under its own weight and undergoes the process of stellar death. For most stars, this will result in the formation of a very dense and compact stellar remnant, also known as a compact star.

Compact stars have no internal energy production, but will—with the exception of black holes—usually radiate for millions of years with excess heat left from the collapse itself.[1]

According to the most recent understanding, compact stars could also form during the phase separations of the early Universe following the Big Bang.[citation needed] Primordial origins of known compact objects have not been determined with certainty.

Lifetime

Although compact stars may radiate, and thus cool off and lose energy, they do not depend on high temperatures to maintain their structure, as ordinary stars do. Barring external disturbances and proton decay, they can persist virtually forever. Black holes are however generally believed to finally evaporate from Hawking radiation after trillions of years. According to our current standard models of physical cosmology, all stars will eventually evolve into cool and dark compact stars, by the time the Universe enters the so-called degenerate era in a very distant future.

The somewhat wider definition of compact objects often includes smaller solid objects such as planets, asteroids, and comets. There is a remarkable variety of stars and other clumps of hot matter, but all matter in the Universe must eventually end as some form of compact stellar or substellar object, according to the theory of thermodynamics.

White dwarfs

The Eskimo Nebula is illuminated by a white dwarf at its center.

The stars called white or degenerate dwarfs are made up mainly of degenerate matter; typically carbon and oxygen nuclei in a sea of degenerate electrons. White dwarfs arise from the cores of main-sequence stars and are therefore very hot when they are formed. As they cool they will redden and dim until they eventually become dark black dwarfs. White dwarfs were observed in the 19th century, but the extremely high densities and pressures they contain were not explained until the 1920s.

The equation of state for degenerate matter is "soft", meaning that adding more mass will result in a smaller object. Continuing to add mass to what is now a white dwarf, the object shrinks and the central density becomes even larger, with higher degenerate-electron energies. The star's radius has now shrunk to only a few thousand kilometers, and the mass is approaching the theoretical upper limit of the mass of a white dwarf, the Chandrasekhar limit, about 1.4 times the mass of the Sun (M).

If we were to take matter from the center of our white dwarf and slowly start to compress it, we would first see electrons forced to combine with nuclei, changing their protons to neutrons by inverse beta decay. The equilibrium would shift towards heavier, neutron-richer nuclei that are not stable at everyday densities. As the density increases, these nuclei become still larger and less well-bound. At a critical density of about 4×1014 kg/m3), called the neutron drip line, the atomic nucleus would tend to fall apart into protons and neutrons. Eventually we would reach a point where the matter is on the order of the density (c. 2×1017 kg/m3) of an atomic nucleus. At this point the matter is chiefly free neutrons, with a small amount of protons and electrons.

Neutron stars

In certain binary stars containing a white dwarf, mass is transferred from the companion star onto the white dwarf, eventually pushing it over the Chandrasekhar limit. Electrons react with protons to form neutrons and thus no longer supply the necessary pressure to resist gravity, causing the star to collapse. If the center of the star is composed mostly of carbon and oxygen then such a gravitational collapse will ignite runaway fusion of the carbon and oxygen, resulting in a Type Ia supernova that entirely blows apart the star before the collapse can become irreversible. If the center is composed mostly of magnesium or heavier elements, the collapse continues.[2][3][4] As the density further increases, the remaining electrons react with the protons to form more neutrons. The collapse continues until (at higher density) the neutrons become degenerate. A new equilibrium is possible after the star shrinks by three orders of magnitude, to a radius between 10 and 20 km. This is a neutron star.

Although the first neutron star was not observed until 1967 when the first radio pulsar was discovered, neutron stars were proposed by Baade and Zwicky in 1933, only one year after the neutron was discovered in 1932. They realized that because neutron stars are so dense, the collapse of an ordinary star to a neutron star would liberate a large amount of gravitational potential energy, providing a possible explanation for supernovae.[5][6][7] This is the explanation for supernovae of types Ib, Ic, and II. Such supernovae occur when the iron core of a massive star exceeds the Chandrasekhar limit and collapses to a neutron star.

Like electrons, neutrons are fermions. They therefore provide neutron degeneracy pressure to support a neutron star against collapse. In addition, repulsive neutron-neutron interactions[citation needed] provide additional pressure. Like the Chandrasekhar limit for white dwarfs, there is a limiting mass for neutron stars: the Tolman-Oppenheimer-Volkoff limit, where these forces are no longer sufficient to hold up the star. As the forces in dense hadronic matter are not well understood, this limit is not known exactly but is thought to be between 2 and 3 M. If more mass accretes onto a neutron star, eventually this mass limit will be reached. What happens next is not completely clear.

Black holes

A simulated black hole of ten solar masses, at a distance of 600km.

As more mass is accumulated, equilibrium against gravitational collapse reaches its breaking point. The star's pressure is insufficient to counterbalance gravity and a catastrophic gravitational collapse occurs in milliseconds. The escape velocity at the surface, already at least 1/3 light speed, quickly reaches the velocity of light. No energy nor matter can escape: a black hole has formed. All light will be trapped within an event horizon, and so a black hole appears truly black, except for the possibility of Hawking radiation. It is presumed that the collapse will continue.

In the classical theory of general relativity, a gravitational singularity occupying no more than a point will form. There may be a new halt of the catastrophic gravitational collapse at a size comparable to the Planck length, but at these lengths there is no known theory of gravity to predict what will happen. Adding any extra mass to the black hole will cause the radius of the event horizon to increase linearly with the mass of the central singularity. This will induce certain changes in the properties of the black hole, such as reducing the tidal stress near the event horizon, and reducing the gravitational field strength at the horizon. However, there will not be any further qualitative changes in the structure associated with any mass increase.

Alternative black hole models

Exotic stars

An exotic star is a hypothetical compact star composed of something other than electrons, protons, and neutrons balanced against gravitational collapse by degeneracy pressure or other quantum properties. These include strange stars (composed of strange matter) and the more speculative preon stars (composed of preons).

Exotic stars are hypothetical, but observations released by the Chandra X-Ray Observatory on April 10, 2002 detected two candidate strange stars, designated RX J1856.5-3754 and 3C58, which had previously been thought to be neutron stars. Based on the known laws of physics, the former appeared much smaller and the latter much colder than they should, suggesting that they are composed of material denser than neutronium. However, these observations are met with skepticism by researchers who say the results were not conclusive.[citation needed]

Quark stars and strange stars

If neutrons are squeezed enough at a high temperature, they will decompose into their component quarks, forming what is known as a quark matter. In this case, the star will shrink further and become denser, but instead of a total collapse into a black hole, it is possible, that the star may stabilize itself and survive in this state indefinitely, as long as no extra mass is added. It has, to some extent, become a very large nucleon. A-type star in this hypothetical state is called a quark star or more specifically a strange star. The pulsar 3C58 has been suggested as a possible quark star. Most neutron stars are thought to hold a core of quark matter, but it has proven hard to determine observationally.

Preon stars

A preon star is a proposed type of compact star made of preons, a group of hypothetical subatomic particles. Preon stars would be expected to have huge densities, exceeding 1023 kilogram per cubic meter – intermediate between quark stars and black holes. Preon stars could originate from supernova explosions or the Big Bang; however, current observations from particle accelerators speak against the existence of preons.[citation needed]

Q stars

Q stars are hypothetical compact, heavier neutron stars with an exotic state of matter where particle numbers are preserved with radii less than 1.5 times the corresponding Schwarzschild radius. Q stars are also called "gray holes".

Electroweak stars

An electroweak star is a theoretical type of exotic star, whereby the gravitational collapse of the star is prevented by radiation pressure resulting from electroweak burning, that is, the energy released by conversion of quarks to leptons through the electroweak force. This process occurs in a volume at the star's core approximately the size of an apple, containing about two Earth masses.[9]

Boson star

A boson star is a hypothetical astronomical object that is formed out of particles called bosons (conventional stars are formed out of fermions). For this type of star to exist, there must be a stable type of boson with repulsive self-interaction. As of 2016 there is no significant evidence that such a star exists. However, it may become possible to detect them by the gravitational radiation emitted by a pair of co-orbiting boson stars.[10][11]

Compact relativistic objects and the generalized uncertainty principle

Based on the generalized uncertainty principle (GUP), proposed by some approaches to quantum gravity such as string theory and doubly special relativity, the effect of GUP on the thermodynamic properties of compact stars with two different components has been studied, recently.[12] Tawfik et al. noted that the existence of quantum gravity correction tends to resist the collapse of stars if the GUP parameter is taking values between Planck scale and electroweak scale. Comparing with other approaches, it was found that the radii of compact stars should be smaller and increasing energy decreases the radii of the compact stars.

References

  1. ^ Tauris, T. M.; J. van den Heuvel, E. P. (20 Mar 2003). Formation and Evolution of Compact Stellar X-ray Sources. arXiv:astro-ph/0303456. Bibcode:2006csxs.book..623T.
  2. ^ Hashimoto, M.; Iwamoto, K.; Nomoto, K. (1993). "Type II supernovae from 8–10 solar mass asymptotic giant branch stars". The Astrophysical Journal. 414: L105. Bibcode:1993ApJ...414L.105H. doi:10.1086/187007.
  3. ^ Ritossa, C.; Garcia-Berro, E.; Iben, I., Jr. (1996). "On the Evolution of Stars That Form Electron-degenerate Cores Processed by Carbon Burning. II. Isotope Abundances and Thermal Pulses in a 10 Msun Model with an ONe Core and Applications to Long-Period Variables, Classical Novae, and Accretion-induced Collapse". The Astrophysical Journal. 460: 489. Bibcode:1996ApJ...460..489R. doi:10.1086/176987.
  4. ^ Wanajo, S.; et al. (2003). "Ther‐Process in Supernova Explosions from the Collapse of O‐Ne‐Mg Cores". The Astrophysical Journal. 593 (2): 968–979. arXiv:astro-ph/0302262. Bibcode:2003ApJ...593..968W. doi:10.1086/376617.
  5. ^ Osterbrock, D. E. (2001). "Who Really Coined the Word Supernova? Who First Predicted Neutron Stars?". Bulletin of the American Astronomical Society. 33: 1330. Bibcode:2001AAS...199.1501O.
  6. ^ Baade, W.; Zwicky, F. (1934). "On Super-Novae". Proceedings of the National Academy of Sciences. 20 (5): 254–9. Bibcode:1934PNAS...20..254B. doi:10.1073/pnas.20.5.254. PMC 1076395. PMID 16587881.
  7. ^ Baade, W.; Zwicky, F. (1934). "Cosmic Rays from Super-Novae". Proceedings of the National Academy of Sciences. 20 (5): 259–263. Bibcode:1934PNAS...20..259B. doi:10.1073/pnas.20.5.259. PMC 1076396. PMID 16587882.
  8. ^ a b c Visser, M.; Barcelo, C.; Liberati, S.; Sonego, S. (2009). "Small, dark, and heavy: But is it a black hole?". arXiv:0902.0346 [hep-th].
  9. ^ Shiga, D. (4 January 2010). "Exotic stars may mimic big bang". New Scientist. Retrieved 2010-02-18.
  10. ^ Schutz, Bernard F. (2003). Gravity from the ground up (3rd ed.). Cambridge University Press. p. 143. ISBN 0-521-45506-5.
  11. ^ Palenzuela, C.; Lehner, L.; Liebling, S. L. (2008). "Orbital dynamics of binary boson star systems". Physical Review D. 77 (4): 044036. arXiv:0706.2435. Bibcode:2008PhRvD..77d4036P. doi:10.1103/PhysRevD.77.044036.
  12. ^ Ahmed Farag Ali and A. Tawfik, Int. J. Mod. Phys. D22 (2013) 1350020

Sources