روش تبدیل معکوس

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو

روش تبدیل معکوس برای شبیه‌سازی متغیر تصادفی یکی از زوش‌های عمومی برای شبیه‌سازی متغیرهای تصادفی روش تبدیل معکوس می‌باشد. گزاره: فرض کنید U یک متغیر تصادفی یکنواخت روی فاصله (۱و۰) باشد. برای هر تابع توزیع تجمعی پیوسته F اگر متغیر تصادفی Y را به وسیله Y=F^(-1) (U) تعریف کنیم، آنگاه متغیر تصادفی Y دارای تابع توزیع تجمعی F است. (F^(-1) (x) برابر آن مقدار y که F(y)=x است تعریف می‌شود.

اثبات

F_Y (a)=P{Y≤a} =P{F^(-1) (U)≤a} حال چون F(x) تابعی یکنواست، نتیجه می‌شود که F^(-1) (U)≤a اگر و فقط اگر U≤F(a). بدین ترتیب داریم: F_Y (a)=P{U≤F(a)} F(a) نتیجه می‌شود که می‌توان متغیر تصادفی X را دارای تابع توزیع تجمعی پیوسته F است به وسیله تولید یک عدد تصادفی U و اختیار 〖X=F〗^(-1) (U) شبیه‌سازی کرد.

منابع[ویرایش]

  • مبانی احتمال، شلدرون راس، مترجمین، دکتر احمد پارسیان و دکتر علی همدانی، ویرایش ششم، انتشارات شیخ بهایی، ص ۴۷۴