دستگاه مختصات استوانه‌ای

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو
Cylindrical coordinates2.svg

مختصات استوانه‌ای نوعی مختصات متعامد (عمود برهم) است که در آن یک نقطه، در فضا بر روی قاعدهٔ یک استوانه در نظر گرفته می‌شود. مکان آن نقطه بر اساس شعاع و ارتفاع استوانه (r و z) و زاویه‌ای که شعاع قاعده گذرنده از آن نقطه با محور x می‌سازد (θ)، بیان می‌شود. این دستگاه، در حالت دوبعدی، با حذف مختص z به مختصات قطبی تبدیل می‌شود. در فیزیک و به ویژه در مباحث الکترومغناطیس و مخابرات به جای r، θ،z به ترتیب از حروف ρ، φ،z استفاده می‌شود.

استوانه[ویرایش]

رویه‌ای که ترسیم آن و نوشتن h(x,y)=c معر

دستگاه مختصات استوانه‌ای[ویرایش]

ممکن است معادله یک رویه در یکی از دستگاه‌های ساده‌تر از معادله آن در دستگاه دکارتی باشد. در چنین مواردی استفاده از دستگاه مناسب باعث صرفه جویی در وقت می‌شود. این موضوع در حل انتگرالهای چندگانه اهمیت بیشتری پیدا می‌کند. همان طور که می‌دانید حل برخی انتگرالهای سه گانه در دستگاه دکارتی گاهی غیر ممکن می‌باشد، ولی با یک تغییر مختصات ساده به راحتی می‌توانیم به جواب مورد نظر برسیم. در دستگاه مختصات استوانه‌ای، استوانه‌هایی که محورشان در امتداد محور z هستند معادلات بسیار ساده‌ای دارند. این دستگاه مختصات در فضا از طریق تلفیق مختصات قطبی در صفحه xy با محور z معمولی به دست می‌آید. به این ترتیب به هر نقطه در فضا یک یا چند سه تایی مختصات به صورت (r,θ,z) نسبت داده می‌شود. در فیزیک و به ویژه در مباحث الکترومغناطیس و مخابرات به جای r ،θ ،z به ترتیب از حروف ρ، φ،z استفاده می‌شود.

x=r cosθ و y=r sinθ

در واقع توسط روابط فوق می‌توان یک نقطه در دستگاه مختصات دکارتی را به دستگاه مختصات استوانه‌ای منتقل کرد. در مختصات استوانه‌ای معادله r=a فقط دایره‌ای در صفحه xy را مشخص نمی‌کند بلکه استوانه‌ای کامل حول محور z را توصیف می‌کند. خود محور z با معادله r=0 معین می‌شود. معادله θ=θ۰ توصیف کننده صفحه‌ای است که شامل محور z است و زاویه‌ای به اندازه θ۰ رادیان با قسمت مثبت محور x می‌سازد. چند رابطه که مختصات دکارتی، استوانه‌ای و کروی را به هم مربوط می‌سازند.

r=ρ Sinφ و z=ρ Cosφ
y=r Sinθ = ρ Sinφ Sinθ و x=r Cosθ = ρ Sinφ cosθ

پیوند به بیرون[ویرایش]

منابع[ویرایش]

  • ریاضیات مهندسی پیشرفته کریزیک
  • فیزیک هالیدی

جستارهای وابسته[ویرایش]