زنون الئایی

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به ناوبری پرش به جستجو
فارسیEnglish
زنون الئایی
زنون درهای حقیقت و دروغ را به شاگردان خود نشان می‌دهد
شناسنامه
حیطه فلسفهٔ غرب
دوره فلسفه دوران باستان
مکتب مکتب اِلِئایی
زادروز
زادگاه اِلِئا، یونان
محل مرگ اِلِئا، یونان

زنون اِلِئایی (به یونانی: Ζήνων ὁ Ἐλεάτης) (به انگلیسی: Zeno of Elea)[۱] (حدود ۴۹۰–۴۹۵ پ. م) در الئا جنوب ایتالیای کنونی (حدود ۴۳۰ پ. م) فیلسوف و ریاضی‌دان یونان باستان که ارسطو وی را بنیان‌گذار دیالکتیک نامیده‌است. او شاگرد و دوست پارمنیدس و پیرو و مدافع سرسخت مکتب الئایی بود. مکتبی که بر ثبات و یکتایی واقعیت و بی‌پایه بودن دانش حسی در مورد کثرت و تغییرپذیری تأکید داشت.زنون بیشتر به خاطر پارادوکس‌هایی مشهور است که در دفاع از مکتب الئایی و عقاید استادش پارمنیدس مطرح کرده‌است.

زندگی و آراء[ویرایش]

زنون به گفتهٔ افلاطون به همراه پارمنیدس در حدود سال ۴۴۹ پ. م به آتن سفر کرده و در آنجا دیدار و مباحثاتی با سقراط داشته‌اند. وی قبل از سفر به یونان کتابی نوشته بود که بر جای نمانده‌است، اما به گفتهٔ افلاطون در آن به‌طور غیرمستقیم واقعیتِ حرکت و کثرت را رد کرده بود. در این کتاب چهل پارادوکس (متناقض‌نما) مطرح شده بود که برخی از آن‌ها تأثیر عمیقی در گسترش ریاضیات داشته‌اند. این پارادوکس‌ها به دو دسته قابل تقسیمند، دسته اول دربارهٔ رد تعدد و کثرت و اثبات نوعی وحدت وجود بوده و دستهٔ دوم به مبحث حرکت می‌پردازد و آن را غیرممکن می‌داند. در این معماها وی ابتدا یک نظریه از مخالفان پارمنیدس را مطرح کرده و سپس پیامدهای غیرقبول ناشی از پذیرفتن این نظریه را نشان داده و به این ترتیب پوچ بودن آن را ثابت کرده‌است. این روش جدلی به نظر می‌رسد نخستین بار توسط زنون استفاده شده باشد. ارسطو در کتاب فیزیک در پی پاسخ به ادعای زنون در مورد واقعیت نداشتن حرکت برآمده و نشان داد که بحث‌های زنون بر پایهٔ تصوراتی اشتباه از مفهوم حرکت و فضا است. با این حال استدلال‌های زنون در دوران خود که هنوز منطق به صورت یک علم درنیامده بود بسیار منطقی به نظر می‌رسیده و می‌توانسته طرفداران زیادی را به خود جذب کرده باشد و به عنوان چالش‌هایی غیرقابل پاسخ برای افرادی که بر واقعیت داشتن حواس تأکید داشتند، راه را برای ترویج شک‌گرایی سوفسطائیان باز کند.

بر اساس منابع قدیمی زنون همچون پارمنیدس به فعالیت سیاسی در شهر خود می‌پرداخت و به دلیل توطئه علیه یک حاکم مستبد به مرگ محکوم شد.[۲] داستان‌هایی در مورد بردباری او در زیر شکنجه و مرگ دردناکی که بر او تحمیل شد، نقل شده‌است. او نیز همچون پارمنیدس بر غیرممکن بودن حرکت استدلال می‌کرد و چنین می‌گفت:

اگر حرکت واقعیت داشته باشد، انتقال است از یک نقطه به نقطهٔ دیگر. پس هرگاه میان این دو نقطه یک خط بکشیم، خواهیم توانست آن را به دو نیم کنیم، و آن نیمه را نیز به دو نیم و همین کار را بر نیمه‌های دیگر؛ و آنچنان این‌کار ادامه خواهد یافت که پایانی نداشته باشد. پس میان این دو نقطه از اجزای بیشمار تشکیل شده‌است، که یک جسم هنگام حرکت باید از بیشمار قسمت عبور کند، که اینکار به زمان بی‌نهایت احتیاج دارد؛ و بنابر این حرکت هیچ‌گاه انجام نخواهد شد.

پارادوکس‌های زنون[ویرایش]

پارادوکس‌های زنون بیش از دو هزار سال است که فیلسوفان، ریاضیدانان، و فیزیکدانان را، به چالش کشیده و آنها را تحت تأثیر قرار داده‌است. معروفترین آنها، استدلال در برابر حرکت است که ارسطو در کتاب فیزیک خود شرح داده‌است.[۳]

جستارهای وابسته[ویرایش]

منابع[ویرایش]

  1. کاپلستون، کاپلستون، جلد اول، ترجمهٔ جلال‌الدین مجتبوی
  2. زندگی و آراء فیلسوفان برجسته، نوشتهٔ دیوژن لائرتی
  3. فیزیک نوشته ارسطو

پیوند به بیرون[ویرایش]

Zeno of Elea
Zeno of Elea Tibaldi or Carducci Escorial.jpg
Zeno shows the Doors to Truth and Falsity (Veritas et Falsitas). Fresco in the Library of El Escorial, Madrid.
Bornc. 495 BC
Diedc. 430 BC (aged around 65)
Elea or Syracuse
EraPre-Socratic philosophy
RegionWestern philosophy
SchoolEleatic school
Main interests
Metaphysics, Ontology
Notable ideas
Zeno's paradoxes

Zeno of Elea (/ˈzn ...ˈɛliə/; Greek: Ζήνων ὁ Ἐλεάτης; c. 495 – c. 430 BC[1]) was a pre-Socratic Greek philosopher of Magna Graecia and a member of the Eleatic School founded by Parmenides. Aristotle called him the inventor of the dialectic.[2] He is best known for his paradoxes, which Bertrand Russell has described as "immeasurably subtle and profound".[3]

Life

Little is known for certain about Zeno's life. Although written nearly a century after Zeno's death, the primary source of biographical information about Zeno is Plato's Parmenides[4] and he is also mentioned in Aristotle's Physics.[5] In the dialogue of Parmenides, Plato describes a visit to Athens by Zeno and Parmenides, at a time when Parmenides is "about 65", Zeno is "nearly 40", and Socrates is "a very young man".[6] Assuming an age for Socrates of around 20 and taking the date of Socrates' birth as 469 BC gives an approximate date of birth for Zeno of 490 BC. Plato says that Zeno was "tall and fair to look upon" and was "in the days of his youth … reported to have been beloved by Parmenides".[6]

Other perhaps less reliable details of Zeno's life are given by Diogenes Laërtius in his Lives and Opinions of Eminent Philosophers,[7] where it is reported that he was the son of Teleutagoras, but the adopted son of Parmenides, was "skilled to argue both sides of any question, the universal critic", and that he was arrested and perhaps killed at the hands of a tyrant of Elea.

According to Diogenes Laërtius, Zeno conspired to overthrow Nearchus the tyrant.[10] Eventually, Zeno was arrested and tortured.[11] According to Valerius Maximus, when he was tortured to reveal the name of his colleagues in conspiracy, Zeno refused to reveal their names, although he said that he did have a secret that would be advantageous for Nearchus to hear. When Nearchus leaned in to listen to the secret, Zeno bit his ear. He "did not let go until he lost his life and the tyrant lost that part of his body".[12][13] Within Men of the Same Name, Demetrius said that the nose was bit off instead.[14]

Zeno may have also interacted with other tyrants. According to Laërtius, Heraclides Lembus, within his Satyrus, these events occurred against Diomedon instead of Nearchus.[10] Valerius Maximus recounts a conspiracy against the tyrant Phalaris, but this would be impossible as Phalaris had died before Zeno was even born.[13][15] According to Plutarch, Zeno attempted to kill the tyrant Demylus. After failing, he had "with his own teeth bit off his tongue, he spit it in the tyrant’s face".[16]

Works

Although many ancient writers refer to the writings of Zeno, none of his works survive intact. The main sources on the nature of Zeno's arguments on motion, in fact, come from the writings of Aristotle and Simplicius of Cilicia.[17]

Plato says that Zeno's writings were "brought to Athens for the first time on the occasion of" the visit of Zeno and Parmenides.[6] Plato also has Zeno say that this work "meant to protect the arguments of Parmenides",[6] was written in Zeno's youth, stolen, and published without his consent. Plato has Socrates paraphrase the "first thesis of the first argument" of Zeno's work as follows: "If being is many, it must be both like and unlike, and this is impossible, for neither can the like be unlike, nor the unlike like."[6]

According to Proclus in his Commentary on Plato's Parmenides, Zeno produced "not less than forty arguments revealing contradictions",[18] but only nine are now known.

Zeno's arguments are perhaps the first examples of a method of proof called reductio ad absurdum, literally meaning to reduce to the absurd. Parmenides is said[citation needed] to be the first individual to implement this style of argument. This form of argument soon became known as the epicheirema. In Book VII of his Topics, Aristotle says that an epicheirema is "a dialectical syllogism". It is a connected piece of reasoning which an opponent has put forward as true. The disputant sets out to break down the dialectical syllogism. This destructive method of argument was maintained by him to such a degree that Seneca the Younger commented a few centuries later: "If I accede to Parmenides there is nothing left but the One; if I accede to Zeno, not even the One is left."[19]

Zeno is also regarded as the first philosopher who dealt with the earliest attestable accounts of mathematical infinity.[citation needed]

According to Sir William Smith, in Dictionary of Greek and Roman Biography and Mythology (1870)[20]

Others content themselves with reckoning Parmenides as well as Zeno as belonging to the Pythagorean school, or with speaking of a Parraenidean life, in the same way as a Pythagorean life is spoken of; and even the censorious Timon allows Parmenides to have been a high-minded man; while Plato speaks of him with veneration, and Aristotle and others give him an unqualified preference over the rest of the Eleatics.

Zeno's paradoxes

Zeno's paradoxes have puzzled, challenged, influenced, inspired, infuriated, and amused philosophers, mathematicians, and physicists for over two millennia. The most famous are the arguments against motion described by Aristotle in his Physics, Book VI.[21]

See also

Notes

  1. ^ Zeno of Elea - Greek philosopher and mathematician.
  2. ^ Diogenes Laërtius, 8.57, 9.25
  3. ^ Russell (1996 [1903]), p. 347: "In this capricious world nothing is more capricious than posthumous fame. One of the most notable victims of posterity's lack of judgement is the Eleatic Zeno. Having invented four arguments all immeasurably subtle and profound, the grossness of subsequent philosophers pronounced him to be a mere ingenious juggler, and his arguments to be one and all sophisms. After two thousand years of continual refutation, these sophisms were reinstated, and made the foundation of a mathematical renaissance..."
  4. ^ Plato (c. 380 – 367 BC). Parmenides, translated by Benjamin Jowett. Internet Classics Archive.
  5. ^ Aristotle (c. mid 4th century BC), Physics 233a and 239b.
  6. ^ a b c d e Plato, Parmenides 127b–e.
  7. ^ Diogenes Laërtius. The Lives and Opinions of Eminent Philosophers, translated by C. D. Yonge. London: Henry G. Bohn, 1853. Scanned and edited for Peithô's Web.
  8. ^ "Archived copy". Archived from the original on 2015-06-07. Retrieved 2015-04-12.CS1 maint: archived copy as title (link)
  9. ^ http://www.perseus.tufts.edu/hopper/text?doc=Perseus%3Atext%3A1999.01.0258%3Abook%3D9%3Achapter%3D5
  10. ^ a b Diogenes Laërtius, Lives of Eminent Philosophers. Book IX.5.26.
  11. ^ Boethius, The Consolation of Philosophy. Book 1.III.
  12. ^ Valerius Maximus, Memorable Deeds and Sayings. Foreign Stories 3. ext. 3.
  13. ^ a b Maximus, Valerius; Walker, Henry J. (2004). Memorable Deeds and Sayings: One Thousand Tales from Ancient Rome. Hackett Pub. p. 97. ISBN 978-0-87220-674-8.
  14. ^ Diogenes Laërtius, Lives of Eminent Philosophers. Book IX.5.27.
  15. ^ Valerius Maximus, Memorable Deeds and Sayings. Foreign Stories 3. ext. 2.
  16. ^ Plutarch, Against Colotes.
  17. ^ Cajori, Florian (1920). "The Purpose of Zeno's Arguments on Motion". Isis. 3 (1): 7–20. doi:10.1086/357889.
  18. ^ Proclus, Commentary on Plato's Parmenides, p. 29.
  19. ^ Zeno in The Presocratics, Philip Wheelwright ed., The Odyssey Press, 1966, pp. 106–107.
  20. ^  Smith, William, ed. (1870). "Parmenides". Dictionary of Greek and Roman Biography and Mythology. p. 125.
  21. ^ Aristotle. Physics, translated by R.P. Hardie and R.K. Gaye. Internet Classics Archive.

References

Further reading

  • Barnes, Jonathan. 1982. The Presocratic Philosophers. 2d ed. London: Routledge & Kegan Paul.
  • Lewis, Eric. 1999. "The Dogmas of Indivisibility: On the Origins of Ancient Atomism. In Proceedings of the Boston Area Colloquium in Ancient Philosophy. Vol. 14. Edited by John J. Cleary and Gary M. Gurtler, S. J., 1–21. Leiden, The Netherlands: Brill.
  • McKirahan, Richard. 2001. "Zeno’s Dichotomy in Aristotle." Philosophical Inquiry 23.1–2: 1–24.
  • Navia, Luis. E. 1993. The Presocratic Philosophers: An Annotated Bibliography. New York and London: Garland.
  • Owen, G. E. L. 1958. "Zeno and the Mathematicians." Proceedings of the Aristotelian Society 58:199–222.
  • Papa-Grimaldi, Alba. 1996. "Why Mathematical Solutions of Zeno’s Paradoxes Miss the Point: Zeno’s One and many Relation and Parmenides’ Prohibition." Review of Metaphysics 50.2: 299–314.
  • Sainsbury, Mark. 1988. Paradoxes. Cambridge: Cambridge University Press.
  • Salmon, Wesley C., ed. 1970. Zeno’s Paradoxes. Indianapolis, IN, and New York: Bobbs-Merrill.
  • Vlastos, Gregory. 1967. "Zeno of Elea." In The Encyclopedia of Philosophy. Vol. 8. Edited by Paul Edwards, 369–379. New York and London: Macmillan.
  • White, Michael J. 1992. The Continuous and the Discrete: Ancient Physical Theories from a Contemporary Perspective. Oxford: Clarendon.

External links