اتمسفر زمین

از ویکی‌پدیا، دانشنامهٔ آزاد
(تغییرمسیر از جو زمین)
پرش به ناوبری پرش به جستجو
فارسیEnglish

لایه‌های اتمسفر زمین[الف][ب][پ]

اتمسفر زمین[پ ۱] یا جو زمین[۱] بالاترین بخش تشکیل‌دهندهٔ کرهٔ زمین است که مخلوطی از گازهای گوناگون شامل نیتروژن (۷۸٪)، اکسیژن (۲۱٪)، آرگون (۰٫۹٪) و کربن دی‌اکسید (۰٫۰۳٪) است. اتمسفر زمین از سطح زمین آغاز شده و تا ارتفاع ۱۰٫۰۰۰ کیلومتر[۲] ادامه می‌یابد و پنج لایهٔ اصلی تروپوسفر،[پ ۲] استراتوسفر،[پ ۳] مزوسفر،[پ ۴] ترموسفر[پ ۵] و اگزوسفر[پ ۶] را در بر می‌گیرد. مولکول‌های ازون که لایهٔ ازون را تشکیل می‌دهند، در استراتوسفر قرار دارند و از ورود پرتوهای فرابنفش خورشید جلوگیری می‌کنند و موجب ادامهٔ زندگی بر سطح زمین می‌شوند. سردترین بخش جو زمین با دمای ۹۰- درجهٔ سلسیوس در بالای مزوسفر قرار دارد. یونوسفر،[پ ۷] مگنتوسفر[پ ۸] و کمربند وان آلن بخش‌های جداگانه‌ای در جو با توجه به ویژگی‌های الکترومغناطیس[پ ۹] هستند.

نخستین اتمسفر زمین حدود ۴٫۵۷ میلیارد سال پیش شکل‌گرفت که شامل گازهای هیدروژن و هلیم بود؛ که پس از مدتی به‌دلیل سبک بودن، بر گرانش زمین غلبه کردند و به فضای بیرونی گریختند. جو دوم حدود ۳٫۵ یا ۲٫۷ میلیارد سال پیش شکل‌گرفت و شامل گازهایی مانند بخار آب، کربن دی‌اکسید و آمونیاک بود. با فعالیت باکتری‌ها و انجام فرایند فتوسنتز و عوامل دیگر، اکسیژن در جو آزاد شد و موجب شکل‌گیری جو سوم شد. در این زمان، ابردوران پیدازیستی شکل‌گرفت که طی آن جانوران با تنفس اکسیژن، زندگی‌های جانوری را تشکیل دادند.

هرچه از سطح زمین به ارتفاعات می‌رویم، فشار هوا و چگالی کاهش می‌یابد. مجموع جرم جو زمین ۱۰۱۸×۵٫۵ کیلوگرم است. بخشی از نور خورشید در جو پراکنده می‌شود. نور خورشید دارای طیف‌های الکترومغناطیسی مختلفی است که یکی از آن‌ها طیف مرئی است که چشم انسان قادر به تشخیص آن است. ضریب شکست هوا ۱٫۰۰۰۲۹ است.

گردش جوی موجب توزیع گرما در سطح زمین می‌شود. سه چرخش پایه در گردش عرضی به نام‌های سلول هادلی،[پ ۱۰] سلول فرل[پ ۱۱] و سلول قطبی[پ ۱۲] وجود دارند.

ترکیبات[ویرایش]

جو زمین، سطح زمین را پوشانده‌است.

اتمسفر مخلوطی از گازها است که غلظت گروهی از گازها مانند نیتروژن، اکسیژن و آرگون ثابت و غلظت گروه دیگر مانند بخار آب، کربن دی‌اکسید و ازون متغیر است. اگرچه مقادیر گازهای متغیر ناچیز است، اما این گازها برای ادامهٔ زندگی بر زمین ضروری هستند. برای نمونه، کربن دی‌اکسید علاوه بر درگیر شدن در فرایند فتوسنتز، در جذب پرتو فروسرخ نقش دارد.[۳] هم‌چنین اکسیژن و کربن دی‌اکسید در دو فرایند فتوسنتز و تنفس نقش دارند.[۴]

ذرات معلق در هوا به ذرات جامد و مایع در موجود در جو گفته می‌شود که مقادیر آن در جو از اقیانوس‌ها، بیابان‌ها، کوه‌ها، جنگل‌ها، یخ و اکوسیستم بیشتر است. بر خلاف اندازهٔ کوچک این ذرات، تأثیر مهمی بر آب‌وهوا و سلامتی دارند. ذرات مهم معلق در هوا شامل سولفات‌ها، کربن آلی، کربن سیاه، نیترات‌ها، گرد و غبارهای معدنی و نمک دریا می‌شوند. حدود ۹۰ درصد ذرات معلق در هوا منشأ طبیعی دارند. برای نمونه، آتشفشان‌ها خاکسترهای آتشفشانی را بیرون می‌رانند و آتش‌سوزی در جنگل‌ها موجب پراکنده شدن کربن آلی نیمه‌سوخته در جو می‌شود. ۱۰ درصد باقی‌ماندهٔ این ذرات یا ساختهٔ بشر هستند یا توسط انسان‌ها در جو معلق شده‌اند. خودروها، کارخانه‌های ذوب، نیروگاه‌های تولید برق، جنگل‌زدایی، چرای بی‌رویهٔ دام، کشیدن سیگار، پخت‌وپز، شومینه و شمع از منابع انسانی معلق‌کنندهٔ این مواد در جو هستند.[۵]

گاز گلخانه‌ای از دیگر گازهای جو است و به گازی گفته می‌شود که پرتو فروسرخ را جذب می‌کند و موجب انجام‌گرفتن پدیده‌ای به نام اثر گلخانه‌ای می‌شود. مهم‌ترین این گازها کربن دی‌اکسید، متان و بخار آب هستند. ازون، اکسیدهای نیتروژن دار و گازهای فلوئوردار از اجزای دیگر این گازها هستند.[۶] انرژی خورشید از جو عبور می‌کند و به سطح زمین می‌رسد و آن را گرم می‌کند. بخشی از این انرژی به عنوان پرتو فروسرخ به فضا بازمی‌گردد. پرتوهای فروسرخ هنگام بازگشت به فضا توسط گازهای گلخانه‌ای جذب می‌شوند و در جو باقی می‌مانند و موجب گرمایش زمین می‌شوند.[۷] اکنون غلظت گازهای گلخانه‌ای به بیشترین مقدار در ۳ میلیون سال پیش رسیده‌است که در تاریخ بشریت بی‌سابقه بوده‌است. غلظت کربن دی‌اکسید برای نخستین‌بار در طول ۳ میلیون سال پیش به ۴۰۰ پی‌پی‌ام رسیده‌است.[۸]

گازهای موجود در جو زمین بر پایهٔ مقادیر موجود[۹][ت][۱۰][ث]
گاز نماد شیمیایی درصد موجود گاز نماد شیمیایی درصد موجود
نیتروژن[پ ۱۳] N۲ ۷۸٫۰۸۴ دی نیتروژن مونوکسید[پ ۱۴] N۲O ۰٫۰۰۰۰۳۱
اکسیژن[پ ۱۵] O۲ ۲۰٫۹۴۷ زنون[پ ۱۶] Xe ۰٫۰۰۰۰۰۸۷
آرگون[پ ۱۷] Ar ۰٫۹۳۴ ازون[پ ۱۸] O۳ تقریباً ۰٫۰۰۰۰۲۵
کربن دی‌اکسید[پ ۱۹] CO۲ ۰٫۰۳۵۰ کربن مونوکسید[پ ۲۰] CO تقریباً ۰٫۰۰۰۸
نئون[پ ۲۱] Ne ۰٫۰۰۱۸۱۸ گوگرد دی‌اکسید[پ ۲۲] SO۲ تقریباً ۰٫۰۰۰۰۱
هلیم[پ ۲۳] He ۰٫۰۰۰۵۲۴ نیتروژن دی‌اکسید[پ ۲۴] NO۲ تقریباً ۰٫۰۰۰۰۰۲
متان[پ ۲۵] CH۴ ۰٫۰۰۰۱۷ آمونیاک[پ ۲۶] NH۳ تقریباً ۰٫۰۰۰۰۰۰۳
کریپتون[پ ۲۷] Kr ۰٫۰۰۰۱۱۴ بخار آب[پ ۲۸] H۲O کم‌تر از ۰٫۱ تا بیش از ۶[ج]
هیدروژن[پ ۲۹] H۲ ۰٫۰۰۰۰۵۳

تکامل جو[ویرایش]

جو نخست[ویرایش]

منظومه شمسی و کرهٔ زمین حدود ۴٫۶ میلیارد سال پیش[۱۱] و جو زمین حدود ۴٫۵۷ میلیارد سال پیش شکل‌گرفتند.[۱۲] نخستین جو زمین را به احتمال زیاد هیدروژن (H۲) و هلیم (He) تشکیل می‌دادند، زیرا این دو گازهای اصلی تشکیل‌دهندهٔ گرد و غبار بودند که به دور از خورشید، سیارات را تشکیل می‌دادند. در آن زمان، زمین و جو آن بسیار داغ بودند. مولکول‌های هیدروژن و هلیم به‌ویژه در دمای زیاد سریع حرکت می‌کردند. سرعت حرکت این مولکول‌ها آن‌قدر زیاد بود که سرانجام بر گرانش زمین غلبه کردند و به فضا گریختند.[۱۳][۱۴]

جو دوم[ویرایش]

کلروپلاست[پ ۳۰] دیسه‌هایی دارای سبزینه هستند که عمل فتوسنتز را در گیاه انجام می‌دهند.
نمایی از فرایند فتوسنتز

جو دوم حدود ۳٫۵[۱۲] یا ۲٫۷ میلیارد سال پیش شکل‌گرفت.[۱۵] پیدایش جو دوم احتمالاً با فعالیت‌های آتشفشانی مرتبط بوده‌است.[۱۶] آتشفشان‌ها با انتشار بخار آب (H۲O)، کربن دی‌اکسید (CO۲) و آمونیاک (NH۳) جو دوم را پدید آوردند.[۱۳] هم‌چنین، گازهایی مانند نیتروژن و کربن مونوکسید در جو دوم وجود داشتند.[۱۲] اکسیژن توسط باکتری‌های ساده[۱۳] و تابش پرتوهای فرابنفش (دارای طول موج کوتاه) بر بخار آب در جو دوم پدید آمد. به‌طوری‌که پرتوهای فرابنفش با انرژی بسیار خود بخار آب را شکستند و آن را به هیدروژن و اکسیژن تبدیل کردند که هیدروژن از جو گریخت و اکسیژن در جو باقی‌ماند. پس از آن، عمل فتوسنتز[پ ۳۱] آغاز به فعالیت کرد. موجودات زنده مانند سیانوباکترها[پ ۳۲] (جلبک‌های سبزآبی)، کربن دی‌اکسید و آب را دریافت کردند و آن‌ها را در فتوسنتز به کار بردند و کربوهیدرات (مواد قندی)[پ ۳۳] تولید کردند و موجب آزادسازی اکسیژن شدند. کشف سیانوباکترها در سنگ‌های آهک ۳٫۵ میلیارد ساله نشان می‌دهد که سیانوباکترها در آن زمان وجود داشته‌اند.[۱۶]

جو سوم[ویرایش]

جو سوم حدود ۴۰۰ میلیون سال پیش پدید آمد.[۱۷] بسیاری از مولکول‌های کربن دی‌اکسید (CO۲) در اقیانوس‌ها حل‌شدند و باکتری‌های ساده‌ای پدید آمدند که اکسیژن تولید کردند. در همین زمان، مولکول‌های آمونیاک توسط تابش خورشید شکسته‌شدند و نیتروژن و هیدروژن‌های آن‌ها از هم جدا شد و هیدروژن‌ها به دلیل سبک بودن خود از جو به فضا گریختند.[۱۳] در این زمان، ابردوران پیدازیستی (ابر دورانی که جانوران در زمین فراوان شدند) شکل‌گرفت که طی آن جانوران با تنفس اکسیژن انواع مختلف زندگی جانوری را آغاز کردند.[۱۲] جو زمین زمانی تکامل یافت که دارای اکسیژن شد. این مولکول سپس خود موجب پیدایش لایهٔ ازون شد؛ لایه‌ای که از زندگی بر روی زمین محافظت می‌کند و از ورود پرتوهای مضر فرابنفش به سطح زمین جلوگیری می‌کند.[۱۸]

آلودگی هوا[ویرایش]

آلودگی هوا توسط یک کارخانهٔ تولیدی در زمان جنگ جهانی دوم

هوا زمانی آلوده‌است که دارای گازها، گرد و غبار، دود و بوهای زیان‌آور باشد و آلودگی هوا می‌تواند به سلامتی انسان، جانوران، گیاهان و مواد آسیب برساند. موادی که موجب آلودگی می‌شوند، آلاینده نام دارند. آلاینده‌هایی که از جای دیگر وارد هوا شده و به‌طور مستقیم هوا را آلوده می‌کنند، آلاینده‌های اولیه نامیده می‌شوند که شامل کربن مونواکسید خارج‌شده از اگزوز خودروها و گوگرد دی‌اکسید حاصل از سوختن زغال سنگ است. علاوه بر این، اگر آلاینده‌های اولیه در جو با یک‌دیگر واکنش دهند، آلاینده‌های ثانویه را تولید می‌کنند که مه‌دود فتوشیمیایی از این نوع است.[۱۹] مطالعه‌ای جدید نشان می‌دهد که شمار کسانی که در اثر آلاینده‌های سمی اگزوز هواپیماها درگذشته‌اند، از شمار کسانی که در سقوط هواپیماها درگذشته‌اند، بیشتر است. در سال‌های اخیر، حدود هزار نفر سالانه در اثر سقوط هواپیماها و حدود ده هزار نفر در اثر تولید گازهای گلخانه‌ای هواپیماها درگذشته‌اند. اگزوز هواپیماها مانند اگزوز خودروها شامل انواع آلاینده‌های هوا مانند گوگرد دی‌اکسید و اکسیدهای نیتروژن است. با این که این ذرات آلاینده، کوچکتر از عرض تار موی انسان هستند، مقصر اصلی سلامتی انسان هستند و می‌توانند وارد ریه و احتمالاً جریان خون شوند.[۲۰]

گازهای آلایندهٔ هوا شامل گوگرد دی‌اکسید، نیتروژن دی‌اکسید، کربن مونواکسید که نگرانی اصلی در شهرها هستند، از سوخت‌های سنگواره‌ای مانند نفت، بنزین و گاز طبیعی تولید می‌شوند. ازون (یکی از اجزای مهم مه‌دود فتوشیمیایی) نیز یک آلایندهٔ گازی است که از واکنش‌های شیمیایی پیچیده میان نیتروژن دی‌اکسید و ترکیبات آلی فرار (برای نمونه، بخارهای بنزین) تشکیل می‌شود. کربن مونواکسید گازی نامرئی و بی‌بو است که از سوختن ناقص تشکیل می‌شود. علاوه بر این، وسایل نقلیه، سیستم‌های گرمایش خانه‌ها و برخی از فرایندهای صنعتی مقدار قابل توجهی از این گاز تولید می‌کنند. این گاز به‌شدت زیان‌آور است و به آسانی می‌تواند در جریان خون جایگزین اکسیژن شود که حتی منجر به خفگی می‌شود. گوگرد دی‌اکسید گازی بی‌رنگ و دارای بو است که در اثر سوختن زغال سنگ یا نفت تشکیل می‌شود. تنفس این گاز می‌تواند به چشم‌ها، گلو و بافت‌ها آسیب برساند. این گاز هم‌چنین در هوا با اکسیژن و بخار آب واکنش می‌دهد و موجب تشکیل سولفوریک اسید می‌شود. سولفوریک اسید نیز یکی از اجزای باران اسیدی است که به زمین می‌رسد و موجب آسیب رساندن و نابود کردن ماهی‌ها می‌شود و باعث خوردگی و فرسایش فلزات می‌شود و سطوح ساختمان‌ها و سازه‌های عمومی را از بین می‌برد. نیتروژن دی‌اکسید نیز موجب ورم ریوی و تجمع بیش از حد مواد مایع در ریه‌ها می‌شود و این گاز نقش مهمی در تشکیل مه‌دود فتوشیمیایی دارد.[۲۱]

گرمایش زمین[ویرایش]

گرمایش زمین
میزان افزایش و کاهش دما بر حسب درجهٔ سانتی‌گراد

به پدیدهٔ افزایش میانگین دمای جو در نزدیکی سطح زمین از یک تا دو سدهٔ گذشته گرمایش (گرم‌شدن) زمین می‌گویند. از اواسط سدهٔ بیستم، دانشمندان علوم جوی مشاهدات دقیقی از پدیده‌های آب‌وهوایی مختلف (مانند دما، بارش و توفان) و تأثیرات مربوط به آب‌وهوا (مانند جریان‌های اقیانوسی و ترکیب شیمیایی جو) جمع‌آوری کرده‌اند. این داده‌ها نشان می‌دهد که آب‌وهوای زمین از ابتدای مقیاس زمانی زمین‌شناسی تاکنون بسیار تغییر کرده و نیز فعالیت‌های انسانی، حداقل از انقلاب صنعتی به بعد، با تغییرات آب‌وهوای زمین پیوند زیادی داشته‌است.[۲۲]

عامل گرمایش زمین، انتشار گازهای گلخانه‌ای است و انسان‌ها این گازها را به شیوه‌های گوناگونی منتشر می‌کنند. بیشتر گازهای گلخانه‌ای از سوختن سوخت‌های سنگواره‌ای در خودروها، کارخانه‌ها و نیروگاه‌های تولید برق پدید می‌آیند. بزرگ‌ترین عامل گرمایش زمین، گاز کربن دی‌اکسید (CO۲) است. هم‌چنین متان آزادشده از محل‌های دفن زباله و کشاورزی، دی‌نیتروژن مونواکسید از کودها، گازهای مورد استفاده برای سردخانه‌ها و فرایندهای صنعتی و نیز از بین رفتن جنگل‌ها که توانایی جذب کربن دی‌اکسید را دارا هستند، از دیگر عوامل گرمایش زمین هستند. گازهای گلخانه‌ای توانایی به دام انداختن گرما را دارند و حتی برخی از آن‌ها توانایی بیشتری نسبت به گاز کربن دی‌اکسید برای به دام انداختن گرما دارند؛ برای نمونه، گاز متان بیش از ۲۰ برابر کربن دی‌اکسید، گاز دی‌نیتروژن مونواکسید ۳۰۰ برابر کربن دی‌اکسید و گازهایی مانند کلروفلوئوروکربن‌ها (سی‌اف‌سی‌ها) هزاران برابر کربن دی‌اکسید توانایی به دام اندازی گرما در جو زمین را دارا هستند. اما به این دلیل که غلظت این گازها بسیار پایین‌تر از کربن دی‌اکسید است، تأثیر آن‌ها نسبت به کربن دی‌اکسید در گرم کردن جو کمتر بوده‌است.[۲۳]

گرمایش زمین تأثیراتی بر زمین گذاشته‌اند که از میان آن‌ها می‌توان به موارد زیر اشاره کرد:

  • یخ‌های سراسر جهان به ویژه یخ‌های قطب جنوب در حال ذوب‌شدن هستند.
  • بالا آمدن آب دریاها در طول سدهٔ گذشته سریع‌تر شد.
  • بارش به‌طور متوسط در سراسر جهان افزایش یافته‌است.

اگر گرمایش زمین ادامه یابد، در اواخر سده می‌تواند اتفاقات زیر روی دهد:

  • سطح دریاها ۱۸ تا ۲۵ سانتی‌متر بالا خواهد آمد و اگر ذوب یخ در قطب ادامه پیدا کند، می‌تواند ۱۰ تا ۲۰ سانتی‌متر سطح دریاها را بالا بیاورد.[۲۴] این رویداد باعث خواهد شد که صدها میلیون نفر در مناطقی زندگی کنند که در معرض خطر جاری شدن سیل قرار دارد و این افراد وادار به ترک خانه‌های خود و نقل مکان به جایی دیگر خواهند بود. امکان دارد که جزیره‌های کم‌ارتفاع نیز به‌طور کامل زیر آب فرو برود.[۲۵]
  • احتمال دارد که گردبادها و طوفان‌ها قوی‌تر شوند.
  • ممکن‌است گونه‌هایی که به یک‌دیگر وابسته‌اند، از همگام‌سازی خارج شوند. برای نمونه، گیاهان زودتر از این که حشرات گرده‌افشان فعال شوند، شکوفه بدهند.
  • برخی از بیماری‌ها مانند مالاریا شیوع پیدا خواهند کرد.
  • اکوسیستم‌ها تغییر خواهند کرد و برخی گونه‌ها به شمال حرکت خواهند کرد، اما گونه‌های دیگر قادر به حرکت نخواهند بود و امکان دارد منقرض شوند.[۲۴]

آیندهٔ جو زمین[ویرایش]

تصویر شبیه‌سازی‌شده از ۶/۹ میلیارد سال بعد که سوختن کرهٔ زمین را پس از ورود خورشید به حالت غول سرخ نشان می‌دهد.

اگر در آینده نیز انرژی حاصل از سوخت‌های سنگواره‌ای در جهان مصرف شود، غلظت گازهای گلخانه‌ای و درجهٔ حرارت زمین افزایش خواهد یافت. هیئت بین دولتی تغییرات آب‌وهوایی تخمین زده‌است که درجهٔ حرارت زمین تا ۲ تا ۶ درجهٔ سانتی‌گراد افزایش خواهد یافت. در آینده گرمای زمین در روزهای گرم بیشتر و در روزهای سرد کمتر خواهد شد (روزهای گرم، گرمتر و روزهای سرد، سردتر خواهد شد).[۲۶] طبق پژوهش ناسا، طی سدهٔ آینده بارش باران در بخش‌های مرطوب زمین افزایش خواهد یافت و بخش‌های خشک زمین دوران خشکسالی طولانی‌تری را خواهند داشت. به ازای افزایش هر درجهٔ فارنهایت،[پ ۳۴] بارش در مناطق مربوط ۴ درصد افزایش و دورهٔ خشکسالی و فقدان بارش در بخش‌های خشک ۲٫۶ درصد کاهش خواهد یافت. دلیل علمی این تغییر جوی این است که هم‌زمان با افزایش دما، جو می‌تواند مقدار بیشتری از بخار آب را در خود حفظ کند و بیشترین بخش این بخار آب در بخش‌های مرطوب ذخیره خواهد شد و بارش در بخش‌های خشک کاهش می‌یابد. سرعت وقوع این تغییرات جوی در الگوی بارش به میزان تولید کربن دی‌اکسید بستگی دارد، اما دانشمندان ناسا می‌گویند که این پژوهش‌ها و پیش‌بینی‌ها مربوط به سدهٔ آینده است.[۲۷]

سناریوهای بسیاری توسط هیئت بین دولتی تغییرات آب‌وهوایی برای پیش‌بینی تغییرات جوی در آینده پیشنهاد شده‌است. این سناریوها به فرضیات گوناگون دربارهٔ میزان رشد، جمعیت، توسعهٔ اقتصادی، تقاضای انرژی و پیشرفت فناوری بستگی دارد و با افزایش گازهای گلخانه‌ای، رشد اقتصادی و افزایش استفاده از فناوری سازگار با محیط زیست در ارتباط است.[۲۲]

بخش‌های مختلف[ویرایش]

بخش‌بندی بر پایهٔ دما[ویرایش]

تروپوسفر[ویرایش]

شاتل فضایی اندور بر فراز زمین. لایهٔ نارنجی رنگ تروپوسفر است و پس از آن، استراتوسفر و مزوسفر دیده می‌شوند.

تروپوسفر پایین‌ترین لایهٔ جو و نزدیک‌ترین لایه به سطح زمین است و از سطح زمین آغاز شده و تا ارتفاع ۱۸–۱۰ کیلومتری (۱۱–۶ مایلی) ادامه می‌یابد. بسیاری از ابرها و سیستم‌های آب‌وهوایی در این لایه قرار دارند.[۲۸] ضخامت تروپوسفر در قطب حدود ۸–۷ کیلومتر (۵ مایل) و در استوا حدود ۱۸–۱۶ کیلومتر (۱۱–۱۰ مایل) است. علاوه بر این، ارتفاع این لایه به تغییر فصل‌ها نیز بستگی دارد. ۸۰ درصد کل جرم جو و ۹۹ درصد بخار آب جو در تروپوسفر قرار دارد. بخار آب موجود در تروپوسفر در مناطق گرم و به ویژه مناطق استوایی زیاد و در مناطق قطبی کم است.[۲۹] بخار آب با جذب انرژی تابشی گرمایی خورشید نقش مهمی در تنظیم آب‌وهوای زمین دارد.[۳۰]

با افزایش ارتفاع در تروپوسفر، چگالی گازها کاهش می‌یابد و هوا رقیق‌تر می‌شود؛ بنابراین، دمای هوا با افزایش ارتفاع در این لایه نیز کاهش می‌یابد.[۳۱] هم‌چنین با افزایش ارتفاع، فشار هوا نیز کاهش می‌یابد. دمای هوا در سطح زمین ۱۵ درجهٔ سانتی‌گراد و ارتفاع ۱۰ کیلومتر ۴۹٫۹- درجهٔ سانتی‌گراد است. فشار در سطح زمین ۱٫۰۱۳۲ بار و در ارتفاع ۱۰ کیلومتر ٫۲۶۵ بار است.[۳۲] با افزایش ارتفاع، چگالی کاهش می‌یابد و در نتیجه تروپوسفر چگال‌ترین لایهٔ جو است. ابرهایی مانند کومولوس[پ ۳۵] و استراتوس[پ ۳۶] در این لایه قرار دارند. هواپیماها عمدتاً در این لایه پرواز می‌کنند.[۳۳]

در این لایه، مولکول‌های ازون تروپوسفری[پ ۳۷] وجود دارند که آلاینده هستند.[۳۴] مولکول‌های ازون موجود در تروپوسفر می‌توانند به راحتی با بافت‌های زیستی واکنش داده و آن‌ها را از بین ببرند. این مولکول‌ها موجب احساس سوزش در شش‌های انسان می‌شوند. پژوهشگران دانش پزشکی دریافته‌اند که تنفس ازون بیش از چند ماه تا چند سال، یکی از عوامل برگشت‌ناپذیری است که به شش‌های پستانداران آسیب می‌رساند. مولکول‌های ازون به ویژه برای کودکان، سالمندان و بزرگسالانی خطرناک است که در فصل تابستان به‌طور منظم برای ورزش بیرون از خانه می‌روند.[۳۵] تروپوپاز[پ ۳۸] مرز میان تروپوسفر و استراتوسفر است.[۳۶]

استراتوسفر[ویرایش]

استراتوسفر دومین لایهٔ جو زمین است که از ارتفاع ۱۰ کیلومتری (۶٫۲ مایلی) آغاز شده و تا ارتفاع ۵۰ کیلومتری (۳۱ مایلی) ادامه می‌یابد. ارتفاع استراتوسفر به طول و عرض جغرافیایی و تغییر فصل‌ها بستگی دارد.[۳۷]

استراتوسفر از ارتفاع ۱۶ کیلومتری (۱۰ مایلی) بر فراز استوا و از ارتفاع ۱۰ کیلومتری (۶ مایلی) بر فراز قطب آغاز می‌گردد. بخار آب بسیار کمی در استراتوسفر وجود دارد و دلیلش این است که تقریباً همهٔ ابرها به استثنای ابرهای استراتوسفری قطبی در تروپوسفر قرار دارند. این ابرها در ارتفاع ۲۵–۱۵ کیلومتری (۱۵٫۵–۹٫۳ مایلی) یافت می‌شوند. هوا در این لایه تقریباً هزار برابر نازکتر از هوا در سطح دریا است (تراکم مولکول‌ها در سطح دریا تقریباً هزار برابر تراکم مولکول‌ها در استراتوسفر است).[۳۸]

پیش‌بینی ناسا از ضخامت ازون استراتوسفری بر حسب دابسون (اگر سی‌اف‌سی‌ها ممنوع نشده‌بودند)

در این لایه با افزایش ارتفاع، دما نیز افزایش می‌یابد و دلیل آن وجود غلظت بالایی از مولکول‌های ازون است.[۳۹] دما در ارتفاع ۵۰ کیلومتری به حدود ۶- درجهٔ سانتی‌گراد می‌رسد.[۴۰] پرتوی فرابنفش تولید شده توسط تابش خورشید در صورت رسیدن به سطح زمین می‌تواند موجب سرطان پوست، آب‌مروارید چشم، آسیب رساندن به سیستم ایمنی بدن و تأثیر منفی بر رشد گیاهان شود.[۴۱] مولکول‌های ازون و اکسیژن که در استراتوسفر قراردارند، پرتوهای فرابنفش خورشید را جذب می‌کنند و مانند یک سپر مانع از ورود این پرتوها به سطح زمین می‌شوند. ازون و اکسیژن می‌تواند ۹۹٫۹–۹۵٪ پرتوهای فرابنفش به ویژه فرابنفش نوع C و B که پرانرژی‌ترین پرتوهای فرابنفش هستند و موجب آسیب زیستی می‌شوند را جذب کند. نقش نگهبانی ازون به قدری حیاتی است که به باور دانشمندان زندگی بر روی زمین بدون لایهٔ ازون امکان‌پذیر نبود.[۴۲] لایهٔ ازون پرتو فرابنفش را به پرتو فروسرخ تبدیل می‌کند و به سطح زمین می‌فرستد.[۴۳] کلروفلوئوروکربن‌ها (سی‌اف‌سی‌ها)[پ ۳۹] باعث کاهش مولکول‌های ازون در استراتوسفر زمین شده‌اند.[۴۴] هالوکربن‌ها[پ ۴۰] نیز از دیگر مواد تخریب‌کنندهٔ ازون استراتوسفری هستند و با انتشار کلر و برم لایهٔ ازون را تخریب می‌کنند. هم‌چنین، برخی از مواد تخریب‌کنندهٔ لایهٔ اُزون در وسایل نقلیهٔ هوایی، گازهای به کاررفته در فرایند خنک‌سازی در یخچال، حلال (شیمی)‌ها، افشانه‌ها و کپسول‌های آتش‌نشانی وجود دارند.[۴۵] گرمایش زمین افزایش نظام‌مند گرمای زمین است که عمدتاً ناشی از گازهای گلخانه‌ای است.[۴۶] ازون یک گاز گلخانه‌ای است و در آب‌وهوای کرهٔ زمین نقش دارد. افزایش گازهای گلخانه‌ای مانند کربن دی‌اکسید ممکن‌است بر چگونگی بهبود لایهٔ ازون در سال‌های آینده اثر بگذارد.[۴۷] لایهٔ ازون سالانه کوچک‌تر از پیش می‌شود. به‌طوری‌که آمار ناسا در ۱۳ سپتامبر ۲۰۰۷ نشان داد که حفره ازون به اوج خود رسیده‌است و لایهٔ ازون تنها می‌تواند ۹٫۷ میلیون مایل مربع (یعنی به قاره‌ای به اندازهٔ آمریکای شمالی) را پوشش دهد.[۴۸] حفرهٔ ازون در قطب جنوب هنوز مثل هر سال است.[۴۹] دلیل این پدیده نیز ورود کلرهای موجود در مواد شیمیایی ساخته‌شده توسط انسان‌ها به استراتوسفر است.[۵۰] ناسا اعلام کرده‌است که دو سوم لایهٔ اُزون تا سال ۲۰۶۵ نه تنها بر فراز قطب جنوب، بلکه در همه جای زمین نابود خواهدشد.[۵۱] مرز میان استراتوسفر و مزوسفر، استراتوپاز[پ ۴۱] نام دارد.[۵۲]

مزوسفر[ویرایش]

یک شهاب‌سنگ روشن

مزوسفر لایهٔ بعدی زمین است که میان استراتوسفر و ترموسفر قرار دارد. این لایه از ارتفاع ۵۰ کیلومتری (۳۱ مایلی) آغاز شده و تا ارتفاع ۸۵ کیلومتری (۵۳ مایلی) ادامه می‌یابد. با افزایش ارتفاع در مزوسفر، دما کاهش می‌یابد.[۵۳] سردترین بخش جو زمین با دمای ۹۰- درجهٔ سانتی‌گراد در بالای این لایه قرار دارد.[۵۴] فشار هوا در بخش‌های بالایی مزوسفر یک میلیونیم فشار هوا در سطح دریا است.[۵۵]

روزانه حدود ۵۰ تن شهاب‌سنگ وارد جو زمین می‌شود.[۵۶] و بیشتر آن‌ها در لایه مزوسفر تبخیر می‌شوند. این‌گونه مواد موجود در شهاب‌سنگ‌ها در مزوسفر پراکنده می‌شوند و این لایه هم‌اکنون دارای مقادیر آهن و فلزات دیگر است. بالون‌های هواشناسی و هواپیما نمی‌توانند به این لایه برسند. ابرهای شب‌تاب از دیگر ابرها بسیار بالاتر هستند و بالای مزوسفر قرار دارند. جزر و مد جو نیز تحت تأثیر این لایه است و هوا در این لایه بسیار رقیق است.[۵۴] مرز میان مزوسفر و ترموسفر، مزوپاز[پ ۴۲] نام دارد.[۵۷]

ترموسفر[ویرایش]

پدیدهٔ شفق قطبی در گرینلند

ترموسفر بالاترین لایهٔ جو زمین است که میان مزوسفر و اگزوسفر قرار دارد. این لایه از ارتفاع ۹۰ کیلومتری (۵۶ مایلی) آغاز شده و تا ارتفاع ۵۰۰ کیلومتری (۳۱۱ مایلی) یا ۱٬۰۰۰ کیلومتری (۶۲۱ مایلی) ادامه می‌یابد. با افزایش ارتفاع در ترموسفر، دما در بخش‌های پایینی این لایه به شدت افزایش می‌یابد اما در بخش‌های بالایی دما نسبتاً ثابت می‌ماند. فعالیت‌های خورشیدی دما در این لایه را به شدت تحت تأثیر قرار می‌دهد. دمای ترموسفر معمولاً در طول روز ۲۰۰ درجهٔ سانتی‌گراد بیشتر از شب است و زمان‌هایی که خورشید بسیار فعال است، دما در این لایه از ۵۰۰ درجهٔ سانتی‌گراد به ۲٬۰۰۰ درجهٔ سانتی‌گراد افزایش می‌یابد.[۵۸][۵۹]

چگالی در ترموسفر بسیار کم است و برخی بر این باورند که فضای بیرونی از بخش‌های پایینی ترموسفر آغاز می‌گردد، اما این لایه بخشی از جو زمین به‌شمار می‌آید. شاتل‌های فضایی و ایستگاه‌های فضایی بین‌المللی در این لایه قرار دارند. در بخش‌های پایینی این لایه اکسیژن اتمی (O)، نیتروژن اتمی (N) و هلیم (He) اجزای اصلی هوا هستند. بخش عمده‌ای از پرتو ایکس و فرابنفش در این لایه جذب می‌شوند. یونوسفر زمین متشکل از ذرات یونیزه شده در جو است و با ترموسفر که از نظر الکتریکی خنثی است، هم‌پوشانی دارد. ذرات باردار یونوسفر با اتم‌ها و مولکول‌های ترموسفر برخورد می‌کنند و انرژی اضافی تولید می‌کنند. این انرژی اضافی توسط فوتون‌ها[پ ۴۳] به‌شکل نور ساطع می‌شود و شفق‌های قطبی را رخ می‌دهد. شفق‌های قطبی عمدتاً در ترموسفر رخ می‌دهند. ترموپاز[پ ۴۴] مرز میان ترموسفر و اگزوسفر است.[۵۸][۵۹]

اگزوسفر[ویرایش]

اگزوسفر بالاترین لایهٔ جو زمین است که جو پس از آن پایان می‌پذیرد و خلأ آغاز می‌گردد. هوا در این لایه بسیار رقیق است و تفاوت چندانی با خلأ ندارد.[۶۰] اجزای اصلی این لایه هیدروژن و هلیم هستند که تراکم کمی دارند و بسیاری از ماهواره‌ها در این لایه قرار دارند.[۶۱]

اگزوسفر مرز میان جو و فضای بیرونی به‌شمار می‌رود و از ارتفاع حدود ۵۰۰ کیلومتر آغاز شده و تا ۱۰٬۰۰۰ کیلومتر (۶٬۲۰۰ مایل) ادامه می‌یابد.[۶۲] اتم‌ها و مولکول‌های هوا در این لایه به‌طور مداوم به فضا می‌گریزند و راه می‌یابند. این لایه شامل حرکات ذرات به درون و بیرون مغناطیس‌سپهر (مگنتوسفر) و باد خورشیدی است.[۶۳] به‌دلیل رقیق بودن بسیار هوا در اگزوسفر، گرمای زیادی در هوا به اشیاء منتقل نمی‌شود، حتی اگر هوا بسیار گرم باشد.[۶۴]

بخش‌بندی بر پایهٔ ویژگی‌های الکترومغناطیسی[ویرایش]

یونوسفر[ویرایش]

یونوسفر (یون کره) بخشی از بخش‌های بالایی جو است[۶۵] که توسط تابش‌های خورشیدی یونیزه[پ ۴۵] شده‌است[۶۶] و در ارتفاع حدود ۸۰۰–۶۰ کیلومتر قرار دارد.[۶۷] بخش عمده‌ای از این یونیزه شدن توسط پرتو ایکس و فرابنفش و باد خورشیدی صورت می‌گیرد. اگرچه خورشید مهم‌ترین عامل یونیزه شدن است، اما پرتوهای کیهانی نیز در این عمل سهم کمی دارند و هرگونه اختلال در جو، در یونیزه شدن اثر می‌گذارد.[۶۵] به‌دلیل رقیق بودن بسیار هوا در تروپوسفر، الکترون‌های آزاد در این لایه وجود دارند، اما امکان دارد الکترون‌ها توسط کاتیون‌ها[پ ۴۶] (یون‌های مثبت) اسیر شوند. تعداد الکترون‌ها به اندازه‌ای است که می‌توانند بر انتشار فرکانس رادیویی[پ ۴۷] تأثیر بگذارند. این بخش یونیزه شدهٔ جو را یونوسفر می‌نامند.[۶۶] تراکم پلاسما[پ ۴۸] در یونوسفر در طول روز و شب و فصل‌ها تغییر می‌کند و به گرانش زمین نیز بستگی دارد. بیشترین چگالی پلاسما در یونوسفر در ارتفاع ۳۰۰–۲۵۰ کیلومتر است.[۶۷] یونوسفر می‌تواند امواج رادیویی در محدودهٔ فرکانس خاصی را منعکس کند.[۶۸]

مگنتوسفر[ویرایش]

مگنتوسفر از زمین در برابر باد خورشیدی محافظت می‌کند.

مگنتوسفر فضای پیرامون یک جسم فضایی است که توسط میدان مغناطیسی جسم کنترل می‌شود.[۶۹] مگنتوسفر منطقهٔ تعامل میان میدان مغناطیسی طبیعی سیاره و باد خورشیدی است. در این منطقه بسیاری از ذرات دارای بار الکتریکی نزدیک سیاره وجود دارند. بخش‌های اصلی مگنتوسفر زمین، باد خورشیدی و میدان مغناطیسی هستند.[۷۰] میدان مغناطیسی زمین تا ۳۶٬۰۰۰ مایل به درون فضا می‌رسد. مگنتوسفر این میدان مغناطیسی را پوشش داده‌است و از بسیاری از ذرات خورشید مانند باد خورشیدی که می‌تواند به زمین آسیب برساند، جلوگیری می‌کند. اما برخی از بادهای خورشیدی از مگنتوسفر هم می‌گذرند و شفق‌های قطبی می‌سازند.[۷۱]

مگنتوسفر زمین علاوه بر مزایای پنهان خود خطراتی نیز دارد که یکی از این خطرات توفان‌های مغناطیسی هستند. هنگامی که بادهای نیرومند خورشیدی با مگنتوسفر برخورد می‌کنند، می‌توانند به مدارهای الکتریکی آسیب بزنند و موجب قطع برق و خاموشی بشوند. خورشید و سیارات دیگر مگنتوسفر دارند، اما مگنتوسفر زمین نیرومندترین مگنتوسفر در میان سیارات سنگی است.[۷۰]

کمربند وان آلن[ویرایش]

دو کمربند هلالی شکل وان آلن

کمربند تابشی وان آلن از دو لایهٔ هلالی شکل ساخته‌شده و دارای ذرات باردار انرژی (پلاسما) است و پیرامون زمین قرار دارد و میدان مغناطیسی زمین را در جای خود نگه می‌دارد. کمربند وان آلن از ارتفاع ۱٬۰۰۰ کیلومتر آغاز شده و تا ارتفاع ۶۰٬۰۰۰ کیلومتر گسترش می‌یابد.[۷۲]

این کمربند دارای دو منطقهٔ درونی و بیرونی است. منطقهٔ درونی در ارتفاع ۳٬۰۰۰ کیلومتر (۱٬۸۶۰ مایل) بالاتر از سطح زمین و منطقهٔ بیرونی آن که بیشترین چگالی را دارد، در فاصلهٔ ۱۵٬۰۰۰ تا ۲۰٬۰۰۰ کیلومتر (۹٬۳۰۰ تا ۱۲٬۴۰۰ مایل) بالاتر از سطح زمین واقع شده‌است. منطقهٔ درونی دارای پروتون‌[پ ۴۹]های پرانرژی است که بیش از ۳۰٬۰۰۰٬۰۰۰ الکترون‌ولت[پ ۵۰] انرژی دارند. منطقهٔ بیرونی دارای ذرات بارداری هستند که از جو و خورشید (برای نمونه، یون‌[پ ۵۱]های هلیم که از باد خورشیدی سرچشمه گرفته‌اند) منشأ گرفته‌اند. این منطقه دارای پروتون‌های کم انرژی و الکترون‌[پ ۵۲]های پرانرژی است که انرژی آن تا چند صد میلیون الکترون‌ولت می‌رسد.[۷۳]

چندی پیش، ناسا سومین کمربند تابشی در پیرامون زمین را کشف کرد. مشاهدات جدید ناسا طی مأموریت وان آلن پروبز نشان داد که پیرامون زمین سه کمربند مجزا و طولانی وجود دارد که میان آن‌ها فضا وجود دارد.[۷۴]

ویژگی‌های فیزیکی[ویرایش]

فشار[ویرایش]

فشار هوا مقدار نیرویی است که توسط هوای جسم بالای سطح بر سطح وارد می‌شود. اگر وزن هوای جسم یا تعداد مولکول‌های آن افزایش یابد، فشار هوا افزایش و اگر وزن هوای جسم یا تعداد مولکول‌های آن کاهش یابد، فشار هوا کاهش می‌یابد.[۷۵] هر چه ارتفاع افزایش می‌یابد، فشار هوا کاهش می‌یابد؛ زیرا مولکول‌های جو در ارتفاعات بالاتر کاهش یافته و در نتیجه فشار هوا نیز کاهش می‌یابد. از آن‌جا که بسیاری از مولکول‌های جو توسط گرانش زمین در نزدیکی سطح زمین هستند، ابتدا کاهش فشار هوا به سرعت انجام می‌گیرد (از پایین به بالا) و سپس از سرعت کاهش فشار کاسته می‌شود. از آن‌جا که بیش از نیمی از مولکول‌های جو در زیر ارتفاع ۵٫۵ کیلومتر هستند، ۵۰ درصد فشار هوا در این ارتفاع است.[۷۶]

فشار هوا با دستگاهی به نام فشارسنج (بارومتر)[پ ۵۳] اندازه‌گیری می‌شود.[۷۵] فشارسنج دارای یک لولهٔ باریک شیشه‌ای است که هوایی در آن وجود ندارد و به یک ظرف جیوه وارد می‌شود. هوا به جیوهٔ درون ظرف فشار می‌آورد و جیوه حدود ۳۰ اینچ (اگر فشارسنجی در سطح زمین انجام‌گیرد) به درون لوله می‌رود. نوع دیگری از فشارسنج، فشارسنج آنروید[پ ۵۴] است که امروزه در هواشناسی و حمل‌ونقل هوایی مورد استفاده قرار می‌گیرد؛ زیرا این فشارسنج فضای کم‌تری اشغال می‌کند و دقیق‌تر است.[۷۷] فشار هوای استاندارد ۷۶۰ میلی‌متر جیوه (mmHg) در سطح دریا[۷۸] است.[۷۹] واحدهای اندازه‌گیری فشار هوا عبارتند از: جیوه،[پ ۵۵] اتمسفر، کیلوپاسکال[پ ۵۶] و میلی بار.[پ ۵۷] در هوانوردی از واحد جیوه استفاده می‌شود، اما هواشناسان از واحد میلی بار بر روی نقشه‌های آب‌وهوایی استفاده می‌کنند. مقایسهٔ مقادیر واحدهای فشار هوا به شرح زیر است:[۷۵]

۲۹٫۹۲ Hg = ۱٫۰ atm = ۱۰۱٫۳۲۵ kPa = ۱۰۱۳٫۲۵ mb

چگالی و جرم[ویرایش]

چگالی و دمای جو در ارتفاعات مختلف
بخش‌های تودهٔ هوا:
cA:بخش قاره‌ای قطب شمال
cP:بخش قاره‌ای قطبی
cT:بخش قاره‌ای گرمسیری
mP:بخش دریایی قطبی
mT:بخش دریایی گرمسیری

چگالی هوا به معنی جرم گازهای جو و بر حجم آن‌ها است. چگالی هوای خشک در صفر درجهٔ سانتی‌گراد در سطح دریا با فشار استاندارد ۱٫۲۹ گرم در هر لیتر[پ ۵۸] است. چگالی هوا در سطح دریا با دمای ۱۵ درجهٔ سانتی‌گراد ۱٫۲۷۵ kg/m۳ است که جو استاندارد بین‌المللی نام دارد.[۸۰] در دستگاه بین‌المللی یکاها (سیستم متریک)[پ ۵۹] چگالی بر حسب کیلوگرم بر متر مکعب (kg/m۳) اندازه‌گیری می‌شود. چگالی هوا به دما، فشار و بخار آب موجود در هوا بستگی دارد. مولکول‌های تشکیل‌دهندهٔ جو به‌سرعت در حال حرکتند و با یک‌دیگر و اشیاء دیگر برخورد می‌کنند. هرچه دما افزایش یابد، سرعت حرکت این مولکول‌ها افزایش و چگالی هوا کاهش می‌یابد. با افزایش فشار هوا، چگالی هوا نیز افزایش می‌یابد. هرچه ارتفاع از سطح زمین افزایش می‌یابد، فشار کاهش می‌یابد. در نتیجه چگالی نیز کاهش می‌یابد.[۸۱]

مجموع جرم جو زمین ۱۰۱۸×۵٫۵ کیلوگرم است[۸۲][۸۳] که حدود یک میلیونم جرم زمین است. هوا در سطح دریا سنگین‌تر است، چون مولکول‌های هوا به یک‌دیگر نزدیکند و توسط وزن هوای بالای خود فشرده شده‌اند. با افزایش ارتفاع، فاصلهٔ مولکول‌های هوا از یک‌دیگر جداشده و هوا سبک‌تر می‌شود.[۸۲] تودهٔ هوا به حجم بزرگی از هوا می‌گویند که دما و رطوبت آن در سطح افقی برای صدها یا هزاران کیلومتر یکسان باشد. تودهٔ هوا معمولاً به چهار بخش قطبی (سرد)، قطب شمال (بسیار سرد)، استوایی (گرم و بسیار مرطوب) و گرمسیری (گرم) طبقه‌بندی می‌شود.[۸۴] مقدار جرم جو زمین در ارتفاعات به شرح زیر است:[۸۵]

  • ۵۰ درصد زیر ارتفاع ۵٫۶ کیلومتر
  • ۹۰ درصد زیر ارتفاع ۱۶ کیلومتر
  • ۹۹٫۹۹۹۹۷ درصد زیر ارتفاع ۱۰۰ کیلومتر

وزن اتمی[ویرایش]

جو را با استفاده از ترکیبات تشکیل‌دهندهٔ آن می‌توان به دو منطقهٔ گسترده به نام‌های هتروسفر[پ ۶۰] و هوموسفر[پ ۶۱] طبقه‌بندی کرد. هتروسفر بخش بیرونی این طبقه‌بندی است که گازها در آن توسط گرانش و با توجه به جرم اتمی نسبی (وزن اتمی) خود پراکنده شده‌اند؛ بنابراین، سبک‌ترین عناصر (هیدروژن و هلیم) در بخش‌های بیرونی هتروسفر و عناصر سنگین‌تر (نیتروژن و اکسیژن) در بخش‌های درونی هتروسفر قرار می‌گیرند. هوموسفر میان سطح زمین و هتروسفر است و گازها در این منطقه تقریباً یکسان پراکنده شده‌اند و پراکندگی آن‌ها ربط به عواملی هم‌چون ارتفاع ندارد. موارد استثناء در پراکندگی آن‌ها لایهٔ ازون، بخار آب، کربن دی‌اکسید و آلاینده‌های هوا است.[۸۶]

ویژگی‌های نوری[ویرایش]

پراکندگی نور[ویرایش]

ابری در هنگام غروب آفتاب

بخشی از نور خورشید در هوا پراکنده می‌شود.[۸۷] هنگامی که نور از یک ماده یا گاز می‌گذرد، بخشی از آن جذب ماده یا گاز می‌شود و بقیهٔ آن پراکنده می‌شود. مرحلهٔ اصلی پراکندگی نور، جذب نور توسط مولکول‌ها و بازتاب در جهات مختلف است.[۸۸] آبی بودن رنگ آسمان به دلیل پراکندگی نور خورشید میان مولکول‌های جو است. این پراکندگی نور، پراکندگی رایلی[پ ۶۲] نام دارد و بر طول موج‌های کوتاه (انتهای رنگ آبی در طیف مرئی) اثر می‌گذارد.[۸۹]

جذب نور خورشید[ویرایش]

همهٔ جانوران و اشیاء بی‌جان قادر به جذب نور هستند. گیاهان جذب نور را در فرایند فتوسنتز انجام می‌دهند. جذب نور به طیف الکترومغناطیسی (رنگ‌ها) و ماهیت اتم‌های جسم بستگی دارد.[۹۰] برای نمونه، مولکول‌های ازون، پرتوهای فرابنفش B و C را که طول موج آن‌ها ۲۰۰ تا ۳۲۰ نانومتر[پ ۶۳] است، جذب می‌کند.[۹۱] آب خالص امواجی را که طول موج آن‌ها میان ۳۸۰ تا ۷۰۰ نانومتر است، جذب می‌کند.[۹۲]

در مناطقی از جو، نور می‌تواند نفوذ بسیاری داشته‌باشد که این بخش‌ها پنجره‌های جوی نامیده می‌شوند. این پنجره‌ها اغلب در مناطق دارای طیف مرئی و فرکانس رادیویی دیده می‌شوند.[۹۳] در این مناطق میزان جذب پرتوها کم یا هیچ است و موجب می‌شود که پرتوها به آسانی به سطح زمین برسند.[۹۴] گازها برخی از طول موج‌های خاص را جذب می‌کنند و برخی از طول موج‌ها نیز از گازها می‌گذرند. مناطقی که طیف‌های الکترومغناطیسی توسط گازهای جو جذب می‌شوند، باندهای جذب نامیده می‌شوند.[۹۵] جو زمین از عبور پرتوهای زیان‌آور و پرانرژی ایکس، گاما و فرابنفش و هم‌چنین پرتوهای کم انرژی فروسرخ و امواج رادیویی جلوگیری می‌کند و نور مرئی و هم‌چنین امواج رادیویی و محدودهٔ طول موج کمی از فروسرخ را از خود عبور می‌دهد.[۹۶]

طیف مرئی مخلوطی از رنگ‌ها است که دارای طول موج میان ۴۰۰ تا ۷۰۰ نانومتر است و توسط چشم انسان تشخیص داده می‌شود. اشیاء دارای رنگ‌های مختلفی هستند، چون هر شیء طول موج خاصی را جذب می‌کند.[۹۷]

طیف‌های الکترومغناطیسی با طول موج آن‌ها
رنگ‌های مختلف طیف مرئی:[۹۷]
رنگ طول موج
قرمز ۷۷۰ نانومتر
نارنجی ۶۶۷ نانومتر
زرد ۶۲۵ نانومتر
سبز ۵۵۶ نانومتر
نیلی ۴۷۷ نانومتر
آبی ۴۳۵ نانومتر
بنفش ۴۰۰ نانومتر

ضریب شکست[ویرایش]

ضریب شکست یک محیط مقدار تغییر سرعت نور در آن محیط نسبت به خلأ است. هنگامی که پرتو نور با زاویهٔ قائم به سطح بین دو ماده یا محیط (مانند هوا و لیوان) بتابد، بدون شکست از محیطی به محیطی دیگر وارد می‌شود. اما اگر با زاویه‌ای دیگر بتابد، با شکست وارد محیط دیگر می‌شود. این انحراف به سرعت نور بستگی دارد.[۹۸] برای نمونه، اگر نور از آب وارد هوا شود، دچار انحراف می‌شود. زاویهٔ شکست نمی‌تواند بیش از ۹۰ درجه باشد و زاویه‌ای که شکست آن برابر با ۹۰ درجه باشد، زاویهٔ بحرانی نام دارد. اگر زاویهٔ شکست بیش از ۹۰ درجه باشد، نمی‌تواند از محیط عبور کند و بازتاب می‌شود که به این پدیده بازتاب کلی می‌گویند.[۹۹] ضریب شکست هوا ۱٫۰۰۰۲۹ است.[۱۰۰][۱۰۱]

گردش[ویرایش]

نمایی از گردش جوی

گردش جوی به‌طور کلی به گردش زمین و جنبش‌های منطقه‌ای هوا گفته می‌شود. به‌طور متوسط، این گردش مربوط به سیستم‌های وزش بادی بزرگ است که در چند کمربند شرقی-غربی، زمین را احاطه کرده‌اند.[۱۰۲] گردش جوی موجب توزیع گرما در سطح زمین می‌شود. سه چرخش پایه در گردش عرضی وجود دارد:[۱۰۳]

  • سلول هادلی: سلول هادلی یک الگوی گردش جوی در مناطق گرمسیر است که بادهای بسامان تولید می‌کند. سلول هادلی ۳۰ درجهٔ شمالی تا ۳۰ درجهٔ جنوبی زمین (یعنی ۳۰ درجه بالاتر و پایین‌تر از استوا) را در بر می‌گیرد. دلیل رخ‌دادن این جریان هوا، گرم کردن هوا در سطح زمین نزدیک استوا توسط خورشید است. هوا به سمت بالا می‌رود و یک باند کم‌فشار در استوا ایجاد می‌کند. هنگامی که هوا به ارتفاع ۱۰–۱۵ کیلومتر (بخش‌های بالایی تروپوسفر) می‌رسد، جریان آن به سوی قطب شمال و قطب جنوب ادامه می‌یابد. در پایان، سلول هادلی هوا را به سطح زمین در نواحی استوایی نزدیک به ۳۰ درجه شمال یا جنوب عرضی بازمی‌گرداند.[۱۰۴]
  • سلول فرل: در سلول فرل، جریان هوا به سمت قطب و شرق تا نزدیکی سطح زمین و به سمت استوا و غرب تا ارتفاعات بالاتر ادامه می‌یابد. این حرکت معکوس جریان هوا در سلول هادلی است[۱۰۵] و به‌طور متوسط در اواسط عرض‌های جغرافیایی (۳۰ تا ۶۰ درجه)[۱۰۶] حرکت می‌کند.[۱۰۷] به‌طور کلی، جریان غربی بر سلول فرل در سطح زمین و نقاط بالای زمین حکمفرماست. اعتقاد بر این است که سلول فرل یک پدیدهٔ اجباری ناشی از کنش میان دو سلول دیگر است. حرکت عمودی رو به پایین تا ۳۰ درجهٔ شمالی و حرکت عمودی رو به بالا تا ۶۰ درجهٔ شمالی موجب گردش سلول فرل می‌شود. این الگو تا حد زیادی موجب تبادل هوای قطبی در حال حرکت به جنوب و هوای گرمسیری در حال حرکت به شمال می‌شود.[۱۰۸]
  • سلول قطبی: سلول قطبی یک منطقهٔ هوا و جریان قوی غرب به شرق است.[۱۰۹] این سلول شمالی‌ترین گردش جوی است و موقعیت متوسط آن میان ۶۰ درجهٔ شمالی و قطب شمال است. در قطب، هوا به سمت جنوب گسترش می‌یابد. از آن‌جا که اثر کوریولیس (نیروی کوریولیس)[پ ۶۴] قوی در قطب وجود دارد، هوایی که به سمت جنوب در حال حرکت است، به‌شدت به سمت راست منحرف می‌شود. نزدیک به ۶۰ درجهٔ شمالی، جنوب شرقی هوای در حال حرکت با جریان ضعیف هوای شمال غربی که ناشی از گسترش هوا از ۳۰ درجهٔ شمالی است، برخورد می‌کند. با این برخورد، هوا دوباره بالا می‌رود.[۱۰۸]

نگارخانه[ویرایش]

جستارهای وابسته[ویرایش]

واژه‌نامه[ویرایش]

  1. Atmosphere
  2. Troposphere
  3. Stratosphere
  4. Mesosphere
  5. Thermosphere
  6. Exosphere
  7. Ionosphere
  8. Magnetosphere
  9. Electromagnetic
  10. Hadley Cell
  11. Ferrel Cell
  12. Polar cell
  13. Nitrogen
  14. Nitrous Oxide
  15. Oxygen
  16. Xenon
  17. Argon
  18. Oone
  19. Carbon Dioxide
  20. Carbon Monoxide
  21. Neon
  22. Sulfur Dioxide
  23. Helium
  24. Nitrogen Dioxide
  25. Methane
  26. Ammonia
  27. Krypton
  28. Water Vapor
  29. Hydrogen
  30. Chloroplast
  31. Photosynthesis
  32. CyanoBacteria
  33. Carbohydrate
  34. F (Fahrenheit)
  35. Cumulus Clouds
  36. Stratus Clouds
  37. Tropospheric Ozone
  38. Tropopause
  39. ChloroFluoroCarbons (CFCs)
  40. Halon
  41. Stratopause
  42. Mesopause
  43. Photon
  44. Thermopause
  45. Ionization
  46. Cation
  47. Radio Frequency
  48. Plasma
  49. Proton
  50. Electron Volt
  51. Ion
  52. Electron
  53. Barometer
  54. Aneroid Barometer
  55. Hg
  56. KPa (KiloPaskal)
  57. MBar (MilliBar)
  58. Liter
  59. Metric System
  60. Heterosphere
  61. Homosphere
  62. Rayleigh Scattering
  63. Nm (NanoMerer)
  64. Coriolis Effect

یادداشت[ویرایش]

  • [الف] ^  اندازهٔ لایه‌ها نسبت به یک‌دیگر دقیق نیست. چون برخی لایه‌ها مانند ترموسفر بسیار بزرگ هستند و برخی دیگر مانند تروپوسفر نسبت به ترموسفر بسیار کوچک هستند و اگر اندازه‌ها دقیق باشد، تروپوسفر بسیار کوچک خواهد شد و شاید حتی کسی آن را نبیند.
  • [ب] ^  اگزوسفر بسیار طولانی‌تر از این مقدار است و تا ۱۰٬۰۰۰ کیلومتر بالاتر از سطح زمین ادامه می‌یابد.
  • [پ] ^  موشک‌های بالیستیک معمولاً ارتفاع بسیار بالایی می‌گیرند و برخی از موشک‌های بالستیک که برد بسیار بالایی دارند، حتی از جو زمین نیز خارج می‌شوند و با استفاده از یک ماشین ورود مجدد (RV) به جو بازمی‌گردند.
  • [ت] ^  این پانویس مربوط به گازهای نخست تا شانزدهم (نیتروژن تا آمونیاک) است.
  • [ث] ^  این پانویس مربوط به گاز هفدهم (بخار آب) است.
  • [ج] ^  مقدار بخار آب موجود در هوای یک جا با هوای جایی دیگر بسیار متفاوت است و به جا، دما و زمان بستگی دارد. در بیابان‌ها و جاهایی که دمای پایین دارند، بخار آب موجود در هوا می‌تواند کم‌تر از ۰٫۱ درصد هوا باشد و در جاهای گرم و مرطوب، ممکن‌است بیش از ۶ درصد بخار آب در هوا وجود داشته‌باشد.

پانویس[ویرایش]

  1. «واژه‌های مصوّب فرهنگستان زبان و ادب فارسی، فرهنگ واژه‌های مصوّب فرهنگستان: ۱۳۷۶ تا ۱۳۸۵، بخش دوم: به ترتیب الفبای لاتینی». فرهنگستان زبان و ادب فارسی. بایگانی‌شده از اصلی در ۳ اوت ۲۰۰۹. دریافت‌شده در ۱۱ اردیبهشت ۱۳۹۲.
  2. w:en:Atmosphere_of_Earth#Stratification
  3. "air (atmospheric gas)". Encyclopedia Britannica. Archived from the original on 02 May 2013. Retrieved 13 April 2013. Check date values in: |تاریخ بایگانی= (help)
  4. "The Oxygen Cycle". VCCS. Archived from the original on 02 May 2013. Retrieved 13 April 2013. Check date values in: |تاریخ بایگانی= (help)
  5. Adam Voiland (2 November 2010). "Aerosols: Tiny Particles, Big Impact". NASA. Archived from the original on 02 May 2013. Retrieved 14 April 2013. Check date values in: |تاریخ بایگانی= (help)
  6. "greenhouse gas (atmospheric science)". Encyclopedia Britannica. Archived from the original on 02 May 2013. Retrieved 26 April 2013. Check date values in: |تاریخ بایگانی= (help)
  7. "greenhouse effec (atmosphere science)". Encyclopedia Britannica. Archived from the original on 02 May 2013. Retrieved 26 April 2013. Check date values in: |تاریخ بایگانی= (help)
  8. «گازهای گل‌خانه‌ای به بالاترین میزان در ۳ میلیون سال اخیر رسید». رادیو فردا. ۲۲ اردیبهشت ۱۳۹۲. بایگانی‌شده از اصلی در ۲۴ ژوئیه ۲۰۱۳. دریافت‌شده در ۲۵ اردیبهشت ۱۳۹۲.
  9. "Table of gaseous composition of dry air". Columbia University. Archived from the original on 02 May 2013. Retrieved 14 April 2013. Check date values in: |تاریخ بایگانی= (help)
  10. Professor Shakhashiri (November 2007). "Gases of the Air" (PDF). University of Wisconsin–Madison. Archived from the original (PDF) on 19 March 2013. Retrieved 20 July 2013.
  11. "4.6 billion years ago - 543 million years ago". University of Dayton. Archived from the original on 30 October 2012. Retrieved 13 July 2013.
  12. ۱۲٫۰ ۱۲٫۱ ۱۲٫۲ ۱۲٫۳ "What is the History of the Earth's Atmosphere?". Innovate Us. Archived from the original on 26 April 2013. Retrieved 23 April 2013.
  13. ۱۳٫۰ ۱۳٫۱ ۱۳٫۲ ۱۳٫۳ "How did Earth's atmosphere form?". NASA. Archived from the original on 30 April 2013. Retrieved 23 April 2013.
  14. "The atmosphere - origin and structure". EIU. Archived from the original on 02 May 2013. Retrieved 23 April 2013. Check date values in: |تاریخ بایگانی= (help)
  15. Jerry Coffey (7 February 2010). "What Is The Atmosphere?". Universe Today. Archived from the original on 02 May 2013. Retrieved 24 April 2013. Check date values in: |تاریخ بایگانی= (help)
  16. ۱۶٫۰ ۱۶٫۱ "geologic history of Earth: Development of the atmosphere and oceans". Encyclopedia Britannica. Archived from the original on 02 May 2013. Retrieved 23 April 2013. Check date values in: |تاریخ بایگانی= (help)
  17. "Evolution of the Atmosphere". Ohio State University. Archived from the original (PPT) on 19 August 2014. Retrieved 14 July 2013.
  18. "Earth's atmospheric air". The Encyclopedia of Earth. 18 October 2011. Archived from the original on 02 May 2013. Retrieved 24 April 2013. Check date values in: |تاریخ بایگانی= (help)
  19. "What Is Air Pollution?". EPA. Archived from the original on 24 July 2013. Retrieved 29 June 2013.
  20. Mason Inman (5 October 2010). "Plane Exhaust Kills More People Than Plane Crashes". National Geographic. Archived from the original on 24 July 2013. Retrieved 24 July 2013.
  21. "air pollution". Encyclopedia Britannica Online. Archived from the original on 24 July 2013. Retrieved 29 June 2013.
  22. ۲۲٫۰ ۲۲٫۱ "global warming (Earth science)". Encyclopedia Britannica. Archived from the original on 24 July 2013. Retrieved 13 July 2013.
  23. "Causes of Global Warming". National Geographic. Archived from the original on 24 July 2013. Retrieved 15 July 2013.
  24. ۲۴٫۰ ۲۴٫۱ "Global Warming Effects". National Geographic. Archived from the original on 24 July 2013. Retrieved 14 July 2013.
  25. "Sea Level Rise". National Geographic. Retrieved 25 July 2013.
  26. "How will the Earth system change in the future?". NASA. Archived from the original on 16 May 2013. Retrieved 14 July 2013.
  27. «پژوهش جدید ناسا: پر بارش شدن مناطق بارانی جهان در سده آینده». رادیو فردا. ۱۷ اردیبهشت ۱۳۹۲. بایگانی‌شده از اصلی در ۲۴ ژوئیه ۲۰۱۳. دریافت‌شده در ۳۰ تیر ۱۳۹۲.
  28. "troposphere (atmospheric region)". Encyclopedia Britannica. Archived from the original on 02 May 2013. Retrieved 4 April 2013. Check date values in: |تاریخ بایگانی= (help)
  29. "Weather Facts: Troposphere". Weather Online. Archived from the original on 02 May 2013. Retrieved 14 April 2013. Check date values in: |تاریخ بایگانی= (help)
  30. "troposphere". UCSB. Archived from the original on 02 May 2013. Retrieved 14 April 2013. Check date values in: |تاریخ بایگانی= (help)
  31. "Layers of the Atmosphere". NOAA. Archived from the original on 2 April 2013. Retrieved 14 April 2013.
  32. "Temperature and Pressure Patterns in the Troposphere". NOAA. Archived from the original (PDF) on 02 May 2013. Retrieved 14 April 2013. Check date values in: |تاریخ بایگانی= (help)
  33. "The Troposphere". Virginia University. Archived from the original on 6 September 2012. Retrieved 4 May 2013.
  34. "Tropospheric Ozone, the Polluter". UCAR. Archived from the original on 6 July 2005. Retrieved 30 January 2013.
  35. "Watching our Ozone Weather". NASA. Archived from the original on 06 February 2013. Retrieved 6 February 2013. Check date values in: |تاریخ بایگانی= (help)
  36. "atmosphere (gaseous envelope)". Encyclopedia Britannica. Archived from the original on 02 May 2013. Retrieved 14 April 2012. Check date values in: |تاریخ بایگانی= (help)
  37. "The Stratosphere - overview". UCAR. Archived from the original on 02 May 2013. Retrieved 14 April 2013. Check date values in: |تاریخ بایگانی= (help)
  38. "The Stratosphere". Windows2Universe. Archived from the original on 02 May 2013. Retrieved 14 April 2013. Check date values in: |تاریخ بایگانی= (help)
  39. "- Stratosphere". Atmosphere. Archived from the original on 15 April 2012. Retrieved 14 April 2013.
  40. "Why does the temperature of the atmosphere vary?". Windows2Universe. Archived from the original on 02 May 2013. Retrieved 15 April 2013. Check date values in: |تاریخ بایگانی= (help)
  41. "UV radiation". Eco-action. Archived from the original on 06 February 2013. Retrieved 29 January 2013. Check date values in: |تاریخ بایگانی= (help)
  42. "Introduction to Ozone". UCAR. Archived from the original on 12 February 2013. Retrieved 1 February 2013.
  43. "STRATOSPHERIC OZONE DEPLETION". UNC. Archived from the original on 06 February 2013. Retrieved 6 February 2013. Check date values in: |تاریخ بایگانی= (help)
  44. "Chlorofluorocarbons and Ozone Depletion". Ciesin.org. Archived from the original on 06 February 2013. Retrieved 29 January 2013. Check date values in: |تاریخ بایگانی= (help)
  45. "Ozone Depleting Substances". Ene.gov. Archived from the original on 03 April 2013. Retrieved 12 March 2013. Check date values in: |تاریخ بایگانی= (help)
  46. Elizabeth Steeter. "Global Warming Effects on Ozone Depletion". eHow.com. Archived from the original on 03 April 2013. Retrieved 3 April 2013. Check date values in: |تاریخ بایگانی= (help)
  47. "The Ozone Layer". NOAA. Archived from the original on 03 April 2013. Retrieved 1 April 2013. Check date values in: |تاریخ بایگانی= (help)
  48. "Ozone Resource Page". NASA. Archived from the original on 06 February 2013. Retrieved 29 January 2013. Check date values in: |تاریخ بایگانی= (help)
  49. "From Discovery, To Solution, To Evolution: Observing Earth's Ozone Layer". NASA. Archived from the original on 06 February 2013. Retrieved 29 January 2013. Check date values in: |تاریخ بایگانی= (help)
  50. "2012 Antarctic Ozone Hole Second Smallest in 20 Years". NASA. Archived from the original on 03 April 2013. Retrieved 12 March 2013. Check date values in: |تاریخ بایگانی= (help)
  51. "New Simulation Shows Consequences of a World Without Earth's Natural Sunscreen". NASA. Archived from the original on 06 February 2013. Retrieved 6 February 2013. Check date values in: |تاریخ بایگانی= (help)
  52. "ELEVATED STRATOPAUSE EVENTS". UCAR. Archived from the original on 25 July 2013. Retrieved 15 April 2013.
  53. Tega Jessa (25 March 2011). "Mesosphere". Universe Today. Archived from the original on 27 May 2013. Retrieved 15 April 2013.
  54. ۵۴٫۰ ۵۴٫۱ "The Mesosphere - overview". UCAR. Archived from the original on 02 May 2013. Retrieved 15 April 2013. Check date values in: |تاریخ بایگانی= (help)
  55. "Mesosphere & Mesopause". Atoptics. Archived from the original on 02 May 2013. Retrieved 15 April 2013. Check date values in: |تاریخ بایگانی= (help)
  56. "Dust in the mesosphere" (به آلمانی). IAP. Archived from the original on 19 September 2011. Retrieved 2013-04-15.
  57. "Mesosphere - Layer of Earth's Atmosphere". Windows2Universe. Archived from the original on 02 May 2013. Retrieved 15 April 2013. Check date values in: |تاریخ بایگانی= (help)
  58. ۵۸٫۰ ۵۸٫۱ "Thermosphere - overview". UCAR. Archived from the original on 02 May 2013. Retrieved 15 April 2013. Check date values in: |تاریخ بایگانی= (help)
  59. ۵۹٫۰ ۵۹٫۱ "The Thermosphere". Windows2Universe. Archived from the original on 02 May 2013. Retrieved 15 April 2013. Check date values in: |تاریخ بایگانی= (help)
  60. "Exosphere - overview". UCAR. Archived from the original on 02 May 2013. Retrieved 15 April 2013. Check date values in: |تاریخ بایگانی= (help)
  61. "Exosphere". Enviropedia. Archived from the original on 02 May 2013. Retrieved 16 April 2013. Check date values in: |تاریخ بایگانی= (help)
  62. Fraser Cain (16 September 2009). "Exosphere". Univers Today. Archived from the original on 02 May 2013. Retrieved 16 April 2013. Check date values in: |تاریخ بایگانی= (help)
  63. "AIRS: atmosphere_layers". NASA. Archived from the original on 27 April 2013. Retrieved 16 April 2013.
  64. "Temperature in the Exosphere". Windows2Universe. Archived from the original on 02 May 2013. Retrieved 16 April 2013. Check date values in: |تاریخ بایگانی= (help)
  65. ۶۵٫۰ ۶۵٫۱ "Introduction to the Ionosphere". NOAA. Archived from the original on 02 May 2013. Retrieved 16 April 2013. Check date values in: |تاریخ بایگانی= (help)
  66. ۶۶٫۰ ۶۶٫۱ "Ionosphere". Science Daily. Archived from the original on 20 April 2013. Retrieved 16 April 2013.
  67. ۶۷٫۰ ۶۷٫۱ "Ionosphere". SWRI. Archived from the original on 02 May 2013. Retrieved 16 April 2013. Check date values in: |تاریخ بایگانی= (help)
  68. "Ionospheric Map". IPS. Archived from the original on 24 July 2013. Retrieved 11 May 2013.
  69. "Magnetosphere". SWRI. Archived from the original on 02 May 2013. Retrieved 16 April 2013. Check date values in: |تاریخ بایگانی= (help)
  70. ۷۰٫۰ ۷۰٫۱ Tega Jessa (6 Aprl 2010). "Magnetosphere". Universe Today. Archived from the original on 02 May 2013. Retrieved 16 April 2013. Check date values in: |تاریخ=, |تاریخ بایگانی= (help)
  71. "Earth's Magnetosphere". Windows2Universe. Archived from the original on 02 May 2013. Retrieved 16 April 2013. Check date values in: |تاریخ بایگانی= (help)
  72. Andy Soos (1 March 2013). "The Third Van Allen Belt". ENN. Archived from the original on 02 May 2013. Retrieved 18 April 2013. Check date values in: |تاریخ بایگانی= (help)
  73. "Van Allen radiation belt (astrophysics)". Encyclopedia Britannica. Archived from the original on 02 May 2013. Retrieved 18 April 2013. Check date values in: |تاریخ بایگانی= (help)
  74. "NASA's Van Allen Probes Reveal a New Radiation Belt Around Earth". NASA. 28 February 2013. Archived from the original on 24 July 2013. Retrieved 16 July 2013.
  75. ۷۵٫۰ ۷۵٫۱ ۷۵٫۲ "Atmospheric Pressure force exerted by the weight of the air". UIUC. Archived from the original on 02 May 2013. Retrieved 20 April 2013. Check date values in: |تاریخ بایگانی= (help)
  76. "Pressure with Height". UIUC. Archived from the original on 24 July 2013. Retrieved 18 July 2013.
  77. Chad Palmer. "How a barometer measures air pressure". USA TODAY. Retrieved 18 July 2013.
  78. Jerry Coffey (12 September 2010). "What Is Atmospheric Pressure". Universe Today. Archived from the original on 02 May 2013. Retrieved 20 April 2013. Check date values in: |تاریخ بایگانی= (help)
  79. "blood pressure and atmospheric pressure". Physucs Forums. Archived from the original on 02 May 2013. Retrieved 20 April 2013. Check date values in: |تاریخ بایگانی= (help)
  80. Anne Marie Helmenstine, Ph.D. "Density of Air - What Is the Density of Air at STP?". About.com. Archived from the original on 02 May 2013. Retrieved 21 April 2013. Check date values in: |تاریخ بایگانی= (help)
  81. Jack Williams. "Understanding air density and its effects". USA Today. Archived from the original on 02 May 2013. Retrieved 21 April 2013. Check date values in: |تاریخ بایگانی= (help)
  82. ۸۲٫۰ ۸۲٫۱ "How Much Does Earth's Atmosphere Weigh?". Encyclopedia Britannica. 5 January 2012. Archived from the original on 02 May 2013. Retrieved 22 April 2013. Check date values in: |تاریخ بایگانی= (help)
  83. "Mass of the Atmosphere". Hyper Text Book. Archived from the original on 02 May 2013. Retrieved 22 April 2013. Check date values in: |تاریخ بایگانی= (help)
  84. "air mass (meteorology)". Encyclopedia Britannica. Archived from the original on 02 May 2013. Retrieved 22 April 2013. Check date values in: |تاریخ بایگانی= (help)
  85. "Earth's Atmosphere". Nature Philosophie. 5 March 2013. Archived from the original on 02 May 2013. Retrieved 22 April 2013. Check date values in: |تاریخ بایگانی= (help)
  86. "Atmospheric Composition". UWSP. Archived from the original on 15 April 2013. Retrieved 22 April 2013.
  87. "Scattering of Light". Uni-Hannover. Archived from the original on 02 May 2013. Retrieved 27 April 2013. Check date values in: |تاریخ بایگانی= (help)
  88. "Scattering of Light". Tutor Vista. Archived from the original on 02 May 2013. Retrieved 27 April 2013. Check date values in: |تاریخ بایگانی= (help)
  89. "Blue Sky and Rayleigh Scattering". GSU. Archived from the original on 02 May 2013. Retrieved 27 April 2013. Check date values in: |تاریخ بایگانی= (help)
  90. Matt Williams (4 July 2011). "Absorption of Light". Universe Today. Archived from the original on 02 May 2013. Retrieved 25 April 2013. Check date values in: |تاریخ بایگانی= (help)
  91. "Ultraviolet (UV) / Ozone Frequently Asked Questions". Australian Goverment Bureau of Meteorology. Archived from the original on 02 May 2013. Retrieved 25 April 2013. Check date values in: |تاریخ بایگانی= (help)
  92. "Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements". Optics Info Base. Archived from the original on 02 May 2013. Retrieved 25 April 2013. Check date values in: |تاریخ بایگانی= (help)
  93. "Atmospheric Windows". UTK. Archived from the original on 02 May 2013. Retrieved 26 April 2013. Check date values in: |تاریخ بایگانی= (help)
  94. "Absorption Bands and Atmospheric Windows". NASA. Archived from the original on 02 May 2013. Retrieved 26 April 2013. Check date values in: |تاریخ بایگانی= (help)
  95. "CEE6900 Environmental Applications of Remote Sensing, Lecture Three – Atmospheric Windows, EM Wave and Medium Properties 3 Hours". Tennessee Technological University. Archived from the original (PDF) on 24 July 2013. Retrieved 16 July 2013.
  96. "Infrared Windows". California Institute of Technology. Archived from the original on 6 June 2012. Retrieved 16 July 2013.
  97. ۹۷٫۰ ۹۷٫۱ "Colour and Light". The University of Sydney. Archived from the original on 02 May 2013. Retrieved 25 April 2013. Check date values in: |تاریخ بایگانی= (help)
  98. "Higher Bitesize Physics - Refraction of light: Revision, Page2". BBC. Archived from the original on 02 May 2013. Retrieved 23 April 2013. Check date values in: |تاریخ بایگانی= (help)
  99. "Higher Bitesize Physics - Refraction of light: Revision". BBC. Archived from the original on 02 May 2013. Retrieved 23 April 2013. Check date values in: |تاریخ بایگانی= (help)
  100. "Index of Refraction". GSU. Archived from the original on 02 May 2013. Retrieved 23 April 2013. Check date values in: |تاریخ بایگانی= (help)
  101. "refractive index (physics)". Encyclopedia Britannica. Archived from the original on 02 May 2013. Retrieved 23 April 2013. Check date values in: |تاریخ بایگانی= (help)
  102. "atmospheric circulation (meteorology)". Encyclopedia Britannica. Archived from the original on 02 May 2013. Retrieved 23 April 2013. Check date values in: |تاریخ بایگانی= (help)
  103. "Atmospheric circulation". Scince Daily. Archived from the original on 11 May 2013. Retrieved 28 April 2013.
  104. "Hadley Cell". Windows2Universe. Archived from the original on 02 May 2013. Retrieved 29 April 2013. Check date values in: |تاریخ بایگانی= (help)
  105. "Ferrel cell (meteorology)". Encyclopedia Britannica. Archived from the original on 02 May 2013. Retrieved 29 April 2013. Check date values in: |تاریخ بایگانی= (help)
  106. "Earth's Convection Cells". Union. Archived from the original on 18 May 2013. Retrieved 29 April 2013.
  107. "Ferrel Cells". Cmmap. Archived from the original on 02 May 2013. Retrieved 29 April 2013. Check date values in: |تاریخ بایگانی= (help)
  108. ۱۰۸٫۰ ۱۰۸٫۱ "Air Circulation". Ou. Archived from the original on 1 September 2006. Retrieved 29 April 2013.
  109. "What is the Polar Vortex?". Nasa. Archived from the original on 02 May 2013. Retrieved 25 April 2013. Check date values in: |تاریخ بایگانی= (help)

پیوند به بیرون[ویرایش]

اتمسفر زمین در پروژه‌های خواهر

در ویکی‌انبار پرونده‌های مرتبط در ویکی‌انبار

Blue light is scattered more than other wavelengths by the gases in the atmosphere, surrounding Earth in a visibly blue layer when seen from space on board the ISS at an altitude of 335 km (208 mi).[1]
Composition of Earth's atmosphere by volume, excluding water vapor. Lower pie represents trace gases that together compose about 0.043391% of the atmosphere (0.04402961% at April 2019 concentration [2][3]). Numbers are mainly from 2000, with CO
2
and methane from 2019, and do not represent any single source.[4]

The atmosphere of Earth is the layer of gases, commonly known as air, that surrounds the planet Earth and is retained by Earth's gravity. The atmosphere of Earth protects life on Earth by creating pressure allowing for liquid water to exist on the Earth's surface, absorbing ultraviolet solar radiation, warming the surface through heat retention (greenhouse effect), and reducing temperature extremes between day and night (the diurnal temperature variation).

By volume, dry air contains 78.09% nitrogen, 20.95% oxygen, 0.93% argon, 0.04% carbon dioxide, and small amounts of other gases.[8] Air also contains a variable amount of water vapor, on average around 1% at sea level, and 0.4% over the entire atmosphere. Air composition, temperature, and atmospheric pressure vary with altitude, and air suitable for use in photosynthesis by terrestrial plants and breathing of terrestrial animals is found only in Earth's troposphere and in artificial atmospheres.

The atmosphere has a mass of about 5.15×1018 kg,[9] three quarters of which is within about 11 km (6.8 mi; 36,000 ft) of the surface. The atmosphere becomes thinner and thinner with increasing altitude, with no definite boundary between the atmosphere and outer space. The Kármán line, at 100 km (62 mi), or 1.57% of Earth's radius, is often used as the border between the atmosphere and outer space. Atmospheric effects become noticeable during atmospheric reentry of spacecraft at an altitude of around 120 km (75 mi). Several layers can be distinguished in the atmosphere, based on characteristics such as temperature and composition.

The study of Earth's atmosphere and its processes is called atmospheric science (aerology). Early pioneers in the field include Léon Teisserenc de Bort and Richard Assmann.[10]

Composition

Mean atmospheric water vapor

The three major constituents of Earth's atmosphere are nitrogen, oxygen, and argon. Water vapor accounts for roughly 0.25% of the atmosphere by mass. The concentration of water vapor (a greenhouse gas) varies significantly from around 10 ppm by volume in the coldest portions of the atmosphere to as much as 5% by volume in hot, humid air masses, and concentrations of other atmospheric gases are typically quoted in terms of dry air (without water vapor).[11] The remaining gases are often referred to as trace gases,[12] among which are the greenhouse gases, principally carbon dioxide, methane, nitrous oxide, and ozone. Besides argon, already mentioned, other noble gases, neon, helium, krypton, and xenon are also present. Filtered air includes trace amounts of many other chemical compounds. Many substances of natural origin may be present in locally and seasonally variable small amounts as aerosols in an unfiltered air sample, including dust of mineral and organic composition, pollen and spores, sea spray, and volcanic ash. Various industrial pollutants also may be present as gases or aerosols, such as chlorine (elemental or in compounds), fluorine compounds and elemental mercury vapor. Sulfur compounds such as hydrogen sulfide and sulfur dioxide (SO2) may be derived from natural sources or from industrial air pollution.

Major constituents of dry air, by volume[8]
Gas Volume(A)
Name Formula in ppmv(B) in %
Nitrogen N2 780,840 78.084
Oxygen O2 209,460 20.946
Argon Ar 9,340 0.9340
Carbon dioxide (April, 2019) CO
2
413.32 0.041332
Neon Ne 18.18 0.001818
Helium He 5.24 0.000524
Methane CH4 1.87 0.000187
Krypton Kr 1.14 0.000114
Not included in above dry atmosphere:
Water vapor(C) H2O 0–30,000(D) 0–3%(D)
notes:

(A) volume fraction is equal to mole fraction for ideal gas only,
    also see volume (thermodynamics)
(B) ppmv: parts per million by volume
(C) Water vapor is about 0.25% by mass over full atmosphere
(D) Water vapor strongly varies locally[11]

The relative concentration of gases remains constant until about 10,000 m (33,000 ft).[13]

The volume fraction of the main constituents of the Earth's atmosphere as a function of height according to the MSIS-E-90 atmospheric model.

Stratification

Earth's atmosphere Lower 4 layers of the atmosphere in 3 dimensions as seen diagonally from above the exobase. Layers drawn to scale, objects within the layers are not to scale. Aurorae shown here at the bottom of the thermosphere can actually form at any altitude in this atmospheric layer.

In general, air pressure and density decrease with altitude in the atmosphere. However, temperature has a more complicated profile with altitude, and may remain relatively constant or even increase with altitude in some regions (see the temperature section, below). Because the general pattern of the temperature/altitude profile, or lapse rate, is constant and measurable by means of instrumented balloon soundings, the temperature behavior provides a useful metric to distinguish atmospheric layers. In this way, Earth's atmosphere can be divided (called atmospheric stratification) into five main layers. Excluding the exosphere, the atmosphere has four primary layers, which are the troposphere, stratosphere, mesosphere, and thermosphere.[14] From highest to lowest, the five main layers are:

  • Exosphere: 700 to 10,000 km (440 to 6,200 miles)
  • Thermosphere: 80 to 700 km (50 to 440 miles)[15]
  • Mesosphere: 50 to 80 km (31 to 50 miles)
  • Stratosphere: 12 to 50 km (7 to 31 miles)
  • Troposphere: 0 to 12 km (0 to 7 miles)[16]

Exosphere

The exosphere is the outermost layer of Earth's atmosphere (i.e. the upper limit of the atmosphere). It extends from the exobase, which is located at the top of the thermosphere at an altitude of about 700 km above sea level, to about 10,000 km (6,200 mi; 33,000,000 ft) where it merges into the solar wind.

This layer is mainly composed of extremely low densities of hydrogen, helium and several heavier molecules including nitrogen, oxygen and carbon dioxide closer to the exobase. The atoms and molecules are so far apart that they can travel hundreds of kilometers without colliding with one another. Thus, the exosphere no longer behaves like a gas, and the particles constantly escape into space. These free-moving particles follow ballistic trajectories and may migrate in and out of the magnetosphere or the solar wind.

The exosphere is located too far above Earth for any meteorological phenomena to be possible. However, the aurora borealis and aurora australis sometimes occur in the lower part of the exosphere, where they overlap into the thermosphere. The exosphere contains most of the satellites orbiting Earth.

Thermosphere

The thermosphere is the second-highest layer of Earth's atmosphere. It extends from the mesopause (which separates it from the mesosphere) at an altitude of about 80 km (50 mi; 260,000 ft) up to the thermopause at an altitude range of 500–1000 km (310–620 mi; 1,600,000–3,300,000 ft). The height of the thermopause varies considerably due to changes in solar activity.[15] Because the thermopause lies at the lower boundary of the exosphere, it is also referred to as the exobase. The lower part of the thermosphere, from 80 to 550 kilometres (50 to 342 mi) above Earth's surface, contains the ionosphere.

The temperature of the thermosphere gradually increases with height. Unlike the stratosphere beneath it, wherein a temperature inversion is due to the absorption of radiation by ozone, the inversion in the thermosphere occurs due to the extremely low density of its molecules. The temperature of this layer can rise as high as 1500 °C (2700 °F), though the gas molecules are so far apart that its temperature in the usual sense is not very meaningful. The air is so rarefied that an individual molecule (of oxygen, for example) travels an average of 1 kilometre (0.62 mi; 3300 ft) between collisions with other molecules.[17] Although the thermosphere has a high proportion of molecules with high energy, it would not feel hot to a human in direct contact, because its density is too low to conduct a significant amount of energy to or from the skin.

This layer is completely cloudless and free of water vapor. However, non-hydrometeorological phenomena such as the aurora borealis and aurora australis are occasionally seen in the thermosphere. The International Space Station orbits in this layer, between 350 and 420 km (220 and 260 mi).

Mesosphere

The mesosphere is the third highest layer of Earth's atmosphere, occupying the region above the stratosphere and below the thermosphere. It extends from the stratopause at an altitude of about 50 km (31 mi; 160,000 ft) to the mesopause at 80–85 km (50–53 mi; 260,000–280,000 ft) above sea level.

Temperatures drop with increasing altitude to the mesopause that marks the top of this middle layer of the atmosphere. It is the coldest place on Earth and has an average temperature around −85 °C (−120 °F; 190 K).[18][19]

Just below the mesopause, the air is so cold that even the very scarce water vapor at this altitude can be sublimated into polar-mesospheric noctilucent clouds. These are the highest clouds in the atmosphere and may be visible to the naked eye if sunlight reflects off them about an hour or two after sunset or a similar length of time before sunrise. They are most readily visible when the Sun is around 4 to 16 degrees below the horizon. Lightning-induced discharges known as transient luminous events (TLEs) occasionally form in the mesosphere above tropospheric thunderclouds. The mesosphere is also the layer where most meteors burn up upon atmospheric entrance. It is too high above Earth to be accessible to jet-powered aircraft and balloons, and too low to permit orbital spacecraft. The mesosphere is mainly accessed by sounding rockets and rocket-powered aircraft.

Stratosphere

The stratosphere is the second-lowest layer of Earth's atmosphere. It lies above the troposphere and is separated from it by the tropopause. This layer extends from the top of the troposphere at roughly 12 km (7.5 mi; 39,000 ft) above Earth's surface to the stratopause at an altitude of about 50 to 55 km (31 to 34 mi; 164,000 to 180,000 ft).

The atmospheric pressure at the top of the stratosphere is roughly 1/1000 the pressure at sea level. It contains the ozone layer, which is the part of Earth's atmosphere that contains relatively high concentrations of that gas. The stratosphere defines a layer in which temperatures rise with increasing altitude. This rise in temperature is caused by the absorption of ultraviolet radiation (UV) radiation from the Sun by the ozone layer, which restricts turbulence and mixing. Although the temperature may be −60 °C (−76 °F; 210 K) at the tropopause, the top of the stratosphere is much warmer, and may be near 0 °C.[20]

The stratospheric temperature profile creates very stable atmospheric conditions, so the stratosphere lacks the weather-producing air turbulence that is so prevalent in the troposphere. Consequently, the stratosphere is almost completely free of clouds and other forms of weather. However, polar stratospheric or nacreous clouds are occasionally seen in the lower part of this layer of the atmosphere where the air is coldest. The stratosphere is the highest layer that can be accessed by jet-powered aircraft.

Troposphere

The troposphere is the lowest layer of Earth's atmosphere. It extends from Earth's surface to an average height of about 12 km (7.5 mi; 39,000 ft), although this altitude varies from about 9 km (5.6 mi; 30,000 ft) at the geographic poles to 17 km (11 mi; 56,000 ft) at the Equator,[16] with some variation due to weather. The troposphere is bounded above by the tropopause, a boundary marked in most places by a temperature inversion (i.e. a layer of relatively warm air above a colder one), and in others by a zone which is isothermal with height.[21][22]

Although variations do occur, the temperature usually declines with increasing altitude in the troposphere because the troposphere is mostly heated through energy transfer from the surface. Thus, the lowest part of the troposphere (i.e. Earth's surface) is typically the warmest section of the troposphere. This promotes vertical mixing (hence, the origin of its name in the Greek word τρόπος, tropos, meaning "turn"). The troposphere contains roughly 80% of the mass of Earth's atmosphere.[23] The troposphere is denser than all its overlying atmospheric layers because a larger atmospheric weight sits on top of the troposphere and causes it to be most severely compressed. Fifty percent of the total mass of the atmosphere is located in the lower 5.6 km (3.5 mi; 18,000 ft) of the troposphere.

Nearly all atmospheric water vapor or moisture is found in the troposphere, so it is the layer where most of Earth's weather takes place. It has basically all the weather-associated cloud genus types generated by active wind circulation, although very tall cumulonimbus thunder clouds can penetrate the tropopause from below and rise into the lower part of the stratosphere. Most conventional aviation activity takes place in the troposphere, and it is the only layer that can be accessed by propeller-driven aircraft.

Space Shuttle Endeavour orbiting in the thermosphere. Because of the angle of the photo, it appears to straddle the stratosphere and mesosphere that actually lie more than 250 km (160 mi) below. The orange layer is the troposphere, which gives way to the whitish stratosphere and then the blue mesosphere.[24]

Other layers

Within the five principal layers above, that are largely determined by temperature, several secondary layers may be distinguished by other properties:

  • The ozone layer is contained within the stratosphere. In this layer ozone concentrations are about 2 to 8 parts per million, which is much higher than in the lower atmosphere but still very small compared to the main components of the atmosphere. It is mainly located in the lower portion of the stratosphere from about 15–35 km (9.3–21.7 mi; 49,000–115,000 ft), though the thickness varies seasonally and geographically. About 90% of the ozone in Earth's atmosphere is contained in the stratosphere.
  • The ionosphere is a region of the atmosphere that is ionized by solar radiation. It is responsible for auroras. During daytime hours, it stretches from 50 to 1,000 km (31 to 621 mi; 160,000 to 3,280,000 ft) and includes the mesosphere, thermosphere, and parts of the exosphere. However, ionization in the mesosphere largely ceases during the night, so auroras are normally seen only in the thermosphere and lower exosphere. The ionosphere forms the inner edge of the magnetosphere. It has practical importance because it influences, for example, radio propagation on Earth.
  • The homosphere and heterosphere are defined by whether the atmospheric gases are well mixed. The surface-based homosphere includes the troposphere, stratosphere, mesosphere, and the lowest part of the thermosphere, where the chemical composition of the atmosphere does not depend on molecular weight because the gases are mixed by turbulence.[25] This relatively homogeneous layer ends at the turbopause found at about 100 km (62 mi; 330,000 ft), the very edge of space itself as accepted by the FAI, which places it about 20 km (12 mi; 66,000 ft) above the mesopause.
Above this altitude lies the heterosphere, which includes the exosphere and most of the thermosphere. Here, the chemical composition varies with altitude. This is because the distance that particles can move without colliding with one another is large compared with the size of motions that cause mixing. This allows the gases to stratify by molecular weight, with the heavier ones, such as oxygen and nitrogen, present only near the bottom of the heterosphere. The upper part of the heterosphere is composed almost completely of hydrogen, the lightest element.[clarification needed]
  • The planetary boundary layer is the part of the troposphere that is closest to Earth's surface and is directly affected by it, mainly through turbulent diffusion. During the day the planetary boundary layer usually is well-mixed, whereas at night it becomes stably stratified with weak or intermittent mixing. The depth of the planetary boundary layer ranges from as little as about 100 metres (330 ft) on clear, calm nights to 3,000 m (9,800 ft) or more during the afternoon in dry regions.

The average temperature of the atmosphere at Earth's surface is 14 °C (57 °F; 287 K)[26] or 15 °C (59 °F; 288 K),[27] depending on the reference.[28][29][30]

Physical properties

Comparison of the 1962 US Standard Atmosphere graph of geometric altitude against air density, pressure, the speed of sound and temperature with approximate altitudes of various objects.[31]

Pressure and thickness

The average atmospheric pressure at sea level is defined by the International Standard Atmosphere as 101325 pascals (760.00 Torr; 14.6959 psi; 760.00 mmHg). This is sometimes referred to as a unit of standard atmospheres (atm). Total atmospheric mass is 5.1480×1018 kg (1.135×1019 lb),[32] about 2.5% less than would be inferred from the average sea level pressure and Earth's area of 51007.2 megahectares, this portion being displaced by Earth's mountainous terrain. Atmospheric pressure is the total weight of the air above unit area at the point where the pressure is measured. Thus air pressure varies with location and weather.

If the entire mass of the atmosphere had a uniform density equal to sea level density (about 1.2 kg per m3) from sea level upwards, it would terminate abruptly at an altitude of 8.50 km (27,900 ft). It actually decreases exponentially with altitude, dropping by half every 5.6 km (18,000 ft) or by a factor of 1/e every 7.64 km (25,100 ft), the average scale height of the atmosphere below 70 km (43 mi; 230,000 ft). However, the atmosphere is more accurately modeled with a customized equation for each layer that takes gradients of temperature, molecular composition, solar radiation and gravity into account.

In summary, the mass of Earth's atmosphere is distributed approximately as follows:[33]

  • 50% is below 5.6 km (18,000 ft).
  • 90% is below 16 km (52,000 ft).
  • 99.99997% is below 100 km (62 mi; 330,000 ft), the Kármán line. By international convention, this marks the beginning of space where human travelers are considered astronauts.

By comparison, the summit of Mt. Everest is at 8,848 m (29,029 ft); commercial airliners typically cruise between 10 and 13 km (33,000 and 43,000 ft) where the thinner air improves fuel economy; weather balloons reach 30.4 km (100,000 ft) and above; and the highest X-15 flight in 1963 reached 108.0 km (354,300 ft).

Even above the Kármán line, significant atmospheric effects such as auroras still occur. Meteors begin to glow in this region, though the larger ones may not burn up until they penetrate more deeply. The various layers of Earth's ionosphere, important to HF radio propagation, begin below 100 km and extend beyond 500 km. By comparison, the International Space Station and Space Shuttle typically orbit at 350–400 km, within the F-layer of the ionosphere where they encounter enough atmospheric drag to require reboosts every few months. Depending on solar activity, satellites can experience noticeable atmospheric drag at altitudes as high as 700–800 km.

Temperature and speed of sound

Temperature trends in two thick layers of the atmosphere as measured between January 1979 and December 2005 by Microwave Sounding Units and Advanced Microwave Sounding Units on NOAA weather satellites. The instruments record microwaves emitted from oxygen molecules in the atmosphere. Source:[34]

The division of the atmosphere into layers mostly by reference to temperature is discussed above. Temperature decreases with altitude starting at sea level, but variations in this trend begin above 11 km, where the temperature stabilizes through a large vertical distance through the rest of the troposphere. In the stratosphere, starting above about 20 km, the temperature increases with height, due to heating within the ozone layer caused by capture of significant ultraviolet radiation from the Sun by the dioxygen and ozone gas in this region. Still another region of increasing temperature with altitude occurs at very high altitudes, in the aptly-named thermosphere above 90 km.

Because in an ideal gas of constant composition the speed of sound depends only on temperature and not on the gas pressure or density, the speed of sound in the atmosphere with altitude takes on the form of the complicated temperature profile (see illustration to the right), and does not mirror altitudinal changes in density or pressure.

Density and mass

Temperature and mass density against altitude from the NRLMSISE-00 standard atmosphere model (the eight dotted lines in each "decade" are at the eight cubes 8, 27, 64, ..., 729)

The density of air at sea level is about 1.2 kg/m3 (1.2 g/L, 0.0012 g/cm3). Density is not measured directly but is calculated from measurements of temperature, pressure and humidity using the equation of state for air (a form of the ideal gas law). Atmospheric density decreases as the altitude increases. This variation can be approximately modeled using the barometric formula. More sophisticated models are used to predict orbital decay of satellites.

The average mass of the atmosphere is about 5 quadrillion (5×1015) tonnes or 1/1,200,000 the mass of Earth. According to the American National Center for Atmospheric Research, "The total mean mass of the atmosphere is 5.1480×1018 kg with an annual range due to water vapor of 1.2 or 1.5×1015 kg, depending on whether surface pressure or water vapor data are used; somewhat smaller than the previous estimate. The mean mass of water vapor is estimated as 1.27×1016 kg and the dry air mass as 5.1352 ±0.0003×1018 kg."

Optical properties

Solar radiation (or sunlight) is the energy Earth receives from the Sun. Earth also emits radiation back into space, but at longer wavelengths that we cannot see. Part of the incoming and emitted radiation is absorbed or reflected by the atmosphere. In May 2017, glints of light, seen as twinkling from an orbiting satellite a million miles away, were found to be reflected light from ice crystals in the atmosphere.[35][36]

Scattering

When light passes through Earth's atmosphere, photons interact with it through scattering. If the light does not interact with the atmosphere, it is called direct radiation and is what you see if you were to look directly at the Sun. Indirect radiation is light that has been scattered in the atmosphere. For example, on an overcast day when you cannot see your shadow there is no direct radiation reaching you, it has all been scattered. As another example, due to a phenomenon called Rayleigh scattering, shorter (blue) wavelengths scatter more easily than longer (red) wavelengths. This is why the sky looks blue; you are seeing scattered blue light. This is also why sunsets are red. Because the Sun is close to the horizon, the Sun's rays pass through more atmosphere than normal to reach your eye. Much of the blue light has been scattered out, leaving the red light in a sunset.

Absorption

Rough plot of Earth's atmospheric transmittance (or opacity) to various wavelengths of electromagnetic radiation, including visible light.

Different molecules absorb different wavelengths of radiation. For example, O2 and O3 absorb almost all wavelengths shorter than 300 nanometers. Water (H2O) absorbs many wavelengths above 700 nm. When a molecule absorbs a photon, it increases the energy of the molecule. This heats the atmosphere, but the atmosphere also cools by emitting radiation, as discussed below.

The combined absorption spectra of the gases in the atmosphere leave "windows" of low opacity, allowing the transmission of only certain bands of light. The optical window runs from around 300 nm (ultraviolet-C) up into the range humans can see, the visible spectrum (commonly called light), at roughly 400–700 nm and continues to the infrared to around 1100 nm. There are also infrared and radio windows that transmit some infrared and radio waves at longer wavelengths. For example, the radio window runs from about one centimeter to about eleven-meter waves.

Emission

Emission is the opposite of absorption, it is when an object emits radiation. Objects tend to emit amounts and wavelengths of radiation depending on their "black body" emission curves, therefore hotter objects tend to emit more radiation, with shorter wavelengths. Colder objects emit less radiation, with longer wavelengths. For example, the Sun is approximately 6,000 K (5,730 °C; 10,340 °F), its radiation peaks near 500 nm, and is visible to the human eye. Earth is approximately 290 K (17 °C; 62 °F), so its radiation peaks near 10,000 nm, and is much too long to be visible to humans.

Because of its temperature, the atmosphere emits infrared radiation. For example, on clear nights Earth's surface cools down faster than on cloudy nights. This is because clouds (H2O) are strong absorbers and emitters of infrared radiation. This is also why it becomes colder at night at higher elevations.

The greenhouse effect is directly related to this absorption and emission effect. Some gases in the atmosphere absorb and emit infrared radiation, but do not interact with sunlight in the visible spectrum. Common examples of these are CO
2
and H2O.

Refractive index

The refractive index of air is close to, but just greater than 1. Systematic variations in refractive index can lead to the bending of light rays over long optical paths. One example is that, under some circumstances, observers onboard ships can see other vessels just over the horizon because light is refracted in the same direction as the curvature of Earth's surface.

The refractive index of air depends on temperature,[37] giving rise to refraction effects when the temperature gradient is large. An example of such effects is the mirage.

Circulation

An idealised view of three pairs of large circulation cells.

Atmospheric circulation is the large-scale movement of air through the troposphere, and the means (with ocean circulation) by which heat is distributed around Earth. The large-scale structure of the atmospheric circulation varies from year to year, but the basic structure remains fairly constant because it is determined by Earth's rotation rate and the difference in solar radiation between the equator and poles.

Evolution of Earth's atmosphere

Earliest atmosphere

The first atmosphere consisted of gases in the solar nebula, primarily hydrogen. There were probably simple hydrides such as those now found in the gas giants (Jupiter and Saturn), notably water vapor, methane and ammonia.[38]

Second atmosphere

Outgassing from volcanism, supplemented by gases produced during the late heavy bombardment of Earth by huge asteroids, produced the next atmosphere, consisting largely of nitrogen plus carbon dioxide and inert gases.[38] A major part of carbon-dioxide emissions dissolved in water and reacted with metals such as calcium and magnesium during weathering of crustal rocks to form carbonates that were deposited as sediments. Water-related sediments have been found that date from as early as 3.8 billion years ago.[39]

About 3.4 billion years ago, nitrogen formed the major part of the then stable "second atmosphere". The influence of life has to be taken into account rather soon in the history of the atmosphere, because hints of early life-forms appear as early as 3.5 billion years ago.[40] How Earth at that time maintained a climate warm enough for liquid water and life, if the early Sun put out 30% lower solar radiance than today, is a puzzle known as the "faint young Sun paradox".

The geological record however shows a continuous relatively warm surface during the complete early temperature record of Earth – with the exception of one cold glacial phase about 2.4 billion years ago. In the late Archean Eon an oxygen-containing atmosphere began to develop, apparently produced by photosynthesizing cyanobacteria (see Great Oxygenation Event), which have been found as stromatolite fossils from 2.7 billion years ago. The early basic carbon isotopy (isotope ratio proportions) strongly suggests conditions similar to the current, and that the fundamental features of the carbon cycle became established as early as 4 billion years ago.

Ancient sediments in the Gabon dating from between about 2,150 and 2,080 million years ago provide a record of Earth's dynamic oxygenation evolution. These fluctuations in oxygenation were likely driven by the Lomagundi carbon isotope excursion.[41]

Third atmosphere

Oxygen content of the atmosphere over the last billion years[42][43]

The constant re-arrangement of continents by plate tectonics influences the long-term evolution of the atmosphere by transferring carbon dioxide to and from large continental carbonate stores. Free oxygen did not exist in the atmosphere until about 2.4 billion years ago during the Great Oxygenation Event and its appearance is indicated by the end of the banded iron formations.

Before this time, any oxygen produced by photosynthesis was consumed by oxidation of reduced materials, notably iron. Molecules of free oxygen did not start to accumulate in the atmosphere until the rate of production of oxygen began to exceed the availability of reducing materials that removed oxygen. This point signifies a shift from a reducing atmosphere to an oxidizing atmosphere. O2 showed major variations until reaching a steady state of more than 15% by the end of the Precambrian.[44] The following time span from 541 million years ago to the present day is the Phanerozoic Eon, during the earliest period of which, the Cambrian, oxygen-requiring metazoan life forms began to appear.

The amount of oxygen in the atmosphere has fluctuated over the last 600 million years, reaching a peak of about 30% around 280 million years ago, significantly higher than today's 21%. Two main processes govern changes in the atmosphere: Plants using carbon dioxide from the atmosphere and releasing oxygen, and then plants using some oxygen at night by the process of photorespiration with the remainder of the oxygen being used to breakdown adjacent organic material. Breakdown of pyrite and volcanic eruptions release sulfur into the atmosphere, which oxidizes and hence reduces the amount of oxygen in the atmosphere. However, volcanic eruptions also release carbon dioxide, which plants can convert to oxygen. The exact cause of the variation of the amount of oxygen in the atmosphere is not known. Periods with much oxygen in the atmosphere are associated with rapid development of animals. Today's atmosphere contains 21% oxygen, which is great enough for this rapid development of animals.[45]

Air pollution

Air pollution is the introduction into the atmosphere of chemicals, particulate matter or biological materials that cause harm or discomfort to organisms.[46] Stratospheric ozone depletion is caused by air pollution, chiefly from chlorofluorocarbons and other ozone-depleting substances.

The scientific consensus is that the anthropogenic greenhouse gases currently accumulating in the atmosphere are the main cause of global warming.[47]

Animation shows the buildup of tropospheric CO
2
in the Northern Hemisphere with a maximum around May. The maximum in the vegetation cycle follows in the late summer. Following the peak in vegetation, the drawdown of atmospheric CO
2
due to photosynthesis is apparent, particularly over the boreal forests.

Images from space

On October 19, 2015 NASA started a website containing daily images of the full sunlit side of Earth on http://epic.gsfc.nasa.gov/. The images are taken from the Deep Space Climate Observatory (DSCOVR) and show Earth as it rotates during a day.[48]

See also

References

  1. ^ "Gateway to Astonaut Photos of Earth". NASA. Retrieved 2018-01-29.
  2. ^ a b "Trends in Atmospheric Carbon Dioxide", Global Greenhouse Gas Reference Network, NOAA, 2019, retrieved 2019-05-31
  3. ^ a b "Trends in Atmospheric Methane", Global Greenhouse Gas Reference Network, NOAA, 2019, retrieved 2019-05-31
  4. ^ a b Haynes, H. M., ed. (2016–2017), CRC Handbook of Chemistry and Physics (97th ed.), CRC Press, p. 14-3, ISBN 978-1-4987-5428-6, which cites Allen's Astrophysical Quantities but includes only ten of its largest constituents.
  5. ^ Cox, Arthur N., ed. (2000), Allen's Astrophysical Quantities (Fourth ed.), AIP Press, pp. 258–259, ISBN 0-387-98746-0, which rounds N2 and O2 to four significant digits without affecting the total because 0.004% was removed from N2 and added to O2. It includes 20 constituents.
  6. ^ National Aeronautics and Space Administration (1976), U.S. Standard Atmosphere, 1976 (PDF), p. 3
  7. ^ Allen, C. W. (1976), Astrophysical Quantities (Third ed.), Athlone Press, p. 119, ISBN 0-485-11150-0
  8. ^ a b Two recent reliable sources cited here have total atmospheric compositions, including trace molecules, that exceed 100%. They are Allen's Astrophysical Quantities[5] (2000, 100.001241343%) and CRC Handbook of Chemistry and Physics[4] (2016–2017, 100.004667%), which cites Allen's Astrophysical Quantities. Both are used as references in this article. Both exceed 100% because their CO2 values were increased to 345 ppmv, without changing their other constituents to compensate. This is made worse by the April 2019 CO
    2
    value, which is 413.32 ppmv.[2] Although minor, the January 2019 value for CH
    4
    is 1866.1 ppbv (parts per billion).[3] Two older reliable sources have dry atmospheric compositions, including trace molecules, that total less than 100%: U.S. Standard Atmosphere, 1976[6] (99.9997147%); and Astrophysical Quantities[7] (1976, 99.9999357%).
  9. ^ Lide, David R. Handbook of Chemistry and Physics. Boca Raton, FL: CRC, 1996: 14–17
  10. ^ M. Vázquez; A. Hanslmeier (2006). Ultraviolet Radiation in the Solar System. Astrophysics and Space Science Library. 331. Springer Science & Business Media. p. 17. Bibcode:2005ASSL..331.....V. doi:10.1007/978-1-4020-3730-6 (inactive 2019-09-25). ISBN 978-1-4020-3730-6.
  11. ^ a b Wallace, John M. and Peter V. Hobbs. Atmospheric Science: An Introductory Survey. Elsevier. Second Edition, 2006. ISBN 978-0-12-732951-2. Chapter 1
  12. ^ "Trace Gases". Ace.mmu.ac.uk. Archived from the original on 9 October 2010. Retrieved 2010-10-16.
  13. ^ "Air Composition". The Engineering ToolBox. Retrieved 2017-07-04. The composition of air is unchanged until elevation of approximately 10.000 m
  14. ^ Zell, Holly (2015-03-02). "Earth's Upper Atmosphere". NASA. Retrieved 2017-02-20.
  15. ^ a b Randy Russell (2008). "The Thermosphere". Retrieved 2013-10-18.
  16. ^ a b "The height of the tropopause". Das.uwyo.edu. Retrieved 2012-04-18.
  17. ^ Ahrens, C. Donald. Essentials of Meteorology. Published by Thomson Brooks/Cole, 2005.
  18. ^ States, Robert J.; Gardner, Chester S. (January 2000). "Thermal Structure of the Mesopause Region (80–105 km) at 40°N Latitude. Part I: Seasonal Variations". Journal of the Atmospheric Sciences. 57 (1): 66–77. Bibcode:2000JAtS...57...66S. doi:10.1175/1520-0469(2000)057<0066:TSOTMR>2.0.CO;2.
  19. ^ Joe Buchdahl. "Atmosphere, Climate & Environment Information Programme". Ace.mmu.ac.uk. Archived from the original on 2010-07-01. Retrieved 2012-04-18.
  20. ^ Journal of the Atmospheric Sciences (1993). "stratopause". Retrieved 2013-10-18.
  21. ^ Barry, R.G.; Chorley, R.J. (1971). Atmosphere, Weather and Climate. London: Menthuen & Co Ltd. p. 65.
  22. ^ Tyson, P.D.; Preston-Whyte, R.A. (2013). The Weather and Climate of Southern Africa (2nd ed.). Oxford: Oxford University Press. p. 4.
  23. ^ "Troposphere". Concise Encyclopedia of Science & Technology. McGraw-Hill. 1984. It contains about four-fifths of the mass of the whole atmosphere.
  24. ^ "ISS022-E-062672 caption". NASA. Retrieved 21 September 2012.
  25. ^ "homosphere – AMS Glossary". Amsglossary.allenpress.com. Archived from the original on 14 September 2010. Retrieved 2010-10-16.
  26. ^ "Earth's Atmosphere". Archived from the original on 2009-06-14.
  27. ^ "NASA – Earth Fact Sheet". Nssdc.gsfc.nasa.gov. Archived from the original on 30 October 2010. Retrieved 2010-10-16.
  28. ^ "Global Surface Temperature Anomalies". Archived from the original on 2009-03-03.
  29. ^ "Earth's Radiation Balance and Oceanic Heat Fluxes". Archived from the original on 2005-03-03.
  30. ^ "Coupled Model Intercomparison Project Control Run" (PDF). Archived from the original (PDF) on 2008-05-28.
  31. ^ Geometric altitude vs. temperature, pressure, density, and the speed of sound derived from the 1962 U.S. Standard Atmosphere.
  32. ^ Trenberth, Kevin E.; Smith, Lesley (1970-01-01). "The Mass of the Atmosphere: A Constraint on Global Analyses". Journal of Climate. 18 (6): 864. Bibcode:2005JCli...18..864T. doi:10.1175/JCLI-3299.1.
  33. ^ Lutgens, Frederick K. and Edward J. Tarbuck (1995) The Atmosphere, Prentice Hall, 6th ed., pp. 14–17, ISBN 0-13-350612-6
  34. ^ "Atmospheric Temperature Trends, 1979–2005 : Image of the Day". Earthobservatory.nasa.gov. 2000-01-01. Retrieved 2014-06-10.
  35. ^ St. Fleur, Nicholas (19 May 2017). "Spotting Mysterious Twinkles on Earth From a Million Miles Away". The New York Times. Retrieved 20 May 2017.
  36. ^ Marshak, Alexander; Várnai, Tamás; Kostinski, Alexander (15 May 2017). "Terrestrial glint seen from deep space: oriented ice crystals detected from the Lagrangian point". Geophysical Research Letters. 44 (10): 5197. Bibcode:2017GeoRL..44.5197M. doi:10.1002/2017GL073248.
  37. ^ Edlén, Bengt (1966). "The refractive index of air". Metrologia. 2 (2): 71–80. Bibcode:1966Metro...2...71E. doi:10.1088/0026-1394/2/2/002.
  38. ^ a b Zahnle, K.; Schaefer, L.; Fegley, B. (2010). "Earth's Earliest Atmospheres". Cold Spring Harbor Perspectives in Biology. 2 (10): a004895. doi:10.1101/cshperspect.a004895. PMC 2944365. PMID 20573713.
  39. ^ B. Windley: The Evolving Continents. Wiley Press, New York 1984
  40. ^ J. Schopf: Earth's Earliest Biosphere: Its Origin and Evolution. Princeton University Press, Princeton, N.J., 1983
  41. ^ Timothy W. Lyons, Christopher T. Reinhard & Noah J. Planavsky (2014). "Atmospheric oxygenation three billion years ago". Nature. 506 (7488): 307–15. Bibcode:2014Natur.506..307L. doi:10.1038/nature13068. PMID 24553238.
  42. ^ Martin, Daniel; McKenna, Helen; Livina, Valerie (2016). "The human physiological impact of global deoxygenation". The Journal of Physiological Sciences. 67 (1): 97–106. doi:10.1007/s12576-016-0501-0. ISSN 1880-6546. PMC 5138252. PMID 27848144.
  43. ^ http://www.nap.edu/openbook/0309100615/gifmid/30.gif
  44. ^ Christopher R. Scotese, Back to Earth History : Summary Chart for the Precambrian, Paleomar Project
  45. ^ Peter Ward:[1] Out of Thin Air: Dinosaurs, Birds, and Earth's Ancient Atmosphere
  46. ^ Starting from [2] Pollution – Definition from the Merriam-Webster Online Dictionary
  47. ^ "Summary for Policymakers" (PDF). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change. 5 February 2007.
  48. ^ Northon, Karen (2015-10-19). "Daily Views of Earth Available on New NASA Website". NASA. Retrieved 2015-10-21.

External links