رله حفاظتی

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به ناوبری پرش به جستجو
فارسیEnglish

رله‌ها یا تجهیزات حفاظتی، دستگاه‌هایی هستند که با قطع مدار و بازکردن کلیدهای قدرت، کارحفاظت قطعات و دستگاه‌های سیستم قدرت در برابر آسیب و اتصالیها انجام می‌دهند. پیش از اینکه کلید قدرت بتواند باز شود، سیم پیچی کنشگر آن باید روشن شود این روشن شدن از سوی رله‌ها انجام می‌پذیرد. رله به دستگاهی گفته می‌شود که در پی دگرگونی اندازه برقی مانند ولت و گردش یا اندازه فیزیکی مانند دما و جابجایی روغن (در رله بوخهولتس) برانگیخته شده و موجب به کار افتادن دستگاه‌های دیگر و در پایان بازشدن چرخه از سوی کلید قدرت (در سیستم تولید و انتقال و پخش) یا دژنکتور می‌گردد.

بنابراین از سوی رله قسمت معیوب از شبکه جداسازی شده و مانع از آن می‌شود که دیگر بخش‌های سالم شبکه همچنان به کار خود ادامه دهند و پایداری و استواری شبکه به همان حالت پیشین نگهداشته شود. کالاها و دستگاه‌ها در برابر آسیب و اتصالی‌ها پناه داده شده و اندازه آسیب‌های درونی به آن‌ها محدود می‌گردد.

پدید آمدن اتصالی‌ها و تأثیرات آن[ویرایش]

به دو علت زیر اتصالی‌ها می‌توانند پدید آیند

الف – تأثیرات درونی: تأثیرات درونی که باعث از کار افتادن و از بین رفتن دستگاه‌ها یا توان‌راه‌ها (خطوط انتقال انرژی) و سامانه‌های پخش (توزیع) می‌شود به اینگونه‌اند: پوسیدن بخش‌های جداگر در یک منبع تولید (ژنراتورها)، ترانسفورماتور، خط، کابل و دیگر بخش‌ها. این آسیب‌ها می‌تواند به دلیل پیرشدگی عایق‌ها، نبود آراستگی درست، ساخت نادرست یا نصب نادرست عایق‌ها باشد.

ب – تأثیرات بیرونی: تأثیرات بیرونی دارای تأثیرات فراوانی است از آن جمله آذرخش، اضافه ولتاژها که باعث پدید آمدن گرما شود، برف و باران، باد و توفان، شاخه درختها، جانوران و پرندگان، به پایین افتادن چیزی به اشتباه در کردار و آسیب‌هایی که از سوی مردم بوجود می‌آید و غیره. هنگامی که یک اتصالی در چرخه رخ دهد، جریان افزایش یافته و ولتاژ (ناهمسانی پتانسیل) کاهش پیدا می‌کند افزایش جریان، گرمای فراوانی را پدیدآورده که می‌تواند به آتش‌سوزی یا انفجار بینجامد. اگر اتصالی به‌گونه آذرخش باشد می‌تواند آسیب فراوانی به همراه داشته باشد.

برای نمونه اگر آذرخشی بر روی خطوط انتقال پدید آمده و زود زدوده نشود سیم خط انتقال را سوزانده و باعث پاره شدن آن خواهد شد و پیآمد آن نبود برق برای زمان دراز خواهد بود. کاهش ولتاژ که در پی یک اتصالی پدید می‌آید برای دستگاه‌های برقی بسیار زیان‌آور است و اگر این ولتاژ کم برای چندین ثانیه ادامه داشته باشد، ژنراتورها از کار بازایستاده، و منابع تولید برق نا به سامان و ناآراسته خواهد شد پس با رخداد جریان زیاد و ولتاژ کم به سبب اتصالی در چرخه می‌بایست به تندی اتصالی پیدا و زدوده شود و گردش ولتاژ به حالت عادی بازگردانده شود.

رله‌های جریانی[ویرایش]

رله‌های جریانی برای حفظ شبکه‌های برقی در برابر خطر ناشی از جریان بکار می‌روند. بیشتر آسیب‌هایی که از سوی رله‌های جریانی شناسایی داده می‌شوند به این‌گونه است:

  1. اتصال کوتاه در شبکه
  2. اضافه جریان
  3. اضافه بار
  4. جریان نشتی (خطای زمین)
  5. ناهمسانی جریان سه فاز
  6. کاهش بار
  7. افزایش زمان راه اندازی
  8. قفل شدن روتور

رله اتصال کوتاه و اضافه جریان و اتصالی زمین[ویرایش]

نخستین و برجسته‌ترین حفاظت‌ها در یک سیستم الکتریکی، حفاظت اتصال کوتاه و اضافه جریان و ارت فالت می‌باشند. این حفاظت‌ها با حفاظت اضافه بار تفاوت آشکاری دارد چون حفاظت اضافه بار بر پایه ظرفیت گرمای واحد می‌باشند.

در این گونه حفاظت ها، گردش سه فاز از سوی سه دانه ترانسفورمر گردش حس می‌گردد و به رله فرستادن می‌شود و بر پایه آن حفاظت انجام می‌گیرد. دربارهٔ حفاظت بالا خمش برش رله از ارزش بسیار بالایی برخوردار است زیرا حفاظت درست بر پایه آن انجام می‌گیرد. این رله‌ها می‌توانند دارای دو گروه خمیدگی برش باشند:

  1. نوع زمان ثابت که در این نوع پارامتر جریان و زمان به هم وابستگی ندارند و به‌گونه جداگانه آراسته می‌گردند و رله بر پایه جریان آرایش در زمان آراسته شده فرمان قطع را می‌فرستد.
  2. نوع زمان کاهشی که در این حالت زمان قطع رله با یک خمش به جریان گذری از رله وابسته می‌باشد.

به این گونه که هر چه جریان گذری از رله بیشتر گردد زمان قطع رله کمتر خواهد بود. بسته به رفتار و نوع بهره‌گیری از رله خمش‌های استانداردی برای این رله‌ها وجود دارد که بشرح زیر است: Standard Inverse Curve (SIT)Very Inverse Curve (VIT)Extremely Inverse Curve (EIT)Ultra Inverse Curve (UIT) پناه سیستم‌های فرهی از ارزش بسیار فراوانی برخوردار است و امروزه کمپانی‌های فراوانی در حالبرنامه‌ریزی و ساخت رله های حفاظت می‌باشند. برخی از کمپانی‌های شناخته شده که در این زمینه دست به کار می‌باشند عبارتند از . Siemens , Alstom , ABB , GE Power , Schneider , CEE , Reyroll

ویژگی‌های یک رله حفاظتی[ویرایش]

روی هم رفته رله حفاظتی باید دارای ویژگی‌های زیر باشند:

  1. سرعت رفتار: این پارامتر در رله بسیار ارزشمند است چون رله حفاظتی هنگام خطا بایستی هرچه زودتر بخش‌های آسیب دیده را از بخش‌های درست جدا نمایند.
  2. ریزسنجی (حساسیت): این پارامتر به کمترین جریانی که موجب قطع رله می‌گردد برمی‌گردد.
  3. شناسایی و گزینش در شرایط خطا: این پارامتر نیز بسیار برجسته است زیرا در شبکه‌هایی که دارای چند باس بار و رله حفاظتی هستند هنگام رخداد خطا می‌باید بخش آسیب دیده به درستی شناسایی شده و از شبکه جدا گردد و بخش‌های درست کار خود را دنبال کنند.
  4. پایداری: این پارامتر به این بازمی‌گردد که یک رله حفاظتی به همهٔ خطاهای ناحیه حفاظتی خود به درستی واکنش نشان دهد و در برابر خطاهای بیرون از این محدوده واکنش نشان ندهد.[۱]

دسته‌بندی رله های حفاظتی بر اساس پارامترهای اندازه‌گیری[ویرایش]

الف) رله‌های گردشی: این رله‌ها بر پایه اندازه گردش ورودی به رله رفتار می‌کند. حال این گردش می‌تواندگردش در فازها، گردش در سیم نول، برآیند جبری گردشهای فازها باشد (رله‌های گردش بالا – رله‌های ارت فالت و ….) و گردش ورودی رله می‌تواند کاستی دو یا چند گردش باشد (رله‌های دیفرانسیل و رستریکت ارت فالت)

ب) رله‌های ولتاژی: این رله‌ها بر پایه ولتاژ ورودی به رله عمل می‌کند این ولتاژ می‌تواند ولتاژ فازها باشد (رله‌های افزوده یا کمبود ولتاژ و ….) یا می‌تواند برآیند جبری چند ولتاژ باشد (رله دگرگونی جای نوک تلاقی بردارهای سه فاز)

ج) رله‌های فرکانسی: این رله‌ها بر پایه بسامد ولتاژ ورودی عمل می‌کند (رله‌های افزایش و کمبود فرکانس)

د) رله‌های توانی: این رله‌ها بر پایه توان عمل می‌کنند برای نمونه رله‌هایی که جهت توان را اندازه‌گیری می‌کنند یا رله‌هایی که توان اکتیو و راکتیو را اندازه‌گیری می‌کنند.

ه) رله‌های جهت دار: این رله‌ها از گونه رله‌های قدرت هستند که بر پایه زاویه بین بردارهای ولتاژ و جریان کار می‌کنند مانند رله‌های جریان زیاد جهت دار که در توانراه‌های چند سویه تغذیه زنجیره‌ای و موازی بکار می‌روند یا رله‌های جهت دار قدرت که برای پرهیز از چرخاکی شدن آفریدار هنگام برش کوپلینگ آن بکار می‌رود.

و) رله‌های ناگذراییی (امپدانسی): مانند رله دیستانس که در توانراه‌ها کاربرد فراوانی دارند.

ز) رله‌های وابسته به اندازه‌های فیزیکی: مانند گرما – فشار – سطح آبینه‌ها (مایعات) و …. مانند رله بوخهلتس ترانسفورمرها

ح) رله‌های ویژه: رله‌هایی هستند که برای خواست‌های ویژه به کار می‌روند همچون رله شناسایی گزند کلید – رله پاییدن چرخه تریپ بریکر – رله لاک اوت و …..

ANSI CODE[ویرایش]

ردیف نام فارسی و لایتن رله‌های حفاظتی کداستاندارد

ANSI

! توضیح مختصر نحوه عملکرد
۱ رله راه‌انداز تأخیری یا رله وصل‌کننده

TIME DELAY STARTING OR CLOSING RELAY

۲ یکی از رله‌های کمکی بوده که با تأخیر عمل کرده و باعث ارسال فرمان وصل دیگر رله‌ها می‌شود.
۲ رله اینترلاک

CHECKING OR INTERLOCKING RELAY

۳ این رله شرایط لازم جهت تغییر وضعیت کلید را کنترل نموده در صورت برقراری شرایط، دیژنکتور یا سکسیونر قادر به تغییر وضعیت خواهد بود.
۳ کنتاکتور اصلی

MASTER CONTACTOR

۴ این کنتاکتور در مدار اصی قرار داشته و دارای بالاترین توان قطع و وصل در مدار می‌باشد.
۴ رله دیستانس (فاصله‌یاب)

DISTANCE RELAY

۲۱ این رله با اندازه‌گیری مقدار امپدانس دیده شده در شبکه در صورت کاهش آن از میزان تنظیمی (در زمان بروز خطای فازها) عمل می‌کند.
۵ رله دیستانس (فاصله‌یاب)

DISTANCE RELAY

N21 این رله با اندازه‌گیری مقدار امپدانس دیده شده در شبکه در صورت کاهش آن از میزان تنظیمی (در زمان بروز خطای فاز و زمین) عمل می‌کند.
۶ رله افزایش شار مغناطیسی

OVER FLUX RELAY

۲۴ بر اثر افزایش بیش از حد شار مغناطیسی ترانسفورماتور ناشی از افزایش ولتاژ و تغییر سریع فرکانس عمل می‌نماید.
۷ رله چک‌کننده حالت سنکرون

SYNCHRONIZING CHECK RELAY

25 هرگاه حالت سنکرون دو شبکه ایجاد گردد عمل می‌کند(جهت برقراری لاجیک 2 از 3 یا ...).
۸ رله افزایش درجه حرارت روغن

OIL TEMPERATURE RELAY

26 در صورت افزایش درجه حرارت روغن ترانس بیش از حد تنظیمی عمل می‌نماید.
۹ رله کاهش ولتاژ

UNDER VOLTAGE RELAY

۲۷ در صورت کاهش ولتاژ بیش از حد تنظیمی عمل می‌نماید.
۱۰ رله توان اکتیو

ACTIVE POWER RELAY

32P این رله جهت عبور توان را کنترل نموده و در صورت مغایرت آن با جهت موردنظر عمل می‌نماید.
۱۱ رله توان راکتیو

REACTIVE POWER RELAY

32Q این رله جهت عبور توان را کنترل نموده و در صورت مغایرت آن با جهت موردنظر عمل می‌نماید.
۱۲ رله کاهش توان یا جریان

UNDER CURRENT OR UNDER POWER RELAY

۳۷ در صورت کاهش مقدار جریان یا توان از حد تنظیم شده عمل می‌نماید.
۱۳ رله مؤلفه منفی جریان

PHASE UNBALANCE CURRENT RELAY

۴۶ در صورت ایجاد نامتعادلی جریان بین فازها و بوجود آمدن مؤلفه منفی عمل می‌کند.
14 زله مؤلفه مثبت ولتاژ

VOLTAGE UNBALANCE RELAY

47 در صورت جابجایی فاز یا ایجاد اختلاف زاویه ولتاژی عمل می‌کند
15 رله حرارتی (اضافه بار)

THERMAL OVERLOAD RELAY

۴۹ در صورت وجود اضافه بار و برمبنای درجه حرارت(موتور و ترانس) بیش از حد تنظیمی عمل می‌نماید.
16 رله افزایش درجه حرارت سیم پیچ

WINDING TEMPERATURE RELAY

۴۹ هرگاه درجه حرارت سیم پیچ ترانسفورماتور از حد تنظیم شده فراتر رود عمل می‌کند.
17 رله جریان زیاد لحظه‌ای

INSTANTANEOUS OVER CURRENT RELAY

۵۰ این رله در صورت بروز اتصالی‌های شدید در تجهیزات شبکه به صورت آنی عمل می‌نماید.
18 رله جریان زیاد تاخیری

TIME OVER CURRENT RELAY

۵۱ در صورت بروز اتصالی‌های فاز با فاز یا نوترال در تجهیزات شبکه به صورت تاخیری عمل می‌نماید.
19 رله اتصال زمین لحظه ای

TIME DELAY OVERCURRENT RELAY

50N در صورت بروز اتصالی فازبا زمین به صورت آنی عمل می‌نماید.
20 رله اتصال زمین تأخیری

TME DELAY EARTH FAULT RELAY

51N در صورت بروز اتصالی فازبا زمین به صورت تاخیری و بر اساس منحنی حفاظت عمل می‌کند.
۲۲ کلید قطع‌کننده مدار متناوب

A.C. CIRCULT BREAKER

۵۲ کلید قرار گرفته در مدارات AC برای قطع زیربار
۲۳ رله ضریب قدرت

POWER FACTOR RELAY

۵۵ این رله با تغییر ضریب قدرت از حد تنظیم شده عمل می‌نماید.
۲۴ رله اضافه ولتاژ

OVER VOLTAGE RELAY

۵۹ این رله در صورت نامتعادل شدن ولتاژها یا جریان‌ها عمل می‌نماید.
۲۵ رله نامتعادلی ولتاژها یا جریان‌ها

VOLTAGE OR CURRENT UNBALANCE RALAY

۶۰ این رله در صورت نامتعادل شدن ولتاژها یا جریان‌ها عمل می‌نماید.
۲۶ رله عملکرد فیوز

FUSE FAILURE RELAY

۶۰ هرگاه در مد ار ثانویه ترانسفورماتورهای ولتاژ اشکالی بوجود آمده و باعث قطع کلید ـ فیوز گردد، این رله عمل می‌نماید.
۲۷ رله بوخهولتز

BUCHHOLTZ RELAY

۶۳ این رله در زمانی که در داخل ترانسفورماتور گاز ایجاد شده یا چرخش سریع روغن بوجود آید عمل می‌کند.
۲۸ رله دریچه انفجار

PRESSURE RELIEF RELAY

D62 این رله در زمانی که فشار داخل تانک اصلی ترانسفورماتور از حد تعیین شده تجاوز نماید عملکرد دارد.
۲۹ رله اتصال زمین محدوده

RESTRICTED EARTH FAULT

۶۴

N87

این رله در زمانی که در محدوده کار رله اتصال زمین به وجود آید، عمل می‌کند.
۳۰ رله حفاظتی اتصال زمین (ولتاژ باقی‌مانده)

(RESIDUAL VOLTAGE) EARTH FAULT RELAY

۶۴ این رله در صورت ایجاد ولتاژی بیش از حد تنظیمی در نوترال ترانسفورماتور یا ژنراتور عمل می‌کند.
۳۱ رله اضافه جریان جهت‌دار

DIRECTIONAL OVER CURRENT RELAY

۶۷ در صورت بروز اتصالی فازها در جهت دید رله مطابق تنظیمات رله عمل خواهد کرد.
۳۲ رله اتصال زمین جهت‌دار

DIRECTIONAL EARTH FAULT RELAY

C67 در صورت بروز اتصالی فاز با زمین در جهت دید رله عمل خواهد کرد.
۳۳ رله بلوک (مسدود)کننده

BLOCKING RELAY

۶۸ این رله در صورت تحریک، یک یا چند عملکرد را بلوکه (مسدود) خواهد نمود.
۳۴ رله سطح روغن

OIL LEVEL RELAY

۷۱ هرگاه سطح روغن ترانسفورماتور به هر دلیل از حد تنظیمی افزایش یا کاهش یابد، عمل می‌کند.
۳۵ رله آلارم

ALARM RELAY

۷۴ تحریک این رله منجر به برقراری آلارم خواهد شد.
۳۶ رله کنترل مدار قطع دیژنکتور

TRIP CIRCUIT SUPERVISION RELAY

۷۴ هرگاه در مدار کنترل قطع و وصل دیژنکتور اشکالی بوجود آید، عمل می‌کند.
۳۷ رله جریان زیاد (DC)

D.C. OVER CURRENT RELAY

۷۶ در صورت افزایش جریان DC به بیش از حد تنظیمی، این رله عمل خواهد کرد.
۳۸ رله عمل‌کننده با سیگنال رله پروتکشن

TELEPROTECTION OPERATING RELAY

۷۷ رله مشخص‌کننده عمل سیتسم تله پروتکشن
۳۹ رله اندازه‌گیری زاویه فاز

PHASE ANGLE MEASURING RELAY

۷۸ این رله زاویه فاز بین دو پارامتر را اندازه‌گیری و در صورت خارج بودن از محدوده تنظیمی عمل خواهد کرد.
۴۰ رله وصل مجدد

RECLOSING RELAY

۷۹ این رله در صورت قطع خودکار فیدر ناشی از خطاهای مجاز به وصل مجدد، عمل می‌کند.
۴۱ رله فرکانسی

FREQUENCY RELAY

۸۱ در صورت تغییر فرکانس شبکه از حد مجاز عمل می‌نماید.
۴۲ رله انتخاب‌کننده (کنترل اتوماتیک)

یا انتقال دهنده عمل کنترل AUTOMATIC SELECTIVE RELAY TRANSFER OR CONTROL

۸۳ با تحریک این رله و بسته به شرایط پیش‌بینی شده یکی از دو وضعیت (عملکرد اتوماتیک رله) یا (انتقال فرمان به واحدی دیگر) انتخاب می‌شود.
۴۳ رله دریافت سیگنال تریپ از طریق سیم پیلوت یا کاربر

CARRIER OR PILOT WIRE RECEIVE RELAY

۸۵ این رله در صورت دریافت سیگنال قطع از پست مقابل از طریق کابل پیلوت یا کاریر نسبت به قطع کلید اقدام می‌نماید.
۴۴ رله لاک اوت (قفل‌کننده)

LOCKING OUT RELAY

۸۶ در صورت عملکرد سیستم حفاظتی که مبین اشکال در تجهیزات شبکه یا آسیب دیدگی آن‌ها باشد فرمان وصل فیدر را مسدود می‌نماید.
۴۵ رله دیفرانسیل (تفاضلی)

DIFFERENTIAL PROTECTIVE RELAY

۸۷ این رله در صورت عدم توازن جریان‌های ورودی و خروجی عمل می‌نماید.
۴۶ رله دیفرانسیل ترانسفورماتور

TRANSFORMER DIFFERENTIAL RELAY

T87 در صورت عدم توازن بین جریان‌های ورودی و خروجی ترانسفورماتور که ناشی از بروز خطا در داخل آن است عمل می‌نماید.
۴۷ رله دیفرانسیل خط یا کابل

LINE DIFFERENTIAL RELAY

L87 در صورت اختلاف بین جریان ابتداء و انتهای خط یا کابل عمل می‌کند.
۴۸ رله کنترل اتوماتیک ولتاژ

AUTOMATIC VOLTAGE REGULATOR RELAY

۹۰ وظیفه این رله، ثابت نگهداشتن ولتاژ ثانویه ترانسفورماتور از طریق کنترل تپ‌ها می‌باشد.
۴۹ رله فرمان قطع

TRIP RELAY

۹۴ این رله در مسیر فرمان رله اصلی قرار گرفته و از طریق آن کویل قطع دیژنکتور تحریک می‌گردد.
۵۰ رله فاصله یاب

FAULT LOCATOR RELAY

۹۶ این رله می‌تواندفاصله محل اتصالی بوجود آمده روی خطوط از محل پست را تعیین نماید.

این رله‌ها در دو نمونهٔ مکانیکی و میکروکنترلری تولید و به بازار صنعت عرضه می‌شوند که رله‌های مکانیکی در صنایع قدیمی مورد استفاده قرار گرفته و به تدریج در حال جایگزینی با رله‌های میکروکنترلر هستند. قابلیت زمان ثبت خطا، اندازه‌گیری میزان پارامترهای خطا (به عنوان مثال میزان جریان اتصال کوتاه) و سرعت عملکرد بسیار بالا از جمله ویژگی‌های بارز رله‌های میکروکنترلری می‌باشد.

بسته‌بندی رله‌ها[ویرایش]

رله‌های حفاظتی ممکن است به صورت تکی یا به صورت مولتی فانکش (چند رله در یک بسته‌بندی) عرضه شوند، در رله‌های مولتی فانکشن کاربر می‌تواند حفاظت‌های مختلف را با استفاده از یک رله بر روی سیستم خود اعمال کند

منابع[ویرایش]

  1. Protective Relays Application Guide 3rd Edition, GEC Alsthom Measurements Ltd. 1987, no ISBN, pages 9-10, 83-93
Electromechanical protective relays at a hydroelectric generating plant. The relays are in round glass cases. The rectangular devices are test connection blocks, used for testing and isolation of instrument transformer circuits.

In electrical engineering, a protective relay is a relay device designed to trip a circuit breaker when a fault is detected.[1]:4 The first protective relays were electromagnetic devices, relying on coils operating on moving parts to provide detection of abnormal operating conditions such as over-current, over-voltage, reverse power flow, over-frequency, and under-frequency.[2]

Microprocessor-based digital protection relays now emulate the original devices, as well as providing types of protection and supervision impractical with electromechanical relays. Electromechanical relays provide only rudimentary indication of the location and origin of a fault. [3] In many cases a single microprocessor relay provides functions that would take two or more electromechanical devices. By combining several functions in one case, numerical relays also save capital cost and maintenance cost over electromechanical relays.[4] However, due to their very long life span, tens of thousands of these "silent sentinels"[5] are still protecting transmission lines and electrical apparatus all over the world. Important transmission lines and generators have cubicles dedicated to protection, with many individual electromechanical devices, or one or two microprocessor relays.

The theory and application of these protective devices is an important part of the education of a power engineer who specializes in power system protection. The need to act quickly to protect circuits and equipment often requires protective relays to respond and trip a breaker within a few thousandths of a second. In some instances these clearance times are prescribed in legislation or operating rules.[6] A maintenance or testing program is used to determine the performance and availability of protection systems.[7]

Based on the end application and applicable legislation, various standards such as ANSI C37.90, IEC255-4, IEC60255-3, and IAC govern the response time of the relay to the fault conditions that may occur.[8]

Operation principles

Electromechanical protective relays operate by either magnetic attraction, or magnetic induction.[9]:14 Unlike switching type electromechanical relays with fixed and usually ill-defined operating voltage thresholds and operating times, protective relays have well-established, selectable, and adjustable time and current (or other operating parameter) operating characteristics. Protection relays may use arrays of induction disks, shaded-pole,[9]:25 magnets, operating and restraint coils, solenoid-type operators, telephone-relay contacts,[clarification needed] and phase-shifting networks.

Protective relays can also be classified by the type of measurement they make.[10]:92 A protective relay may respond to the magnitude of a quantity such as voltage or current. Induction relays can respond to the product of two quantities in two field coils, which could for example represent the power in a circuit.

"It is not practical to make a relay that develops a torque equal to the quotient of two a.c. quantities. This, however is not important; the only significant condition for a relay is its setting and the setting can be made to correspond to a ratio regardless of the component values over a wide range."[10]:92

Several operating coils can be used to provide "bias" to the relay, allowing the sensitivity of response in one circuit to be controlled by another. Various combinations of "operate torque" and "restraint torque" can be produced in the relay.

By use of a permanent magnet in the magnetic circuit, a relay can be made to respond to current in one direction differently from in another. Such polarized relays are used on direct-current circuits to detect, for example, reverse current into a generator. These relays can be made bistable, maintaining a contact closed with no coil current and requiring reverse current to reset. For AC circuits, the principle is extended with a polarizing winding connected to a reference voltage source.

Lightweight contacts make for sensitive relays that operate quickly, but small contacts can't carry or break heavy currents. Often the measuring relay will trigger auxiliary telephone-type armature relays.

In a large installation of electromechanical relays, it would be difficult to determine which device originated the signal that tripped the circuit. This information is useful to operating personnel to determine the likely cause of the fault and to prevent its re-occurrence. Relays may be fitted with a "target" or "flag" unit, which is released when the relay operates, to display a distinctive colored signal when the relay has tripped.[11]

Types according to construction

Electromechanical

Electromechanical relays can be classified into several different types as follows:

  • attracted armature
  • moving coil
  • induction
  • motor operated
  • mechanical
  • thermal

"Armature"-type relays have a pivoted lever supported on a hinge[12] or knife-edge pivot, which carries a moving contact. These relays may work on either alternating or direct current, but for alternating current, a shading coil on the pole[9]:14 is used to maintain contact force throughout the alternating current cycle. Because the air gap between the fixed coil and the moving armature becomes much smaller when the relay has operated, the current required to maintain the relay closed is much smaller than the current to first operate it. The "returning ratio"[13] or "differential" is the measure of how much the current must be reduced to reset the relay.

A variant application of the attraction principle is the plunger-type or solenoid operator. A reed relay is another example of the attraction principle.

"Moving coil" meters use a loop of wire turns in a stationary magnet, similar to a galvanometer but with a contact lever instead of a pointer. These can be made with very high sensitivity. Another type of moving coil suspends the coil from two conductive ligaments, allowing very long travel of the coil.

Induction disc overcurrent relay

When the input current is above the current limit, the disk rotates, the contact moves left and reaches the fixed contact. The scale above the plate indicates the delay-time.

"Induction" disk meters work by inducing currents in a disk that is free to rotate; the rotary motion of the disk operates a contact. Induction relays require alternating current; if two or more coils are used, they must be at the same frequency otherwise no net operating force is produced.[11] These electromagnetic relays use the induction principle discovered by Galileo Ferraris in the late 19th century. The magnetic system in induction disc overcurrent relays is designed to detect overcurrents in a power system and operate with a pre-determined time delay when certain overcurrent limits have been reached. In order to operate, the magnetic system in the relays produces torque that acts on a metal disc to make contact, according to the following basic current/torque equation:[14]

Where and are the two fluxes and is the phase angle between the fluxes

The following important conclusions can be drawn from the above equation.[15]

  • Two alternating fluxes with a phase shift are needed for torque production.
  • Maximum torque is produced when the two alternating fluxes are 90 degrees apart.
  • The resultant torque is steady and not a function of time.

The relay's primary winding is supplied from the power systems current transformer via a plug bridge,[16] which is called the plug setting multiplier (psm). Usually seven equally spaced tappings or operating bands determine the relays sensitivity. The primary winding is located on the upper electromagnet. The secondary winding has connections on the upper electromagnet that are energised from the primary winding and connected to the lower electromagnet. Once the upper and lower electromagnets are energised they produce eddy currents that are induced onto the metal disc and flow through the flux paths. This relationship of eddy currents and fluxes creates torque proportional to the input current of the primary winding, due to the two flux paths being out of phase by 90°.

In an overcurrent condition, a value of current will be reached that overcomes the control spring pressure on the spindle and the braking magnet, causing the metal disc to rotate towards the fixed contact. This initial movement of the disc is also held off to a critical positive value of current by small slots that are often cut into the side of the disc. The time taken for rotation to make the contacts is not only dependent on current but also the spindle backstop position, known as the time multiplier (tm). The time multiplier is divided into 10 linear divisions of the full rotation time.

Providing the relay is free from dirt, the metal disc and the spindle with its contact will reach the fixed contact, thus sending a signal to trip and isolate the circuit, within its designed time and current specifications. Drop off current of the relay is much lower than its operating value, and once reached the relay will be reset in a reverse motion by the pressure of the control spring governed by the braking magnet.

Static

Application of electronic amplifiers to protective relays was described as early as 1928, using vacuum tube amplifiers and continued up to 1956.[17] Devices using electron tubes were studied but never applied as commercial products, because of the limitations of vacuum tube amplifiers. A relatively large standby current is required to maintain the tube filament temperature; inconvenient high voltages are required for the circuits, and vacuum tube amplifiers had difficulty with incorrect operation due to noise disturbances.

Static relays have no or few moving parts, and became practical with the introduction of the transistor. Measuring elements of static relays have been successfully and economically built up from diodes, zener diodes, avalanche diodes, unijunction transistors, p-n-p and n-p-n bipolar transistors, field effect transistors or their combinations.[18]:6 Static relays offer the advantage of higher sensitivity than purely electromechanical relays, because power to operate output contacts is derived from a separate supply, not from the signal circuits. Static relays eliminated or reduced contact bounce, and could provide fast operation, long life and low maintenance.[19]

Digital

Digital protective relays were in their infancy during the late 1960s.[20][21] An experimental digital protection system was tested in the lab and in the field in the early 1970s.[22][23] Unlike the relays mentioned above, digital protective relays have two main parts: hardware and software[24]:5. The world's first commercially available digital protective relay was introduced to the power industry in 1984 by Schweitzer Engineering Laboratories (SEL) based in Pullman, Washington.[3] In spite of the developments of complex algorithms for implementing protection functions the microprocessor based-relays marketed in the 1980s did not incorporate them.[25] A microprocessor-based digital protection relay can replace the functions of many discrete electromechanical instruments. These relays convert voltage and currents to digital form and process the resulting measurements using a microprocessor. The digital relay can emulate functions of many discrete electromechanical relays in one device,[26] simplifying protection design and maintenance. Each digital relay can run self-test routines to confirm its readiness and alarm if a fault is detected. Digital relays can also provide functions such as communications (SCADA) interface, monitoring of contact inputs, metering, waveform analysis, and other useful features. Digital relays can, for example, store multiple sets of protection parameters,[27] which allows the behavior of the relay to be changed during maintenance of attached equipment. Digital relays also can provide protection strategies impossible to implement with electromechanical relays. This is particularly so in long distance high voltage or multi-terminal circuits or in lines that are series or shunt compensated[24]:3 They also offer benefits in self-testing and communication to supervisory control systems.

A digital (numeric) multifunction protective relay for distribution networks. A single such device can replace many single-function electromechanical relays, and provides self-testing and communication functions.

Numerical

The distinction between digital and numerical protection relay rests on points of fine technical detail, and is rarely found in areas other than Protection[28]:Ch 7, pp 102. Numerical relays are the product of the advances in technology from digital relays. Generally, there are several different types of numerical protection relays. Each type, however, shares a similar architecture, thus enabling designers to build an entire system solution that is based on a relatively small number of flexible components.[8] They use high speed processors executing appropriate algorithms[18]:51.[29][30] Most numerical relays are also multifunctional[31] and have multiple setting groups each often with tens or hundreds of settings.[32]

Relays by functions

The various protective functions available on a given relay are denoted by standard ANSI device numbers. For example, a relay including function 51 would be a timed overcurrent protective relay.

Overcurrent relay

An overcurrent relay is a type of protective relay which operates when the load current exceeds a pickup value. It is of two types: instantaneous over current (IOC) relay and definite time overcurrent (DTOC) relay.

The ANSI device number is 50 for an IOC relay or a DTOC relay. In a typical application, the over current relay is connected to a current transformer and calibrated to operate at or above a specific current level. When the relay operates, one or more contacts will operate and energize to trip a circuit breaker. The DTOC relay has been used extensively in the United Kingdom but its inherent issue of operating slower for faults closer to the source led to the development of the IDMT relay.[1]:pp 30-31

Definite time over-current relay

A definite time over-current (DTOC) relay is a relay that operates after a definite period of time once the current exceeds the pickup value. Hence, this relay has current setting range as well as time setting range.

Instantaneous over-current relay

An instantaneous over-current relay is an overcurrent relay which has no intentional time delay for operation. The contacts of the relay are closed instantly when the current inside the relay rises beyond the operational value. The time interval between the instant pick-up value and the closing contacts of the relay is very low. It has low operating time and starts operating instantly when the value of current is more than the relay setting. This relay operates only when the impedance between the source and the relay is less than that provided in the section.[33]

Inverse-time over-current relay

An inverse-time over-current (ITOC) relay is an overcurrent relay which operates only when the magnitude of their operating current is inversely proportional to the magnitude of the energize quantities. The operating time of relay decreases with the increases in the current. The operation of the relay depends on the magnitude of the current.[34]

Inverse definite minimum time relay

The inverse definite minimum time (IDMT) relay are protective relays which were developed to overcome the shortcomings of the definite time overcurrent (DTOC) relays.[1]:pp 30-31[35]:134

If the source impedance remains constant and the fault current changes appreciably as we move away from the relay then it is advantageous to use IDMT overcurrent protection[36]:11 to achieve high speed protection over a large section of the protected circuit.[28]:127 However, if the source impedance is significantly larger than the feeder impedance then the characteristic of the IDMT relay cannot be exploited and DTOC may be utilized.[37]:42 Secondly if the source impedance varies and becomes weaker with less generation during light loads then this leads to slower clearance time hence negating the purpose of the IDMT relay.[38]:143

IEC standard 60255-151 specifies the IDMT relay curves as shown below. The four curves in Table 1 are derived from the now withdrawn British Standard BS 142.[39] The other five, in Table 2, are derived from the ANSI standard C37.112.[40]

While it is more common to use IDMT relays for current protection it is possible to utilize IDMT mode of operation for voltage protection[41]:3. It is possible to program customised curves in some protective relays[42]:pp Ch2-9 and other manufacturers[43]:18 have special curves specific to their relays. Some numerical relays can be used to provide inverse time overvoltage protection[44]:6 or negative sequence overcurrent protection.[45]:915

Table 1. Curves derived from BS 142
Relay Characteristic IEC Equation
Standard Inverse (SI)
Very Inverse
Extremely Inverse (EI)
Long time standard earth fault
Table 2. Curves derives from ANSI standard (North American IDMT relay characteristics)[28]:126
Relay Characteristic IEEE Equation
IEEE Moderately Inverse
IEE Very Inverse (VI)
Extremely Inverse (EI)
US CO8 inverse
US CO2 Short Time inverse

Ir = is the ratio of the fault current to the relay setting current or a Plug Setting Multiplier.[46]:pp 73 "Plug" is a reference from the electromechanical relay era and were available in discrete[1]:pp 37 steps. TD is the Time Dial setting.

The above equations result in a "family" of curves as a result of using different time multiplier setting (TMS) settings. It is evident from the relay characteristic equations that a larger TMS will result in a slower clearance time for a given PMS (Ir) value.

Distance relay

Distance relays, also known as impedance relay, differ in principle from other forms of protection in that their performance is not governed by the magnitude of the current or voltage in the protected circuit but rather on the ratio of these two quantities. Distance relays are actually double actuating quantity relays with one coil energized by voltage and other coil by current. The current element produces a positive or pick up torque while the voltage element produces a negative or reset torque. The relay operates only when the V/I ratio falls below a predetermined value (or set value). During a fault on the transmission line the fault current increases and the voltage at the fault point decreases. The V/I [47] ratio is measured at the location of CTs and PTs. The voltage at the PT location depends on the distance between the PT and the fault. If the measured voltage is lesser, that means the fault is nearer and vice versa. Hence the protection called Distance relay. The load flowing through the line appears as an impedance to the relay and sufficiently large loads (as impedance is inversely proportional to the load) can lead to a trip of the relay even in the absence of a fault.[48]:467

Current differential protection scheme

A differential scheme acts on the difference between current entering a protected zone (which may be a bus bar, generator, transformer or other apparatus) and the current leaving that zone. A fault outside the zone gives the same fault current at the entry and exit of the zone, but faults within the zone show up as a difference in current.

"The differential protection is 100% selective and therefore only responds to faults within its protected zone. The boundary of the protected zone is uniquely defined by the location of the current transformers. Time grading with other protection systems is therefore not required, allowing for tripping without additional delay. Differential protection is therefore suited as fast main protection for all important plant items."[49]:15

Differential protection can be used to provide protection for zones with multiple terminals[50][51] and can be used to protect lines,[52] generators, motors, transformers, and other electrical plant.

Current transformers in a differential scheme must be chosen to have near-identical response to high overcurrents. If a "through fault" results in one set of current transformers saturating before another, the zone differential protection will see a false "operate" current and may false trip.

GFCI (ground fault circuit interrupter) circuit breakers combine overcurrent protection and differential protection (non-adjustable) in standard, commonly available modules.[citation needed]

Directional relay

A directional relay uses an additional polarizing source of voltage or current to determine the direction of a fault. Directional elements respond to the phase shift between a polarizing quantity and an operate quantity.[53] The fault can be located upstream or downstream of the relay's location, allowing appropriate protective devices to be operated inside or outside of the zone of protection.

Synchronism check

A synchronism checking relay provides a contact closure when the frequency and phase of two sources are similar to within some tolerance margin. A "synch check" relay is often applied where two power systems are interconnected, such as at a switchyard connecting two power grids, or at a generator circuit breaker to ensure the generator is synchronized to the system before connecting it.

Power source

The relays can also be classified on the type of power source that they use to work.

A dual powered protection relay powered by the current obtained from the line by a CT. The striker is also shown
  • Self-powered relays operate on energy derived from the protected circuit, through the current transformers used to measure line current, for example. This eliminates the cost and reliability question of a separate supply.
  • Auxiliary powered relays rely on a battery or external ac supply. Some relays can use either AC or DC. The auxiliary supply must be highly reliable during a system fault.
  • Dual powered relays can be also auxiliary powered, so all batteries, chargers and other external elements are made redundant and used as a backup.

References

  1. ^ a b c d Paithankar, Yeshwant (September 1997). Transmission Network Protection. CRC Press. ISBN 978-0-8247-9911-3.
  2. ^ Lundqvist, Bertil. "100 years of relay protection, the Swedish ABB relay history" (PDF). ABB. Retrieved 30 December 2015.
  3. ^ a b Schossig, Walter (September 2014). "Protection History". Pacworld. Retrieved 30 December 2015.
  4. ^ Mooney, Joe (March 25–28, 1996). Microprocessor-Based Transmission Line Relay Applications. American Public Power Association's Engineering & Operations Workshop. Salt Lake City, Utah: Schweitzer Engineering Laboratories, Inc. p. 1.
  5. ^ Silent Sentinels. Newark, New Jersey: Westinghouse Electric & Manufacturing Company. 1940. p. 3.
  6. ^ "AEMC - Current Rules". www.aemc.gov.au. Retrieved 2015-12-30.
  7. ^ "Protection System Maintenance - A Technical Reference" (PDF). www.nerc.com. p. 1. Retrieved 2016-01-05.
  8. ^ a b Gadgil, Kaustubh (September 2010). A Numerical Protection Relay Solution (Technical report). Texas Instruments. SLAA466.
  9. ^ a b c Mason, C. Russell (January 15, 1956). The Art and Science of Protective Relaying. ISBN 978-0-471-57552-8.
  10. ^ a b Protective Relays Application Guide (Report). London: The General Electric Company (PLC) of England. January 1974.
  11. ^ a b Protective Relays Application Guide 3rd Edition, GEC Alsthom Measurements Ltd. 1987, no ISBN, pages 9-10, 83-93
  12. ^ Warrington, A. R. van C. (1968-01-01). "Relay Design and Construction". Protective Relays. Springer US. pp. 29–49. doi:10.1007/978-1-4684-6459-7_2. ISBN 978-1-4684-6461-0.
  13. ^ IEE (1981). Electricity Council (ed.). Power System Protection: Systems and methods. London: Peter Peregrinus. p. 15. ISBN 9780906048535.
  14. ^ Metha,V.K. & Rohit (July 2008). "Chapter 21". Principles of Power System (4th ed.). S Chand. p. 503.
  15. ^ Paithankar, Y.G. & Bhide, S.R. (July 2013). Fundamentals of Power System Protection (2nd ed.). PHI Learning. p. 33. ISBN 978-81-203-4123-4.
  16. ^ Bakshi, U.A. & A.V. (2010). "Chapter 1". Protection of Power System. Technical Publications. p. 16. ISBN 978-81-8431-606-3.
  17. ^ Ram, Badri; Vishwakarma, D.N. (2007) [1994]. Power System Protection and Switchgear. New Dehli: Tata McGraw-Hill. p. 7. ISBN 9780074623503.
  18. ^ a b Rao, T.S Madhava (1989). Power System Protection: Static Relays (2nd ed.). New Dehli: India Professional. ISBN 978-0-07-460307-9.
  19. ^ Singh, Ravindra P. (2009). Switchgear and Power System Protection. New Dehli: PHI Learning Private Limited. p. 151. ISBN 978-81-203-3660-5.
  20. ^ Rockefeller, G.D. (1969-04-01). "Fault Protection with a Digital Computer". IEEE Transactions on Power Apparatus and Systems. PAS-88 (4): 438–464. doi:10.1109/TPAS.1969.292466. ISSN 0018-9510.
  21. ^ "PAC World magazine: Interview with George Rockefeller Jr". www.pacw.org. Retrieved 2016-01-13.
  22. ^ Rockefeller, G.D.; Udren, E.A. (1972-05-01). "High-Speed Distance Relaying Using a Digital Computer II-Test Results". IEEE Transactions on Power Apparatus and Systems. PAS-91 (3): 1244–1258. doi:10.1109/TPAS.1972.293483. ISSN 0018-9510.
  23. ^ "PAC World magazine: Protection History". www.pacw.org. Retrieved 2016-01-13.
  24. ^ a b Johns, A. T.; Salman, S. K. (1995-01-01). Digital Protection for Power Systems. IET Digital Library. doi:10.1049/pbpo015e. ISBN 9781849194310.
  25. ^ "Working Group (WGI-01),Relaying Practices Subcommittee". Understanding microprocessor-based technology applied to relaying (Report). IEEE..
  26. ^ Singh, L.P. (1997). Digital Protection: Protective Relaying from Electromechanical to Microprocessor. New Dehli: New Age International. p. 4.
  27. ^ Tziouvaras, Demetrios A.; Hawbaker, William D. (October 1990). Novel Applications of a Digital Relay with Multiple Setting Groups. 17th Annual Western Protective relay Conference, Spokane,Washington.
  28. ^ a b c Network Protection & Automation Guide. Levallois-Perret, France: Alstom. 2002. ISBN 978-2-9518589-0-9.
  29. ^ Khan, Z.A; Imran, A. (2008-03-01). Algorithms and hardware design of modern numeric overcurrent and distance relays. Second International Conference on Electrical Engineering, 2008. ICEE 2008. pp. 1–5. doi:10.1109/ICEE.2008.4553897. ISBN 978-1-4244-2292-0.
  30. ^ Sham, M.V.; Vittal, K.P. (2011-12-01). Development of DSP based high speed numerical distance relay and its evaluation using hardware in loop power system simulator. Innovative Smart Grid Technologies - India (ISGT India), 2011 IEEE PES. pp. 37–42. doi:10.1109/ISET-India.2011.6145351. ISBN 978-1-4673-0315-6.
  31. ^ "Numerical relays - Protection and control products for power distribution". new.abb.com. ABB. Retrieved 2016-01-05.
  32. ^ Henderson, Brad (17 March 2009). Protection relay settings management in the modern world (PDF). South East Asia Protection and Automation Conference -CIGRE Australia Panel B5. p. 2. Retrieved 2016-01-05.
  33. ^ https://circuitglobe.com/overcurrent-relay.html
  34. ^ https://circuitglobe.com/overcurrent-relay.html
  35. ^ Hewitson, L.G.; Brown, M. (2005). Practical Power System Protection. Elsevier {BV}. ISBN 978-0750663977.
  36. ^ Instruction Manual Overcurrent Protection Relay GRD110-xxxD (PDF). Japan: Toshiba. 2010.
  37. ^ Paithankar, Y.G; Bhinde, S.R. (2003). Fundamentals of Power System protection. New Dehli: Ashok K Goshe. ISBN 978-81-203-2194-6.
  38. ^ Warrington, A.R.van C. (1968). Protective Relays: Their Theory and Practice Volume One. Stafford,Uk: Chapman & Hall. ISBN 978-1-4684-6459-7.
  39. ^ "BS 142-0:1992 - Electrical protection relays. General introduction and list of Parts". shop.bsigroup.com. Retrieved 2016-01-14.
  40. ^ IEEE Standard Inverse-Time Characteristic Equations for Overcurrent Relays. IEEE STD C37.112-1996. 1997-01-01. pp. i–. doi:10.1109/IEEESTD.1997.81576. ISBN 978-1-55937-887-1.
  41. ^ Technical Reference Manual Voltage Relay REU610 (Technical report). ABB. 2006.
  42. ^ Instruction Manual- F35 Multiple Feeder Protection (Technical report). Markham, Ontario: GE Multilin. 2011.
  43. ^ Combined Overcurrent & Earth fault Relays - SPAJ 140C (Technical report). ABB. 2004.
  44. ^ Guzmán; Anderson; Labuschagne (2014-09-23). Adaptive Inverse Time Elements Take Microprocessor-Based Technology Beyond Emulating Electromechanical Relays. Annual PAC World Americas Conference.
  45. ^ Elneweihi, A.F.; Schweitzer, E.O.; Feltis, M.W. (1993). "Negative-sequence overcurrent element application and coordination in distribution protection". IEEE Transactions on Power Delivery. 8 (3): 915–924. doi:10.1109/61.252618. ISSN 0885-8977.
  46. ^ Ram, Badri; Vishwakarma, D.N. (2007) [1994]. Power System Protection and Switchgear. New Dehli: Tata McGraw-Hill. ISBN 9780074623503.
  47. ^ Roberts, J.; Guzman, A; Schweitzer, III, E.O. (October 1993). Z = V/I Does Not Make a Distance Relay. 20th Annual Western Protective relay Conference, Spokane,Washington.
  48. ^ Rincon, Cesar; Perez, Joe (2012). 2012 65th Annual Conference for Protective Relay Engineers. pp. 467–480. doi:10.1109/CPRE.2012.6201255. ISBN 978-1-4673-1842-6.
  49. ^ Ziegler, Gerhard (2005). Numerical differential protection: principles and applications. Erlangen: Publicis Corporate Publishing. ISBN 978-3-89578-234-3.
  50. ^ Moxley & Lippert. "Multi-Terminal Line Differential Protection" (PDF). siemens.com. Retrieved 2016-01-05.
  51. ^ Miller, H.; Burger, J.; Fischer, N.; Kasztenny, B. (2010). Modern Line Current Differential Protection Solutions. 63rd Annual Conference for Protective Relay Engineers. College Station, TX: IEEE. p. 3. doi:10.1109/CPRE.2010.5469504. ISBN 978-1-4244-6073-1.
  52. ^ Gajić, Z.; Brnčić, I.; Einarsson, T.; et al. (September 2009). New and re-discovered theories and practices in relay protection (PDF). Relay Protection and Substation Automation of Modern Power Systems. Cheboksary Chuvashia: CIGRE. p. 1. Retrieved 11 January 2016.
  53. ^ Zimmerman, Karl; Costello, David (March 2010). Fundamentals and Improvements for Directional Relays. 63rd Annual Conference for Protective Engineers. College Station, TX: IEEE. pp. 1–12. doi:10.1109/cpre.2010.5469483. ISBN 978-1-4244-6073-1.

External links