تیتانیم

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به ناوبری پرش به جستجو
فارسیEnglish
اسکاندیمتیتانیموانادیم
-

Ti

Zr
ظاهر
نقرهy grey-white metallic
ویژگی‌های کلی
نام، نماد، عدد تیتانیم، Ti، 22
تلفظ به انگلیسی ‎/tˈtniəm/‎
tye-TAY-nee-əm
نام گروهی برای عناصر مشابه فلزات واسطه
گروه، دوره، بلوک ۴، ۴، d
جرم اتمی استاندارد 47.867 گرم بر مول
آرایش الکترونی [Ar] 3d2 4s2
الکترون به لایه 2, 8, 10, 2
ویژگی‌های فیزیکی
حالت جامد
چگالی (نزدیک به دمای اتاق) 4.506 g·cm−۳
چگالی مایع در نقطه ذوب 4.11 g·cm−۳
نقطه ذوب 1941 K،‎ 1668 °C،‎ 3034 °F
نقطه جوش 3560 K،‎ 3287 °C،‎ 5949 °F
گرمای هم‌جوشی 14.15 کیلوژول بر مول
گرمای تبخیر 425 کیلوژول بر مول
ظرفیت گرمایی 25.060 کیلوژول بر مول
فشار بخار
فشار (پاسکال) ۱ ۱۰ ۱۰۰ ۱k ۱۰k ۱۰۰k
دما (کلوین) 1982 2171 (2403) 2692 3064 3558
ویژگی‌های اتمی
وضعیت اکسید شدن 4, 3, 2, 1[۱]
(آمفوتر oxide)
الکترونگاتیوی 1.54 (مقیاس پاولینگ)
انرژی‌های یونش
(more)
نخستین: 658.8 کیلوژول بر مول
دومین: 1309.8 کیلوژول بر مول
سومین: 2652.5 کیلوژول بر مول
شعاع اتمی 147 pm
شعاع کووالانسی 160±8 pm
متفرقه
ساختار کریستالی hexagonal
مغناطیس پارامغناطیس
مقاومت ویژه الکتریکی (20 °C) 420 nΩ·m
رسانایی گرمایی (300 K) 21.9 W·m−1·K−1
انبساط گرمایی (25 °C) 8.6 µm·m−1·K−1
سرعت صوت (سیم نازک) (دمای اتاق) 5,090 m·s−1
مدول یانگ 116 GPa
مدول برشی 44 GPa
مدول حجمی 110 GPa
نسبت پواسون 0.32
سختی موس 6.0
سختی ویکر 970 MPa
سختی برینل 716 MPa
عدد کاس 7440-32-6
پایدارترین ایزوتوپ‌ها
مقاله اصلی ایزوتوپ‌های تیتانیم
ایزوتوپ NA نیمه‌عمر DM DE (MeV) DP
44Ti syn 63 y ε - 44Sc
γ 0.07D, 0.08D -
46Ti 8.0% 46Ti ایزوتوپ پایدار است که 24 نوترون دارد
47Ti 7.3% 47Ti ایزوتوپ پایدار است که 25 نوترون دارد
48Ti 73.8% 48Ti ایزوتوپ پایدار است که 26 نوترون دارد
49Ti 5.5% 49Ti ایزوتوپ پایدار است که 27 نوترون دارد
50Ti 5.4% 50Ti ایزوتوپ پایدار است که 28 نوترون دارد

تیتانیم یک عنصر شیمیایی با نماد Ti و عدد اتمی ۲۲ است. تیتانیم یک فلز واسطه ی براق نقره‌ای رنگ است، چگالی کم و مقاومت بالایی دارد. این فلز به شدت در برابر خوردگی در آب دریا، تیزآب سلطانی و کلر مقاوم است.

تیتانیم نخستین بار در کورنوال بریتانیا از سوی ویلیام گرگور در سال ۱۷۰۱ شناسایی شد؛ نام این عنصر از سوی مارتین هاینریش کلاپروت از روی تیتان از اساطیر یونان انتخاب شد. این عنصر در بسیاری کانی‌ها به ویژه روتیل و ایلمنیت وجود دارد. این کانی‌ها در پوستهٔ زمین و سنگ کره پراکنده‌اند؛ علاوه بر این تیتانیم تقریباً در همهٔ موجودات زنده، سنگ‌ها، آب بدن و خاک‌ها حضور دارد.[۲] با کمک هر دو فرایند کرال[۳] و فرایند هانتر می‌توان تیتانیم را از سنگ معدنش بدست آورد. فراوان‌ترین ترکیب تیتانیم، دی اکسید تیتانیم است که یک فوتوکاتالیست معروف است و از آن در تولید رنگدانه‌های سفید استفاده می‌شود.[۴] از دیگر ترکیبات تیانیم می‌توان به تتراکلرید تیتانیم یا (‎TiCl۴ ‎) اشاره کرد که از آن در تولید مواد دودزا و فروکافت بهره برده می‌شود. همچنین کلرید تیتانیم (III) یا (‎TiCl۳‎) هم به عنوان فروکافت در تولید پلی‌پروپیلن مورد استفاده قرار می‌گیرد.[۲]

می‌توان تیتانیم را با آهن، آلومینیم، وانادیم و مولیبدن، آلیاژ کرد تا ماده‌ای سخت‌تر و سبک‌تر بدست آورد که در ساخت سامانه‌های هوایی مانند موتور جت، موشک و فضاپیما، کاربردهای نظامی و فرایندهای صنعتی (شیمیایی و شیمیایی-نفتی، کارخانه‌های نمک‌زدایی، کاغذ و …) خودروسازی، کشاورزی و ساخت اندام‌های مصنوعی، درون‌کاشت‌های استخوانی، ابزارهای دندان پزشکی و ریشه درمانی، برسازی درون‌کاشت دندانی، کالاهای ورزشی، گوهرسازی، گوشی همراه و … بکار برده شود.[۲]

مهم‌ترین ویژگی‌های این فلز عبارتند از: مقاومت در برابر خوردگی و داشتن بالاترین نسبت مقاومت به چگالی در برابر دیگر عناصر فلزی.[۵] تیتانیم در هنگامی که هنوز با فلز دیگری آلیاژ نشده، مقاومتی برابر با فولاد و چگالی کمتر از آن دارد.[۶] دو دگرشکلی[۷] و پنج ایزوتوپ طبیعی از ۴۶Ti تا ۵۰Ti برای این عنصر وجود دارد که ۴۸Ti با فراوانی طبیعی ۷۳٫۸٪ از سایرین فراوان‌تر است.[۸] با اینکه تیتانیم و زیرکونیم تعداد الکترون‌های ظرفیت برابر دارند و در یک گروه جدول تناوبی قرار دارند با این حال در بسیاری ویژگی‌های شیمیایی و فیزیکی متفاوت‌اند.

تیتانیوم عمده‌ترین مصرف تیتانیوم در صنایع به دو صورت فلزی و دی‌اکسید تیتانیوم می‌باشد. مصرف فلز آن به دلیل مشکلات تهیه و خالص‌سازی آن مصرف چندانی ندارد، اما در عوض مصرف اکسید آن به صورت TiO2 در صنعت کاربرد بسیار گسترده‌ای دارد؛ به‌طوری‌که ۹۰ درصد از صنایع اولیه، مصرف‌کننده اکسید تیتانیوم می‌باشد. امروزه فلز تیتانیوم به عنوان یک فلز استراتژیک در موتور و ساختمان داخلی هواپیما، تجهیزات حمل و نقل صنایع شیمیایی، واحدهای مولد برق، صنایع آلیاژی، ساخت زیر دریایی‌ها، کارخانه‌های ساخت مواد شیمیایی، دستگاه‌های خنک‌کننده نیروگاه‌های اتمی و حرارتی و ده‌ها مورد دیگر کاربرد دارد. مصرف عمده دی‌اکسید تیتانیوم در صنایع رنگ‌سازی به عنوان رنگدانه می‌باشد و همچنین این ماده در صنایع سرامیک، پلاستیک، کاغذ و الکترونیک کاربرد دارد. مصرف این ماده در کشورهای پیشرفته تقریباً ۱۰ برابر کشورهای در حال توسعه می‌باشد. مصارف فلز تیتانیوم فلز تیتانیوم در محیط‌های فرسایشی بسیار مقاوم می‌باشد. تیتانیوم خالص یا آلیاژهای آن با ناخالصی کم در کارخانه‌های سولفور زدایی مشتقات نفتی، در تجهیزات مربوط به چاه‌های نفت و در اتصالات مورد نیاز و همچنین در موارد پزشکی مورد استفاده قرار می‌گیرد. از طرف ورق‌های فولادی با پوشش تیتانیوم هم اکنون در جهان تولید شده که بعلت خاصیت ضد فرسایشی کاربرد وسیعی در صنعت نفت و در مراحل سولفور زدایی مشتقات نفتی در پالایشگاه‌ها پیدا کرده‌اند. دیگر مصرف عمده این فلز در صنعت هواپیماسازی است. سایر مصارف عمده تیتانیوم را می‌توان به صورت زیر خلاصه نمود: ساخت کاربید تیتانیم، سرامیک، فرایند شیمیایی و الکتروشیمیایی، ساخت ورقه‌های فلزی و بازیافت آنها، صنعت نفت، سولفور زدایی گاز مایع، نمک زدایی آب (تصفیه آب)، ساخت پمپ‌های مخصوص مکش آب از دریا، ساختمان سازی، پزشکی (قطعات تعویضی در بدن، دندانها)، صنایع اتومبیل سازی، ساخت انباره‌های مخصوص، جهت نگهداری از موادی نظیر ضایعات اتمی و غیره، الیاف تقویت‌کننده جهت استفاده در ترکیبات فلزی، رباط‌های صنعتی، جواهر سازی، ساخت انواع آلیاژها، ذخیره‌سازی انرژی، بالا بردن قابلیت هدایت حرارتی آلیاژها، پرکننده، سنگ‌های جواهرات مصنوعی و نرم‌افزار. ایلمنیت و اکسیدهای تیتان برای تهیه تیتانیم در آلیاژهای مهم و راهبردی استفاده می‌گردد. آلیاژهای تیتانیم در بدنه هواپیماهای جنگی، سفینه‌های فضایی، موشک‌ها، موتور هواپیماها، ادوات رزمی، توربین‌های گازی، دوچرخه و کامپیوترهای Laptop مورد استفاده قرار می‌گیرند. تیتانیوم اغلب با آلومینیوم، آهن، منگنز، مولیبدن و فلزات دیگر تشکیل آلیاژ می‌دهد. ایلمنیت همچنین در تهیه اکسید تیتانیم که در صنایع رنگ سازی، کاغذسازی و پلاستیک به عنوان ماده رنگی، براق کردن سطح فلزات، لعاب، لاستیک سازی، شیشه، فایبرگلاس، سرامیک، الکتروسرامیک و . . . مصرف می‌شود، کاربرد دارد. تنها در حدود ۵٪ تولید سالانه جهانی تیتانیوم صرف تولید فلز تیتانیوم شده و ۹۵٪ باقی‌مانده در تولید ماده رنگ دی‌اکسید تیتانیوم مورد استفاده قرار می‌گیرد. این ماده دارای دو شکل آلوتروپی روتیل و آناتاز است که به واسطه رنگ سفید، ضریب شکست بالا (۴۹/۲–۹۰/۲)، درخشندگی عالی، بی‌اثر (خنثی بودن) و مقاومت سایشی و حرارتی بالای آن، درجه دیرگدازی بالا و توان زیاد در توزیع و انتشار یکنواخت در ترکیبات دیگر به عنوان عمده‌ترین ماده اولیه رنگ سفید در صنایع رنگ سازی، کاغذسازی، پلاستیک، لاستیک و … شناخته می‌شود.

مصارف دارویی: پودر دی‌اکسید تیتان (روتیل) که از آن پراکسید تیتان، سالسیلات تیتان و تانات تیتان تهیه می‌کنند، عملی همانند اکسید روی بر روی پوست بدن ایجاد می‌کند. دی اکسید تیتان برای التیام سوزش‌های پوستی مورد استفاده قرار می‌گیرد و منعکس‌کننده اشعه ماوراء بنفش خورشید است و بدین جهت در ساختن کرم‌ها و لوسیون‌های ضد آفتاب (ضد سوختگی) استفاده می‌شود. از پودر دی‌اکسید تیتان در ساخت قاب کپسول‌های دارویی و پوشش قرص‌ها نیز استفاده می‌شود.

مصارف آرایشی: دی اکسید تیتان در ساخت وسایل آرایشی به کار می‌رود. مصرف سالیانه عنصر تیتانیوم و ترکیبات آن، ۱۰۵ تا ۱۰۶ تن می‌باشد. تقریباً ۹۵٪ تیتان به فرم اکسید تیتان TiO4 مصرف می‌شود و یک رنگدانه دایمی و به شدت سفید رنگ با قدرت پوششی خوب در رنگ‌ها، کاغذ و پلاستیک است. رنگ‌ها با وجود اکسید تیتانیوم یک بازتابنده بسیار عالی اشعه مادون قرمز را می‌سازد و بنابراین به‌طور گسترده‌ای توسط اختر شناسان مورد استفاده قرار می‌گیرد. از آنجایی که این فلز مقاومت بالا، وزن سبک، مقاومت غیرعادی در برابر خوردگی و توانایی ایستادگی در برابر دماهای بسیار بالا می‌باشد. بخاطر مقاومت بالا در آب دریا، این فلز برای ساخت شفت‌ها (محور) ملخ هواپیما و پروانه کشتی استفاده می‌شود.

دی اکسید تیتان دی اکسید تیتان در تهیه الیاف مصنوعی نیز استفاده می‌شود. پودر دی‌اکسید تیتان خالص به عنوان رنگدانه در فراورده‌های غذایی کاربرد دارد. دی اکسید تیتانیوم در کرم‌های (لوسیون‌ها) ضد آفتاب استفاده می‌شود که ناشی از توانایی آن در حفاظت پوست می‌باشد. دی‌اکسید تیتانیوم یک رنگدانه برتر سفید رنگ با ضریب شکست ۵۵/۲–۸/۲ است، مقاومت، درخشندگی، پایداری شیمیایی و مقاومت در برابر اشعهٔ ماورای بنفش، غیرسمی بودن و پایداری در یک محدوده‌ای دمایی وسیع و قیمت مناسب آن سبب شده تا از آن در کاغذ، رنگ، پلاستیک، لاستیک، سرامیک، پارچه و مواد آرایشی استفاده شود. دو نوع رنگدانه روتیل وجود دارد روتیل و آناتاز. روتیل از شبکهٔ بلوری متراکم‌تری نسبت به آناتاز تشکیل شده و چگال‌تر است و ضریب شکست بالاتری دارد. رنگدانه می‌بایست قابل استفاده در مسیر سولفاته باشد (روتیل یا روتیل مصنوعی قابل استفاده نیستند) و دارای نسبت FeO/Fe2O3 بالاتری بوده (در اسید سولفوریک واکنش‌پذیر) و آهن، کروم، وانادیوم، نیوبیوم، کلسیم، فسفات، اورانیوم، توریم و رنیم کم داشته باشد. خواص فیزیکی تقریباً مهم نیستند. تتراکلرین تیتانیوم تتراکلرین تیتانیوم (TiCl4) یک مایع بی‌رنگ است که برای ساخت شیشه استفاده می‌شود و از آن جایی که آن در هوای مرطوب به شدت بخار می‌کند، به منظور پوشش در برابر بخار استفاده می‌شود. ایلمنیت، روتیل، آناتاز، روتیل مصنوعی و سربارهٔ تیتانیوم به عنوان پیش‌ماده تولید رنگدانه دی‌اکسید تیتانیوم از دو مسیر سولفاته و کلریدی امکان‌پذیر بوده که هریک نیاز به پیش‌ماده مخصوص به خود دارند. انواعی که در مسیر کلریدی به عنوان پیش‌ماده استفاده می‌شوند باید آلکالی کم، کمتر از 2%CaO و کمتر از 1% MgO، داشته باشد. به علاوه آهن کم، کمتر از 5/0% Cr2O3، V2O3، قلع و آرسنیک، کمتر از ۲٪ سیلیس و حداقل اورانیوم، توریم و رادیم و … داشته باشد (هر یک از موارد فوق به دلایلی از قبیل سمی بودن، رنگ‌زایی، خواص مزاحم در حین فرآوری و … می‌بایست در رنگدانه وجود نداشته باشند). شرایط مورد نیاز دیگر شامل چگالی، مقاومت ذرات و … است. با توجه به شرایط فوق، روتیل طبیعی با ۹۵٪ ‏‏TiO¬۲، لازم است که به دلیل کمبود چنین ذخایری ایجاد طرح‌های پرعیار کردن پیش‌ماده صورت می‌گیرد. کنسانتره ایلمنیت برای فرآوری سرباره می‌بایست حداقل 35% TiO2، داشته باشد، انواع سنگ سخت‌های ایلمنیت به سرباره‌های سولفاته محدود می‌شوند، فرایندهای شستشوی زیرزمینی CaO, MgO و دیگر ناخالصی‌ها را کاهش داده و سرباره‌هایی با قابلیت قرارگیری در مسیر کلریدی ایجاد کند که معمولاً از پلاسرهای ایلمنیت به دست می‌آیند (TiO2 57-63%)...[۹]

تیتانات باریم: مادهٔ فروالکتریک با ثابت دی‌الکتریک نسبتاً بالا در نیمه‌هادی‌ها و پیزوالکتریک‌ها به کار برده می‌شود.

نیترید تیتانیوم: دمای ذوب ۲۹۵۰ درجه سانتیگراد دارد و از آن به عنوان بوته ذوب آلیاژهای لانتانیوم، رنگ زرد طلایی در جواهرات و … به کار می‌رود.

آلکالی‌های تیتانیوم: پلیمریزاسیون، کاتالیزور

تیتانات استرانسیم: جواهر مصنوعی، ابزار نوری

فلز تیتانیوم: از کاهش TiCl4 توسط منیزیم مذاب در فرایند کرول حاصل می‌شود. تیتانیوم، فلزی با نسبت مقاومت به وزن بالا، نقطه ذوب بالا، ظرفیت انتقال حرارتی بالا، مقاومت در برابر خوردگی، ضریب انبساط کم و مقاومت الکتریکی بالاست که از آن در ساخت قطعات در صنعت هوافضا، قسمت‌های حساس ماشین‌آلات، طرح‌های صنعتی و شیمیایی، تجهیزات دریایی، ابزار جراحی و دندانپزشکی استفاده می‌شود. آلیاژهای تیتانیوم ضریب انبساط حرارتی کمتری از آلیاژهای آهن دارند و خاصیت مغناطیسی نیز ندارند. از کاربردهای آلیاژهای تیتانیوم می‌توان به ابزار پزشکی، الکترونیکی، ماشین‌های توربین بخار، دریچه و شیرآلات فشار قوی، سکوهای ساحلی، سیستم‌های لوله‌گذاری دریای عمیق و غیره اشاره کرد. به عنوان مثال از آلیاژهای تیتانیوم، فروتیتانیوم به عنوان کاهنده و پایدارکننده در ساخت فولاد خالص، آلیاژهای ابررسانا (تیتانیوم- نیوبیوم)، سوپرکامپیوتر، کرایوالکترونیک و … استفاده می‌شود.

جایگزین‌ها: فلز و آلیاژها: آلومینیم، منیزیم، فولاد خالص و سوپر آلیاژهای مختلف مادهٔ سنگین‌کننده: باریت، سلستیت، هماتیت، منیتیت، کانی آهن

ساینده‌های بادی: بوکسیت و آلومینا، کرندوم، الماس، دیاتومیت، فلدسپار، گارنت، هماتیت، منیتیت، نفلیت سینیت، الیوین، پرلیت، پرلیت، پومیس، ماسه سیلیسی، استارولیت، تریپلی، کربید کلسیم فیلتر: کربن فعال شده، آنتراسیت، آزبست، سلولز، دیاتومیت، گارنت، اکسید آهن، الیوین، پرلیت، پومیس، ماسه سیلیسی پرکننده: تری هیدرات آلومینیم، باریت، کربنات کلسیم، دیاتومیت، فلدسپار، کائولن، اکسید سرب، میکا، نفلین سینیت، پرلیت، تالک، سیلیس میکروکریستالن، پودر سیلیس و سیلیس مصنوعی، ولاستونیت. رنگدانه: لیتوفون، اکسید روی

بازیافت: هرچند که بازیافت کاغذ و پلاستیک مصرف مواد خام را کاهش داده‌است، مواد بازیافتی از می‌بایست با افزایش تیتانیوم از نظر درخشندگی بهبود داد. رنگ به ندرت بازیافت می‌شود. فلز تیتانیوم و آلیاژهای آن بازیافت می‌شوند، هرچند دورة زندگی طولانی و آلودگی‌های غیرقابل قبول از نظر بازار مسئله ساز است. ذخایر شامل قراضه‌های حاصل از ذوب، ریخته‌گری و ساخت قطعات به ویژه شمش هستند. قراضه‌های قدیمی از هواپیماهای قدیمی و مبدلهای حرارتی بدست می‌آید. بیشتر تیتانیوم بازیافتی در صنعت فولاد به ویژه در تهیهٔ فروتیتانیوم بکار می‌رود.

میزان مصرف ظاهری تیتانیوم در جهان در طی این دوره (۱۹۹۷ – ۲۰۰۱) از ۰۶/۱۰ میلیون تن در سال ۱۹۹۷ به ۷۸/۹ میلیون تن در سال ۱۹۹۹ و ۵۸/۱۰میلیون تن در سال ۲۰۰۱ افزایش یافته‌است (جدول ۶). روند مصرف جهانی تیتانیوم طی سالهای ذکر شده به صورت نوسانی بوده و از یک روند ثابت تبعیت نکرده و مصرف جهانی کانی‌های تیتانیوم در سال ۱۹۹۹ به کمترین میزان در طی سالهای ۲۰۰۱–۱۹۹۷ رسیده‌است. بیشترین آمار مصرف کانی‌های تیتانیوم در جهان مربوط به سال ۲۰۰۰ می‌باشد که حجم مصرفی بالغ بر ۵/۱۰ میلیون تن داشته‌است.[۱۰]

اکستروژن تیتانیوم[ویرایش]

فرایند شکل‌دهی تیتانیوم در اواسط دهه ۵۰ میلادی برای هواپیماها آغاز شد. تولید اشکال مشخص با قالب تخت و در مقیاس کوچک برای تیتانیوم به استفاده از اکستروژن داغ منجر شد.

تیتانیم خالص و آلیاژهای آن از مقاومت به خوردگی و استحکام بالایی برخوردار است و به همین دلیل در اعضای ساختاری هواپیما و کاربردهایی که ضریب اطمینان بالا لازم است به کار می‌رود. این گونه قطعات بعضاً در شکل‌های پیچیده مورد استفاده قرار می‌گیرند که منجر به استفاده از فرایند شکل‌دهی اکستروژن (داغ) می‌شود. این فرایند به سادگی می‌تواند اجزای ساختاری را با مقاطع مختلف شکل‌دهی کند.[۱۱]

برای فرایند شکل‌دهی اکستروژن تیتانیوم می‌توان به انتخاب نوع فرایند اکستروژن (نوع قالب و دمای فرایند) و نوع و فاز تیتانیوم توجه داشت.

در بیشتر فرآیندهای اکستروژن (آلیاژهای) تیتانیوم دستگاه پرس از نیروی هیدرولیک آب بهره می‌گیرد که نسبتاً نرخ کرنش بالایی دارد. با توجه به تجارب این کار، برای اکستروژن تیتانیوم در فاز بتا از قالب تخت استفاده می‌شود به دلایلی از قبیل: ارزان‌تر بودن، بهره‌گیری از اشکال پیچیده و کنترل اندازه بهتر. از دیگر ویژگی‌های فرایند اکستروژن تیتانیوم-بتا قالب تخت می‌توان به اصطکاک بالای آن اشاره کرد و اینکه نرخ کرنش بالا سبب افزایش تنش در جریان ماده می‌شود.

یکی از کاربردی‌ترین آلیاژهای تیتانیوم برای استفاده شدن در فرایند اکستروژن، Ti-6Al-4V (گرید ۵ آلیاژ تیتانیوم) است. برای فرایند اکستروژن این آلیاژ آلفا-بتا، اکستروژن داغ قالب مخروطی استفاده شده‌است.[۱۲]

شرح فرایند[ویرایش]

ابتدا به لقمه تیتانیومیِ آماده شده (می‌تواند خروجیِ فرایند فورج باشد) حرارت داده می‌شود. در حین عملیات حرارت‌دهی و جابه‌جایی برای فرایند اکستروژن لایه‌ای اکسیدی در فاز آلفا بر روی سطح لقمه تشکیل می‌شود که برای فرایند اصلاً مطلوب نیست؛ لذا با غوطه‌ور کردن لقمه درست قبل از فرایند اکستروژن در موادی حاوی شیشه، لایهٔ نامطلوب زدوده شده و لایه‌ای از جنس شیشه به آن اضافه می‌شود.[۱۳] این کار به دلیل آن است که قابلیت شکل‌پذیری و ماشین‌کاری بر روی تیتانیوم افزایش یابد و نیز برای اینکه شیشه در طول فرایند نقش روان‌کننده را بازی کند.
دمای فرایند بین ۸۰۰ و ۱۱۵۰ درجه سلسیوس است. چنانچه دمای فرایند بیش از ۱۰۰۰ درجه سلسیوس باشد پوشش شیشه‌ای لازم می‌شود چنان‌که برای اکستروژن تیتانیوم Ti-6Al-4V، فرایند در دمایی حدود ۱۱۵۰ درجه سلسیوس (۲۱۰۰ درجه فارنهایت) با پوشش شیشه انجام می‌گیرد. اگر دما بیش از حد نیاز باشد بروز عیوب و ترک در سطح لقمه پیش می‌آید و چنانچه دما کمتر از حد لازم باشد امکان عدم عبور یا عبور صحیح از دهانه قالب وجود دارد.
برای هرچه بهتر انجام شدن فرایند، از اکستروژن تک قالبه و تک لقمه استفاده می‌شود. در این صورت هم کیفیت سطح ارتقا می‌یابد و هم تغییر شکلِ قطعه به قطعه کاهش می‌یابد.[۱۴][۱۵]
غالباً این فرایند با سرعت بالا بین ۱٫۵ و ۵ ثانیه صورت می‌پذیرد. فشار لازم برای فرایند نیز تا حدود ۲۰۰۰ تن است. برای زدودن لایه شیشه‌ای پس از فرایند در صورت نیاز از عملیات ساب‌پاشی استفاده می‌شود که البته کیفیت سطح را نیز بهبود می‌بخشد.[۱۶]

مزایا[ویرایش]

با توجه به کاربردهای وسیع در صنایع هوافضا، یکی از مزیت‌های آن کاهش وزن هواپیماها در حدود ۱٫۸ تن (۴۰۰۰ پوند) بوده‌است.
مزیت عمده این فرایند برای تیتانیوم با توجه به کاربردها، کاهش زمان تولید قطعه در حدود ۱ ساعت است. بدون فرایند اکستروژن تیتانیوم تمام عملیات شکل‌دهی بر عهده فرایند ماشین‌کاری است در حالی که با استفاده از فرایند اکستروژن زمان تولید قطعه بهینه‌تر می‌شود.

کاربرد[ویرایش]

با توجه به مقاومت به خوردگی بالای تیتانیوم و نوع فرایند اکستروژن، خروجی این فرایند برای صندلی هواپیما (ریل جابه‌جایی)
و با توجه به استحکام قابل قبول آن، برای نگهدارنده موتور هواپیما (تیر اتصال‌دهنده بین موتور و بال هواپیما) مورد استفاده قرار می‌گیرد.

ماشین‌کاری آلیاژهای تیتانیوم[ویرایش]

ماشین‌کاری آلیاژهای تیتانیوم به دلیل استحکام در دمای بالای آن، هدایت حرارتی بسیار پایین، مدول الاستیسیته نسبتاً کم و واکنش‌پذیری شیمیایی بالا بسیار دشوار است. مشکلات اصلی در ماشین کاری این آلیاژها که ناشی از خواص ذاتی ماده است، عبارتند از:

  • دمای برش بالا: بخش بزرگی (حدود ۸۰ درصد) از حرارت تولید شده هنگام ماشین‌کاری آلیاژ Ti6Al4V (متداول‌ترین آلیاژ تیتانیوم) به ابزار انتقال می‌یابد. هدایت حرارتی کم آلیاژهای تیتانیوم (۱/۶ فولاد) سبب آن می‌شود که حرارت نتواند توسط جریان سریع براده و قطعه کار دفع نشود.[۱۷] بررسی توزیع درجه حرارت در ماشین کاری آلیاژهای تیتانیوم نشان داده‌است که منطقه متأثر از حرارت در این آلیاژ به خاطر تشکیل براده‌های نازک‌تر (و در نتیجه سطح تماس کمتر ابزار و براده) بسیار کوچکتر است، طوری‌که دمای نوک ابزار به ۱۱۰۰ درجه سانتیگراد می‌رسد.[۱۸]
  • فشارهای برش بالا: اگرچه نیروهای برشی و توان مصرفی در حین ماشین‌کاری آلیاژهای تیتانیوم با فولادها یکسان یا حتی کمتر است، به دلیل سطح تماس کمتر براده و ابزار (۱/۳ فولاد) و تا حدودی مقاومت آلیاژ تیتانیوم در برابر تغییر شکل (تا ۸۰۰ درجه سانتیگراد)[۱۹] تنش‌های مکانیکی در مجاورت لبه ابزار بسیار بالاتر است.
Percage sineholing mitis
  • چتر: پدیده چتر به عنوان یکی دیگر از مشکلات اصلی ماشین‌کاری آلیاژهای تیتانیوم به خصوص در حالت پرداخت مطرح است. مدول الاستیسیته پایین آلیاژهای تیتانیوم علت اصلی چتر در حین ماشین‌کاری می‌باشد. هنگامی که آلیاژ در معرض فشار برش قرار می‌گیرد تا دو برابر فولاد کربنی تغییر شکل می‌یابد و یک حالت برگشت فنری قوی پشت لبه برشی به وجود می‌آید که به سایش زودرس ابزار، ارتعاش و دمای برش بالاتر می‌انجامد.[۲۰] این ارتعاش ایجاد شده به صورت حرکت منقطع یا پرشی ابزار در ورود به منطقه برش ظاهر می‌شود که به نوعی تعریف پدیده چتر است.[۲۱]
  • جنس ماده ابزار: تیتانیوم و آلیاژهایش تقریباً با مواد تشکیل دهنده تمام ابزارهای متداول در دمای بالای ۵۰۰ درجه سانتیگراد واکنش شیمیایی می‌دهد. علاوه براین، تمایل براده‌ها به جوش خوردگی در اثر فشار به ابزار و ایجاد سایش اصطلاحاً چسبنده (که در اثر نفوذ ماده براده به سطح ابزار حاصل می‌شود)، ضرورت انتخاب ابزار مناسب برای ماشین‌کاری آلیاژهای تیتانیوم را دوچندان کرده‌است.

معیارهای انتخاب ابزار
ماده ابزار در ماشین‌کاری آلیاژهای تیتانیوم باید ویژگی‌های زیر را داشته باشد:

  1. سختی در دمای بالا
  2. هدایت حرارتی بالا
  3. عدم واکنش‌پذیری شیمیایی با تیتانیوم
  4. چقرمگی و استحکام خستگی بالا
  5. استحکام کششی، فشاری و برشی بالا

ابزارهای تنگستن کارباید و PCD به عنوان بهترین گزینه‌ها مطرح هستند.[۲۲]

Makino Titanium-Cutting

یکپارچگی سطح
سطح آلیاژهای تیتانیوم به شدت در روش‌های ماشین‌کاری سنتی آسیب‌پذیر است. آسیب‌ها به شکل میکروترک، لبه انباشته (BUE)، تغییر شکل پلاستیک، مناطق متأثر از حرارت (HAZ) و تنش‌های پسماند کششی ظاهر می‌شوند. حد دوام تیتانیوم برای فرایند سنگ زنی نرم ۳۷۲ مگاپاسکال است، در حالی که در یک فرایند تراشکاری یا فرزکاری به کمتر از یک چهارم یعنی ۸۳ مگاپاسکال می‌رسد. برتری فرایند سنگ زنی در این زمینه احتمالاً به دلیل ایجاد تنش‌های پسماند فشاری (بهبود استحکام خستگی) می‌باشد. در فرآیندهای سنگ‌زنی نرم تغییرات محسوسی در سطح ایجاد نمی‌شود.[۲۳]

روش‌های غیرسنتی ماشین‌کاری آلیاژهای تیتانیوم

  • ECM یا ماشین‌کاری الکتروشیمیایی: براده برداری مواد رسانای الکتریکی از طریق انحلال آندی در یک الکترولیت با جریان سریع تعریف کوتاهی از این فرایند است. ECM قابلیت ایجاد کانتورهای پیچیده و بدون اعوجاج و همین‌طور سطوح با کیفیت را داراست. سدیم کلرید به عنوان الکترولیت متداول برای آلیاژهای تیتانیوم استفاده می‌شود.
  • LBT یا ماشین‌کاری به کمک پرتو لیزر : در این فرایند با تمرکز پرتو لیزر و جریان گاز روی قطعه کار، براده برداری صورت می‌گیرد. انرژی لیزر سبب ذوب موضعی شده و جریان گاز اکسیژن با ایجاد یک واکنش گرمازا، ماده ذوب شده را از قطعه کار جدا می‌کند. آلیاژهای تیتانیوم در این روش با نرخ بالایی براده‌برداری می‌شوند. لیزر مورد استفاده از نوع CO2 است.
  • CHM یا فرزکاری شیمیایی: انحلال کنترل شده ماده قطعه کار در اثر تماس با یک ماده شیمیایی قوی را CHM گویند. در این روش جاهایی از قطعه کار که قرار نیست ماشین‌کاری شوند، با یک ماسک مقاوم شیمیایی حفاظت می‌شوند.[۲۴]

مایعات برشی

  • مایعات برشی پایه آبی (مثلاً محلول رقیق آب و روغن) بهترین گزینه برای سرعت‌های برشی بالا می‌باشند.
  • در سرعت‌های کم و عملیات پیچیده به منظور به حداقل رساندن اصطکاک و کاهش تمایل به چسبندگی تیتانیوم از روغن‌های سولفوریزه و کلریناته استفاده می‌شود.
  • در استفاده از روغن‌های کلریناته باید به این نکته توجه کنیم که امکان ایجاد ترک در اثر تنش‌های ناشی از خوردگی وجود دارد.[۲۵]

کاربرد[ویرایش]

هواپیماها، موشکها، جتها، ماشین‌های نساجی، وسایل شیمیایی، وسایل جراحی، وسایل نمک‌زدایی، وسایل ارتوپدی، وسایل غذاسازی، هدف‌های لوله‌های اشعه ایکس، وسایل ساینده، لوله‌های رآکتورها، قاب یا فریم عینک و…

پزشکی[ویرایش]

غیر سمی بودن و شرایط پذیر بودن تیتانیم باعث شده‌است تا این ماده در پزشکی و در درون بدن انسان مورد استفاده قرار گیرد. ایمپلنت‌ها، ابزارهای نگه دارنده شکستگی که در بدن بیمار کار گذاشته می‌شوند و … معمولاً از تیتانیم تشکیل شده‌اند. در این‌گونه موارد تیتانیم با حدود ۴ تا ۶ درصد آلومینیم تشکیل آلیاژ می‌دهد.

جواهرسازی[ویرایش]

به دلیل دوام و ماندگاری بالا، تیتانیم به یکی از فلزات محبوب جواهرسازان بدل گشته‌است. همچنین به علت عدم تحریک آلرژیک، جواهرات تیتانیم گزینه بسیار مناسب برای افرادی است که به فلزات زینتی آلرژی دارند. تیتانیم همچنین با طلای ۲۴ عیار تشکیل آلیاژ می‌دهد.

موارد احتیاطی[ویرایش]

تیتانیم ماده‌ای غیر سمی است و حتی در مقادیر زیاد، سمی محسوب نمی‌شود. همچنین این ماده هیچ نقشی در سیستم طبیعی بدن انسان ایفا نمی‌کند.[۲۶] بطور تخمینی روزانه ۸/۰ میلی‌گرم تیتانیم وارد بدن انسان می‌شود. اگرچه تقریباً بدون جذب شدن، از بدن دفع می‌شود.

نگارخانه[ویرایش]

منابع[ویرایش]

  1. Andersson, N.; et al. (2003). "Emission spectra of TiH and TiD near 938 nm" Check |url= value (help) (PDF). J. Chem. Phys. 118: 10543. doi:10.1063/1.1539848. 
  2. ۲٫۰ ۲٫۱ ۲٫۲ خطای یادکرد: خطای یادکرد:برچسب <ref>‎ غیرمجاز؛ متنی برای یادکردهای با نام EBC وارد نشده‌است. (صفحهٔ راهنما را مطالعه کنید.).
  3. Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5. 
  4. Krebs, Robert E. (2006). The History and Use of Our Earth's Chemical Elements: A Reference Guide (2nd ed.). Westport, CT: Greenwood Press. ISBN 0-313-33438-2. 
  5. Donachie, Matthew J. , Jr. (1988). TITANIUM: A Technical Guide. Metals Park, OH: ASM International. p. 11. ISBN 0-87170-309-2. 
  6. Barksdale 1968, p. 738
  7. "Titanium". Columbia Encyclopedia (6th ed.). New York: Columbia University Press. 2000–2006. ISBN 0-7876-5015-3. 
  8. Barbalace, Kenneth L. (2006). "Periodic Table of Elements: Ti – Titanium". Retrieved 26 December 2006. 
  9. J. Krýsa, M. Keppert, and et al, Mat. Chem. and Phys. 86 , (2004) 333. D. H. Marsh, D. J. Riley, and et al, Particuology 7 (2009) 121.
  10. Asahi, R.Y.O.J.I. , Morikawa, T.A.K.E.S.H.I. , Ohwaki, T. , Aoki, K. and Taga, Y. , 2001. Visible-light photocatalysis in nitrogen-doped titanium oxides. science, 293(5528), pp.269-271.
  11. [۱] George Legate, Alpha Beta Extrusion of Titanium Alloys, Nu-Tech Precision Metals
  12. [۲] Kin'ichi Kimura, et al. Analysis of Deformation, Temperature, and Microstructure of Titanium Alloys During Hot Extrusion, 1994
  13. [۳] RTI International Metals, Inc
  14. [۴] TitaniumExposed.com
  15. [۵] Rickard Specialty Metals and Engineering | 2043 Elm Court, Ontario, California 91761
  16. [۶] VertMarkets, Inc
  17. .W. Konig, Proc. 47th Meeting of AGARD Structural and Materials Panel, Florence, Sept. 1978, AGARD, CP256, London, 1979, pp. 1.1-1.10
  18. .P.A. Dearnley, A.N. Grearson, Mater. Sci. Technol. 2 (1986) 47-58
  19. .D.C. Kirk, Tools and dies for industry, Proc. Conf. 7677. Met. Soc. , London, ~ 976- 7, pp. 77- 98
  20. .B.B. Johnson, Tips on Milling Titanium--and Tools to Do the Job
  21. .B.F. yon Turkovich, D.R. Durham, Advanced Processing Methods for Titanium 18 (1982) 257-274
  22. .P.D. Hartung, B.M. Kramer, Ann. CIRP 31 (11 (1982) 75-80
  23. http://www.supraalloys.com/technical-surface.php
  24. http://www.supraalloys.com/technical-nontrad.php
  25. H.E. Chandler, Metals Handbook, 1978, pp. 845-852.
  26. «تاثیر تیتانیوم در فولاد». 

کتاب فرهنگ عناصر، نوشتهٔ سیدرضا آقاپور مقدم

Titanium,  22Ti
Titan-crystal bar.JPG
General properties
Pronunciation /tɪˈtniəm, t-/[1] (tə-TAY-nee-əm, ty-)
Appearance silvery grey-white metallic
Standard atomic weight (Ar, standard) 47.867(1)[2]
Titanium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson


Ti

Zr
scandiumtitaniumvanadium
Atomic number (Z) 22
Group group 4
Period period 4
Element category   transition metal
Block d-block
Electron configuration [Ar] 3d2 4s2
Electrons per shell
2, 8, 10, 2
Physical properties
Phase at STP solid
Melting point 1941 K ​(1668 °C, ​3034 °F)
Boiling point 3560 K ​(3287 °C, ​5949 °F)
Density (near r.t.) 4.506 g/cm3
when liquid (at m.p.) 4.11 g/cm3
Heat of fusion 14.15 kJ/mol
Heat of vaporization 425 kJ/mol
Molar heat capacity 25.060 J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 1982 2171 (2403) 2692 3064 3558
Atomic properties
Oxidation states 4, 3, 2, 1, −1, −2[3] ​(an amphoteric oxide)
Electronegativity Pauling scale: 1.54
Ionization energies
  • 1st: 658.8 kJ/mol
  • 2nd: 1309.8 kJ/mol
  • 3rd: 2652.5 kJ/mol
  • (more)
Atomic radius empirical: 147 pm
Covalent radius 160±8 pm
Color lines in a spectral range
Spectral lines of titanium
Other properties
Crystal structurehexagonal close-packed (hcp)
Hexagonal close packed crystal structure for titanium
Speed of sound thin rod 5090 m/s (at r.t.)
Thermal expansion 8.6 µm/(m·K) (at 25 °C)
Thermal conductivity 21.9 W/(m·K)
Electrical resistivity 420 nΩ·m (at 20 °C)
Magnetic ordering paramagnetic
Magnetic susceptibility +153.0·10−6 cm3/mol (293 K)[4]
Young's modulus 116 GPa
Shear modulus 44 GPa
Bulk modulus 110 GPa
Poisson ratio 0.32
Mohs hardness 6.0
Vickers hardness 830–3420 MPa
Brinell hardness 716–2770 MPa
CAS Number 7440-32-6
History
Discovery William Gregor (1791)
First isolation Jöns Jakob Berzelius (1825)
Named by Martin Heinrich Klaproth (1795)
Main isotopes of titanium
Iso­tope Abun­dance Half-life (t1/2) Decay mode Pro­duct
44Ti syn 63 y ε 44Sc
γ
46Ti 8.25% stable
47Ti 7.44% stable
48Ti 73.72% stable
49Ti 5.41% stable
50Ti 5.18% stable
| references

Titanium is a chemical element with symbol Ti and atomic number 22. It is a lustrous transition metal with a silver color, low density, and high strength. Titanium is resistant to corrosion in sea water, aqua regia, and chlorine.

Titanium was discovered in Cornwall, Great Britain, by William Gregor in 1791, and was named by Martin Heinrich Klaproth after the Titans of Greek mythology. The element occurs within a number of mineral deposits, principally rutile and ilmenite, which are widely distributed in the Earth's crust and lithosphere, and it is found in almost all living things, water bodies, rocks, and soils.[5] The metal is extracted from its principal mineral ores by the Kroll[6] and Hunter processes. The most common compound, titanium dioxide, is a popular photocatalyst and is used in the manufacture of white pigments.[7] Other compounds include titanium tetrachloride (TiCl4), a component of smoke screens and catalysts; and titanium trichloride (TiCl3), which is used as a catalyst in the production of polypropylene.[5]

Titanium can be alloyed with iron, aluminium, vanadium, and molybdenum, among other elements, to produce strong, lightweight alloys for aerospace (jet engines, missiles, and spacecraft), military, industrial processes (chemicals and petrochemicals, desalination plants, pulp, and paper), automotive, agri-food, medical prostheses, orthopedic implants, dental and endodontic instruments and files, dental implants, sporting goods, jewelry, mobile phones, and other applications.[5]

The two most useful properties of the metal are corrosion resistance and strength-to-density ratio, the highest of any metallic element.[8] In its unalloyed condition, titanium is as strong as some steels, but less dense.[9] There are two allotropic forms[10] and five naturally occurring isotopes of this element, 46Ti through 50Ti, with 48Ti being the most abundant (73.8%).[11] Although they have the same number of valence electrons and are in the same group in the periodic table, titanium and zirconium differ in many chemical and physical properties.

Characteristics

Physical properties

As a metal, titanium is recognized for its high strength-to-weight ratio.[10] It is a strong metal with low density that is quite ductile (especially in an oxygen-free environment),[5] lustrous, and metallic-white in color.[12] The relatively high melting point (more than 1,650 °C or 3,000 °F) makes it useful as a refractory metal. It is paramagnetic and has fairly low electrical and thermal conductivity.[5]

Commercially pure (99.2% pure) grades of titanium have ultimate tensile strength of about 434 MPa (63,000 psi), equal to that of common, low-grade steel alloys, but are less dense. Titanium is 60% denser than aluminium, but more than twice as strong[9] as the most commonly used 6061-T6 aluminium alloy. Certain titanium alloys (e.g., Beta C) achieve tensile strengths of over 1,400 MPa (200,000 psi).[13] However, titanium loses strength when heated above 430 °C (806 °F).[14]

Titanium is not as hard as some grades of heat-treated steel; it is non-magnetic and a poor conductor of heat and electricity. Machining requires precautions, because the material can gall unless sharp tools and proper cooling methods are used. Like steel structures, those made from titanium have a fatigue limit that guarantees longevity in some applications.[12]

The metal is a dimorphic allotrope of an hexagonal α form that changes into a body-centered cubic (lattice) β form at 882 °C (1,620 °F).[14] The specific heat of the α form increases dramatically as it is heated to this transition temperature but then falls and remains fairly constant for the β form regardless of temperature.[14]

Chemical properties

The Pourbaix diagram for titanium in pure water, perchloric acid, or sodium hydroxide[15]

Like aluminium and magnesium, titanium metal and its alloys oxidize immediately upon exposure to air. Titanium readily reacts with oxygen at 1,200 °C (2,190 °F) in air, and at 610 °C (1,130 °F) in pure oxygen, forming titanium dioxide.[10] It is, however, slow to react with water and air at ambient temperatures because it forms a passive oxide coating that protects the bulk metal from further oxidation.[5] When it first forms, this protective layer is only 1–2 nm thick but continues to grow slowly; reaching a thickness of 25 nm in four years.[16]

Atmospheric passivation gives titanium excellent resistance to corrosion, almost equivalent to platinum. Titanium is capable of withstanding attack by dilute sulfuric and hydrochloric acids, chloride solutions, and most organic acids.[6] However, titanium is corroded by concentrated acids.[17] As indicated by its negative redox potential, titanium is thermodynamically a very reactive metal that burns in normal atmosphere at lower temperatures than the melting point. Melting is possible only in an inert atmosphere or in a vacuum. At 550 °C (1,022 °F), it combines with chlorine.[6] It also reacts with the other halogens and absorbs hydrogen.[7]

Titanium is one of the few elements that burns in pure nitrogen gas, reacting at 800 °C (1,470 °F) to form titanium nitride, which causes embrittlement.[18] Because of its high reactivity with oxygen, nitrogen, and some other gases, titanium filaments are applied in titanium sublimation pumps as scavengers for these gases. Such pumps inexpensively and reliably produce extremely low pressures in ultra-high vacuum systems.

Occurrence

2011 production of rutile and ilmenite[19]
Country thousand
tonnes
% of total
Australia 1,300 19.4
South Africa 1,160 17.3
Canada 700 10.4
India 574 8.6
Mozambique 516 7.7
China 500 7.5
Vietnam 490 7.3
Ukraine 357 5.3
World 6,700 100

Titanium is the ninth-most abundant element in Earth's crust (0.63% by mass)[20] and the seventh-most abundant metal. It is present as oxides in most igneous rocks, in sediments derived from them, in living things, and natural bodies of water.[5][6] Of the 801 types of igneous rocks analyzed by the United States Geological Survey, 784 contained titanium. Its proportion in soils is approximately 0.5 to 1.5%.[20]

Common titanium-containing minerals are anatase, brookite, ilmenite, perovskite, rutile, and titanite (sphene).[16] Akaogiite is an extremely rare mineral consisting of titanium dioxide. Of these minerals, only rutile and ilmenite have economic importance, yet even they are difficult to find in high concentrations. About 6.0 and 0.7 million tonnes of those minerals were mined in 2011, respectively.[19] Significant titanium-bearing ilmenite deposits exist in western Australia, Canada, China, India, Mozambique, New Zealand, Norway, Sierra Leone, South Africa, and Ukraine.[16] About 186,000 tonnes of titanium metal sponge were produced in 2011, mostly in China (60,000 t), Japan (56,000 t), Russia (40,000 t), United States (32,000 t) and Kazakhstan (20,700 t). Total reserves of titanium are estimated to exceed 600 million tonnes.[19]

The concentration of titanium is about 4 picomolar in the ocean. At 100 °C, the concentration of titanium in water is estimated to be less than 10−7 M at pH 7. The identity of titanium species in aqueous solution remains unknown because of its low solubility and the lack of sensitive spectroscopic methods, although only the 4+ oxidation state is stable in air. No evidence exists for a biological role, although rare organisms are known to accumulate high concentrations of titanium.[21]

Titanium is contained in meteorites, and it has been detected in the Sun and in M-type stars[6] (the coolest type) with a surface temperature of 3,200 °C (5,790 °F).[22] Rocks brought back from the Moon during the Apollo 17 mission are composed of 12.1% TiO2.[6] It is also found in coal ash, plants, and even the human body. Native titanium (pure metallic) is very rare.[23]

Isotopes

Naturally occurring titanium is composed of 5 stable isotopes: 46Ti, 47Ti, 48Ti, 49Ti, and 50Ti, with 48Ti being the most abundant (73.8% natural abundance). Eleven radioisotopes have been characterized, the most stable being 44Ti with a half-life of 63 years; 45Ti, 184.8 minutes; 51Ti, 5.76 minutes; and 52Ti, 1.7 minutes. All the other radioactive isotopes have half-lives less than 33 seconds and the majority, less than half a second.[11]

The isotopes of titanium range in atomic weight from 39.99 u (40Ti) to 57.966 u (58Ti). The primary decay mode before the most abundant stable isotope, 48Ti, is electron capture and the primary mode after is beta emission. The primary decay products before 48Ti are element 21 (scandium) isotopes and the primary products after are element 23 (vanadium) isotopes.[11]

Titanium becomes radioactive upon bombardment with deuterons, emitting mainly positrons and hard gamma rays.[6]

Compounds

A steel colored twist drill bit with the spiral groove colored in a golden shade.
TiN-coated drill bit

The +4 oxidation state dominates titanium chemistry,[24] but compounds in the +3 oxidation state are also common.[25] Commonly, titanium adopts an octahedral coordination geometry in its complexes, but tetrahedral TiCl4 is a notable exception. Because of its high oxidation state, titanium(IV) compounds exhibit a high degree of covalent bonding. Unlike most other transition metals, simple aquo Ti(IV) complexes are unknown.

Oxides, sulfides, and alkoxides

The most important oxide is TiO2, which exists in three important polymorphs; anatase, brookite, and rutile. All of these are white diamagnetic solids, although mineral samples can appear dark (see rutile). They adopt polymeric structures in which Ti is surrounded by six oxide ligands that link to other Ti centers.

The term titanates usually refers to titanium(IV) compounds, as represented by barium titanate (BaTiO3). With a perovskite structure, this material exhibits piezoelectric properties and is used as a transducer in the interconversion of sound and electricity.[10] Many minerals are titanates, e.g. ilmenite (FeTiO3). Star sapphires and rubies get their asterism (star-forming shine) from the presence of titanium dioxide impurities.[16]

A variety of reduced oxides of titanium are known. Ti3O5, described as a Ti(IV)-Ti(III) species, is a purple semiconductor produced by reduction of TiO2 with hydrogen at high temperatures,[26] and is used industrially when surfaces need to be vapour-coated with titanium dioxide: it evaporates as pure TiO, whereas TiO2 evaporates as a mixture of oxides and deposits coatings with variable refractive index.[27] Also known is Ti2O3, with the corundum structure, and TiO, with the rock salt structure, although often nonstoichiometric.[28]

The alkoxides of titanium(IV), prepared by reacting TiCl4 with alcohols, are colourless compounds that convert to the dioxide on reaction with water. They are industrially useful for depositing solid TiO2 via the sol-gel process. Titanium isopropoxide is used in the synthesis of chiral organic compounds via the Sharpless epoxidation.

Titanium forms a variety of sulfides, but only TiS2 has attracted significant interest. It adopts a layered structure and was used as a cathode in the development of lithium batteries. Because Ti(IV) is a "hard cation", the sulfides of titanium are unstable and tend to hydrolyze to the oxide with release of hydrogen sulfide.

Nitrides and carbides

Titanium nitride (TiN) is a member of a family of refractory transition metal nitrides and exhibits properties similar to both covalent compounds including; thermodynamic stability, extreme hardness, thermal/electrical conductivity, and a high melting point.[29] TiN has a hardness equivalent to sapphire and carborundum (9.0 on the Mohs Scale),[30] and is often used to coat cutting tools, such as drill bits.[31] It is also used as a gold-colored decorative finish and as a barrier metal in semiconductor fabrication.[32] Titanium carbide, which is also very hard, is found in cutting tools and coatings.[33]

Titanium(III) compounds are characteristically violet, illustrated by this aqueous solution of titanium trichloride.

Halides

Titanium tetrachloride (titanium(IV) chloride, TiCl4[34]) is a colorless volatile liquid (commercial samples are yellowish) that, in air, hydrolyzes with spectacular emission of white clouds. Via the Kroll process, TiCl4 is produced in the conversion of titanium ores to titanium dioxide, e.g., for use in white paint.[35] It is widely used in organic chemistry as a Lewis acid, for example in the Mukaiyama aldol condensation.[36] In the van Arkel process, titanium tetraiodide (TiI4) is generated in the production of high purity titanium metal.

Titanium(III) and titanium(II) also form stable chlorides. A notable example is titanium(III) chloride (TiCl3), which is used as a catalyst for production of polyolefins (see Ziegler-Natta catalyst) and a reducing agent in organic chemistry.

Organometallic complexes

Owing to the important role of titanium compounds as polymerization catalyst, compounds with Ti-C bonds have been intensively studied. The most common organotitanium complex is titanocene dichloride ((C5H5)2TiCl2). Related compounds include Tebbe's reagent and Petasis reagent. Titanium forms carbonyl complexes, e.g. (C5H5)2Ti(CO)2.[37]

Anticancer therapy

Following the success of platinum-based chemotherapy, titanium(IV) complexes were among the first non-platinum compounds to be tested for cancer treatment. The advantage of titanium compounds lies in their high efficacy and low toxicity. In biological environments, hydrolysis leads to the safe and inert titanium dioxide. Despite these advantages the first candidate compounds failed clinical trials. Further development resulted in the creation of potentially effective, selective, and stable titanium-based drugs.[38] Their mode of action is not yet well understood.

History

Titanium was discovered in 1791 by the clergyman and amateur geologist, William Gregor, as an inclusion of a mineral in Cornwall, Great Britain.[39] Gregor recognized the presence of a new element in ilmenite[7] when he found black sand by a stream and noticed the sand was attracted by a magnet.[39] Analyzing the sand, he determined the presence of two metal oxides: iron oxide (explaining the attraction to the magnet) and 45.25% of a white metallic oxide he could not identify.[20] Realizing that the unidentified oxide contained a metal that did not match any known element, Gregor reported his findings to the Royal Geological Society of Cornwall and in the German science journal Crell's Annalen.[39][40][41]

Around the same time, Franz-Joseph Müller von Reichenstein produced a similar substance, but could not identify it.[7] The oxide was independently rediscovered in 1795 by Prussian chemist Martin Heinrich Klaproth in rutile from Boinik (German name Bajmócska), a village in Hungary (now Bojničky in Slovakia).[39][42] Klaproth found that it contained a new element and named it for the Titans of Greek mythology.[22] After hearing about Gregor's earlier discovery, he obtained a sample of manaccanite and confirmed that it contained titanium.

The currently known processes for extracting titanium from its various ores are laborious and costly; it is not possible to reduce the ore by heating with carbon (as in iron smelting) because titanium combines with the carbon to produce titanium carbide.[39] Pure metallic titanium (99.9%) was first prepared in 1910 by Matthew A. Hunter at Rensselaer Polytechnic Institute by heating TiCl4 with sodium at 700–800 °C under great pressure[43] in a batch process known as the Hunter process.[6] Titanium metal was not used outside the laboratory until 1932 when William Justin Kroll proved that it can be produced by reducing titanium tetrachloride (TiCl4) with calcium.[44] Eight years later he refined this process with magnesium and even sodium in what became known as the Kroll process.[44] Although research continues into more efficient and cheaper processes (e.g., FFC Cambridge, Armstrong), the Kroll process is still used for commercial production.[6][7]

Titanium sponge, made by the Kroll process

Titanium of very high purity was made in small quantities when Anton Eduard van Arkel and Jan Hendrik de Boer discovered the iodide, or crystal bar, process in 1925, by reacting with iodine and decomposing the formed vapours over a hot filament to pure metal.[45]

In the 1950s and 1960s, the Soviet Union pioneered the use of titanium in military and submarine applications[43] (Alfa class and Mike class)[46] as part of programs related to the Cold War.[47] Starting in the early 1950s, titanium came into use extensively in military aviation, particularly in high-performance jets, starting with aircraft such as the F-100 Super Sabre and Lockheed A-12 and SR-71.

Recognizing the strategic importance of titanium,[48] the U.S. Department of Defense supported early efforts of commercialization.[49]

Throughout the period of the Cold War, titanium was considered a strategic material by the U.S. government, and a large stockpile of titanium sponge was maintained by the Defense National Stockpile Center, which was finally depleted in the 2000s.[50] According to 2006 data, the world's largest producer, Russian-based VSMPO-AVISMA, was estimated to account for about 29% of the world market share.[51] As of 2015, titanium sponge metal was produced in six countries: China, Japan, Russia, Kazakhstan, the US, Ukraine, and India. (in order of output).[52][53]

In 2006, the U.S. Defense Advanced Research Projects Agency (DARPA) awarded $5.7 million to a two-company consortium to develop a new process for making titanium metal powder. Under heat and pressure, the powder can be used to create strong, lightweight items ranging from armour plating to components for the aerospace, transport, and chemical processing industries.[54]

Production and fabrication

A small heap of uniform black grains smaller than 1mm diameter.
Titanium (mineral concentrate)
Basic titanium products: plate, tube, rods, and powder

The processing of titanium metal occurs in four major steps:[55] reduction of titanium ore into "sponge", a porous form; melting of sponge, or sponge plus a master alloy to form an ingot; primary fabrication, where an ingot is converted into general mill products such as billet, bar, plate, sheet, strip, and tube; and secondary fabrication of finished shapes from mill products.

Because it cannot be readily produced by reduction of its dioxide,[12] titanium metal is obtained by reduction of TiCl4 with magnesium metal in the Kroll process. The complexity of this batch production in the Kroll process explains the relatively high market value of titanium,[56] despite the Kroll process being less expensive than the Hunter process.[43] To produce the TiCl4 required by the Kroll process, the dioxide is subjected to carbothermic reduction in the presence of chlorine. In this process, the chlorine gas is passed over a red-hot mixture of rutile or ilmenite in the presence of carbon. After extensive purification by fractional distillation, the TiCl4 is reduced with 800 °C molten magnesium in an argon atmosphere.[10] Titanium metal can be further purified by the van Arkel–de Boer process, which involves thermal decomposition of titanium tetraiodide.

A more recently developed batch production method, the FFC Cambridge process,[57] consumes titanium dioxide powder (a refined form of rutile) as feedstock and produces titanium metal, either powder or sponge. The process involves fewer steps than the Kroll process and takes less time.[58] If mixed oxide powders are used, the product is an alloy.

Common titanium alloys are made by reduction. For example, cuprotitanium (rutile with copper added is reduced), ferrocarbon titanium (ilmenite reduced with coke in an electric furnace), and manganotitanium (rutile with manganese or manganese oxides) are reduced.[59]

2 FeTiO3 + 7 Cl2 + 6 C → 2 TiCl4 + 2 FeCl3 + 6 CO (900 °C)
TiCl4 + 2 Mg → 2 MgCl2 + Ti (1,100 °C)

About fifty grades of titanium and titanium alloys are designed and currently used, although only a couple of dozen are readily available commercially.[60] The ASTM International recognizes 31 grades of titanium metal and alloys, of which grades one through four are commercially pure (unalloyed). Those four vary in tensile strength as a function of oxygen content, with grade 1 being the most ductile (lowest tensile strength with an oxygen content of 0.18%), and grade 4 the least ductile (highest tensile strength with an oxygen content of 0.40%).[16] The remaining grades are alloys, each designed for specific properties of ductility, strength, hardness, electrical resistivity, creep resistance, specific corrosion resistance, and combinations thereof.[61]

In addition to the ASTM specifications, titanium alloys are also produced to meet aerospace and military specifications (SAE-AMS, MIL-T), ISO standards, and country-specific specifications, as well as proprietary end-user specifications for aerospace, military, medical, and industrial applications.[62]

Titanium powder is manufactured using a flow production process known as the Armstrong process[63] that is similar to the batch production Hunter process. A stream of titanium tetrachloride gas is added to a stream of molten sodium metal; the products (sodium chloride salt and titanium particles) is filtered from the extra sodium. Titanium is then separated from the salt by water washing. Both sodium and chlorine are recycled to produce and process more titanium tetrachloride.[64]

All welding of titanium must be done in an inert atmosphere of argon or helium to shield it from contamination with atmospheric gases (oxygen, nitrogen, and hydrogen).[14] Contamination causes a variety of conditions, such as embrittlement, which reduce the integrity of the assembly welds and lead to joint failure.

Commercially pure flat product (sheet, plate) can be formed readily, but processing must take into account the fact that the metal has a "memory" and tends to spring back. This is especially true of certain high-strength alloys.[65][66] Titanium cannot be soldered without first pre-plating it in a metal that is solderable.[67] The metal can be machined with the same equipment and the same processes as stainless steel.[14]

Applications

A titanium cylinder of "grade 2" quality

Titanium is used in steel as an alloying element (ferro-titanium) to reduce grain size and as a deoxidizer, and in stainless steel to reduce carbon content.[5] Titanium is often alloyed with aluminium (to refine grain size), vanadium, copper (to harden), iron, manganese, molybdenum, and other metals.[68] Titanium mill products (sheet, plate, bar, wire, forgings, castings) find application in industrial, aerospace, recreational, and emerging markets. Powdered titanium is used in pyrotechnics as a source of bright-burning particles.

Pigments, additives, and coatings

Watch glass on a black surface with a small portion of white powder
Titanium dioxide is the most commonly used compound of titanium

About 95% of all titanium ore is destined for refinement into titanium dioxide (TiO
2
), an intensely white permanent pigment used in paints, paper, toothpaste, and plastics.[19] It is also used in cement, in gemstones, as an optical opacifier in paper,[69] and a strengthening agent in graphite composite fishing rods and golf clubs.

TiO
2
powder is chemically inert, resists fading in sunlight, and is very opaque: it imparts a pure and brilliant white colour to the brown or grey chemicals that form the majority of household plastics.[7] In nature, this compound is found in the minerals anatase, brookite, and rutile.[5] Paint made with titanium dioxide does well in severe temperatures and marine environments.[7] Pure titanium dioxide has a very high index of refraction and an optical dispersion higher than diamond.[6] In addition to being a very important pigment, titanium dioxide is also used in sunscreens.[12]

Aerospace and marine

Because titanium alloys have high tensile strength to density ratio,[10] high corrosion resistance,[6] fatigue resistance, high crack resistance,[70] and ability to withstand moderately high temperatures without creeping, they are used in aircraft, armour plating, naval ships, spacecraft, and missiles.[6][7] For these applications, titanium is alloyed with aluminium, zirconium, nickel,[71] vanadium, and other elements to manufacture a variety of components including critical structural parts, fire walls, landing gear, exhaust ducts (helicopters), and hydraulic systems. In fact, about two thirds of all titanium metal produced is used in aircraft engines and frames.[72] The titanium 6AL-4V alloy accounts for almost 50% of all alloys used in aircraft applications.[73]

The Lockheed A-12 and its development the SR-71 "Blackbird" were two of the first aircraft frames where titanium was used, paving the way for much wider use in modern military and commercial aircraft. An estimated 59 metric tons (130,000 pounds) are used in the Boeing 777, 45 in the Boeing 747, 18 in the Boeing 737, 32 in the Airbus A340, 18 in the Airbus A330, and 12 in the Airbus A320. The Airbus A380 may use 77 metric tons, including about 11 tons in the engines.[74] In aero engine applications, titanium is used for rotors, compressor blades, hydraulic system components, and nacelles. An early use in jet engines was for the Orenda Iroquois in the 1950s.[75]:412

Because titanium is resistant to corrosion by sea water, it is used to make propeller shafts, rigging, and heat exchangers in desalination plants;[6] heater-chillers for salt water aquariums, fishing line and leader, and divers' knives. Titanium is used in the housings and components of ocean-deployed surveillance and monitoring devices for science and the military. The former Soviet Union developed techniques for making submarines with hulls of titanium alloys[76] forging titanium in huge vacuum tubes.[71]

Titanium is used in the walls of the Juno spacecraft's vault to shield on-board electronics.[77]

Industrial

High-purity (99.999%) titanium with visible crystallites

Welded titanium pipe and process equipment (heat exchangers, tanks, process vessels, valves) are used in the chemical and petrochemical industries primarily for corrosion resistance. Specific alloys are used in oil and gas downhole applications and nickel hydrometallurgy for their high strength (e. g.: titanium beta C alloy), corrosion resistance, or both. The pulp and paper industry uses titanium in process equipment exposed to corrosive media, such as sodium hypochlorite or wet chlorine gas (in the bleachery).[78] Other applications include ultrasonic welding, wave soldering,[79] and sputtering targets.[80]

Titanium tetrachloride (TiCl4), a colorless liquid, is important as an intermediate in the process of making TiO2 and is also used to produce the Ziegler–Natta catalyst. Titanium tetrachloride is also used to iridize glass and, because it fumes strongly in moist air, it is used to make smoke screens.[12]

Consumer and architectural

Titanium metal is used in automotive applications, particularly in automobile and motorcycle racing where low weight and high strength and rigidity are critical.[81] The metal is generally too expensive for the general consumer market, though some late model Corvettes have been manufactured with titanium exhausts,[82] and a Corvette Z06's LT4 supercharged engine uses lightweight, solid titanium intake valves for greater strength and resistance to heat.[83]

Titanium is used in many sporting goods: tennis rackets, golf clubs, lacrosse stick shafts; cricket, hockey, lacrosse, and football helmet grills, and bicycle frames and components. Although not a mainstream material for bicycle production, titanium bikes have been used by racing teams and adventure cyclists.[84]

Titanium alloys are used in spectacle frames that are rather expensive but highly durable, long lasting, light weight, and cause no skin allergies. Many backpackers use titanium equipment, including cookware, eating utensils, lanterns, and tent stakes. Though slightly more expensive than traditional steel or aluminium alternatives, titanium products can be significantly lighter without compromising strength. Titanium horseshoes are preferred to steel by farriers because they are lighter and more durable.[85]

Titanium has occasionally been used in architecture. The 42.5-m (139 foot) Monument to Yuri Gagarin, the first man to travel in space (55°42′29.7″N 37°34′57.2″E / 55.708250°N 37.582556°E / 55.708250; 37.582556), as well as the 110-m (360.9 feet) Monument to the Conquerors of Space on top of the Cosmonaut Museum in Moscow are made of titanium for the metal's attractive colour and association with rocketry.[86][87] The Guggenheim Museum Bilbao and the Cerritos Millennium Library were the first buildings in Europe and North America, respectively, to be sheathed in titanium panels.[72] Titanium sheathing was used in the Frederic C. Hamilton Building in Denver, Colorado.[88]

Because of titanium's superior strength and light weight relative to other metals (steel, stainless steel, and aluminium), and because of recent advances in metalworking techniques, its use has become more widespread in the manufacture of firearms. Primary uses include pistol frames and revolver cylinders. For the same reasons, it is used in the body of laptop computers (for example, in Apple's PowerBook line).[89]

Some upmarket lightweight and corrosion-resistant tools, such as shovels and flashlights, are made of titanium or titanium alloys.

Jewelry

Relation between voltage and color for anodized titanium. (Cateb, 2010).

Because of its durability, titanium has become more popular for designer jewelry (particularly, titanium rings).[85] Its inertness makes it a good choice for those with allergies or those who will be wearing the jewelry in environments such as swimming pools. Titanium is also alloyed with gold to produce an alloy that can be marketed as 24-carat gold because the 1% of alloyed Ti is insufficient to require a lesser mark. The resulting alloy is roughly the hardness of 14-carat gold and is more durable than pure 24-carat gold.[90]

Titanium's durability, light weight, and dent and corrosion resistance make it useful for watch cases.[85] Some artists work with titanium to produce sculptures, decorative objects and furniture.[91]

Titanium may be anodized to vary the thickness of the surface oxide layer, causing optical interference fringes and a variety of bright colors.[92] With this coloration and chemical inertness, titanium is a popular metal for body piercing.[93]

Titanium has a minor use in dedicated non-circulating coins and medals. In 1999, Gibraltar released world's first titanium coin for the millennium celebration.[94] The Gold Coast Titans, an Australian rugby league team, award a medal of pure titanium to their player of the year.[95]

Medical

Because titanium is biocompatible (non-toxic and not rejected by the body), it has many medical uses, including surgical implements and implants, such as hip balls and sockets (joint replacement) and dental implants that can stay in place for up to 20 years.[39] The titanium is often alloyed with about 4% aluminium or 6% Al and 4% vanadium.[96]

Medical screws and plate used for repair fracture of the wrist, scale is in centimeters.

Titanium has the inherent ability to osseointegrate, enabling use in dental implants that can last for over 30 years. This property is also useful for orthopedic implant applications.[39] These benefit from titanium's lower modulus of elasticity (Young's modulus) to more closely match that of the bone that such devices are intended to repair. As a result, skeletal loads are more evenly shared between bone and implant, leading to a lower incidence of bone degradation due to stress shielding and periprosthetic bone fractures, which occur at the boundaries of orthopedic implants. However, titanium alloys' stiffness is still more than twice that of bone, so adjacent bone bears a greatly reduced load and may deteriorate.[97][98]

Because titanium is non-ferromagnetic, patients with titanium implants can be safely examined with magnetic resonance imaging (convenient for long-term implants). Preparing titanium for implantation in the body involves subjecting it to a high-temperature plasma arc which removes the surface atoms, exposing fresh titanium that is instantly oxidized.[39]

Titanium is used for the surgical instruments used in image-guided surgery, as well as wheelchairs, crutches, and any other products where high strength and low weight are desirable.

Titanium dioxide nanoparticles are widely used in electronics and the delivery of pharmaceuticals and cosmetics.[99]

Nuclear waste storage

Because of it is corrosion resistance, containers made of titanium have been studied for the long-term storage of nuclear waste. Containers lasting more than 100,000 years are thought possible with manufacturing conditions that minimize material defects.[100] A titanium "drip shield" could also be installed over containers of other types to enhance their longevity.[101]

Bioremediation

The fungal species Marasmius oreades and Hypholoma capnoides can bioconvert titanium in titanium polluted soils.[102]

Precautions

The dark green dentated elliptic leaves of a nettle
Nettles contain up to 80 parts per million of titanium.

Titanium is non-toxic even in large doses and does not play any natural role inside the human body.[22] An estimated quantity of 0.8 milligrams of titanium is ingested by humans each day, but most passes through without being absorbed in the tissues.[22] It does, however, sometimes bio-accumulate in tissues that contain silica. One study indicates a possible connection between titanium and yellow nail syndrome.[103] An unknown mechanism in plants may use titanium to stimulate the production of carbohydrates and encourage growth. This may explain why most plants contain about 1 part per million (ppm) of titanium, food plants have about 2 ppm, and horsetail and nettle contain up to 80 ppm.[22]

As a powder or in the form of metal shavings, titanium metal poses a significant fire hazard and, when heated in air, an explosion hazard.[104] Water and carbon dioxide are ineffective for extinguishing a titanium fire; Class D dry powder agents must be used instead.[7]

When used in the production or handling of chlorine, titanium should not be exposed to dry chlorine gas because it may result in a titanium–chlorine fire.[105] Even wet chlorine presents a fire hazard when extreme weather conditions cause unexpected drying.

Titanium can catch fire when a fresh, non-oxidized surface comes in contact with liquid oxygen.[106] Fresh metal may be exposed when the oxidized surface is struck or scratched with a hard object, or when mechanical strain causes a crack. This poses a limitation to its use in liquid oxygen systems, such as those in the aerospace industry. Because titanium tubing impurities can cause fires when exposed to oxygen, titanium is prohibited in gaseous oxygen respiration systems. Steel tubing is used for high pressure systems (3,000 p.s.i.) and aluminium tubing for low pressure systems.

See also

References

  1. ^ "titanium - definition of titanium in English | Oxford Dictionaries". Oxford University Press. 2017. Retrieved 2017-03-28.
  2. ^ Meija, J.; et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". Pure and Applied Chemistry. 88 (3): 265–91. doi:10.1515/pac-2015-0305.
  3. ^ Andersson, N.; et al. (2003). "Emission spectra of TiH and TiD near 938 nm" (PDF). J. Chem. Phys. 118: 10543. Bibcode:2003JChPh.118.3543A. doi:10.1063/1.1539848.
  4. ^ Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E110. ISBN 0-8493-0464-4.
  5. ^ a b c d e f g h i "Titanium". Encyclopædia Britannica. 2006. Retrieved 29 December 2006.
  6. ^ a b c d e f g h i j k l m Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5.
  7. ^ a b c d e f g h i Krebs, Robert E. (2006). The History and Use of Our Earth's Chemical Elements: A Reference Guide (2nd ed.). Westport, CT: Greenwood Press. ISBN 978-0-313-33438-2.
  8. ^ Donachie 1988, p. 11
  9. ^ a b Barksdale 1968, p. 738
  10. ^ a b c d e f "Titanium". Columbia Encyclopedia (6th ed.). New York: Columbia University Press. 2000–2006. ISBN 978-0-7876-5015-5. Archived from the original on 18 November 2011.
  11. ^ a b c Barbalace, Kenneth L. (2006). "Periodic Table of Elements: Ti – Titanium". Retrieved 26 December 2006.
  12. ^ a b c d e Stwertka, Albert (1998). "Titanium". Guide to the Elements (Revised ed.). Oxford University Press. pp. 81–82. ISBN 978-0-19-508083-4.
  13. ^ Donachie 1988, Appendix J, Table J.2
  14. ^ a b c d e Barksdale 1968, p. 734
  15. ^ Puigdomenech, Ignasi (2004) Hydra/Medusa Chemical Equilibrium Database and Plotting Software, KTH Royal Institute of Technology.
  16. ^ a b c d e Emsley 2001, p. 453
  17. ^ Casillas, N.; Charlebois, S.; Smyrl, W. H.; White, H. S. (1994). "Pitting Corrosion of Titanium". J. Electrochem. Soc. 141 (3): 636–642. doi:10.1149/1.2054783.
  18. ^ Forrest, A. L. (1981). "Effects of Metal Chemistry on Behavior of Titanium in Industrial Applications". Industrial Applications of Titanium and Zirconium. p. 112.
  19. ^ a b c d United States Geological Survey. "USGS Minerals Information: Titanium".
  20. ^ a b c Barksdale 1968, p. 732
  21. ^ Buettner, K. M.; Valentine, A. M. (2012). "Bioinorganic Chemistry of Titanium". Chemical Reviews. 112 (3): 1863. doi:10.1021/cr1002886. PMID 22074443.
  22. ^ a b c d e Emsley 2001, p. 451
  23. ^ Titanium. Mindat
  24. ^ Greenwood 1997, p. 958
  25. ^ Greenwood 1997, p. 970
  26. ^ Liu, Gang; Huang, Wan-Xia; Yi, Yong (26 June 2013). "Preparation and Optical Storage Properties of λTi3O5 Powder". Journal of Inorganic Materials (in Chinese). 28 (4): 425–430. doi:10.3724/SP.J.1077.2013.12309.
  27. ^ Bonardi, Antonio; Pühlhofer, Gerd; Hermanutz, Stephan; Santangelo, Andrea (2014). "A new solution for mirror coating in $γ$-ray Cherenkov Astronomy" (Submitted manuscript). Experimental Astronomy. 38: 1–9. arXiv:1406.0622. Bibcode:2014ExA....38....1B. doi:10.1007/s10686-014-9398-x.
  28. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 962. ISBN 0-08-037941-9.
  29. ^ Saha, Naresh (1992). "Titanium nitride oxidation chemistry: An x-ray photoelectron spectroscopy study". Journal of Applied Physics. no. 7 (7): 3072–3079. Bibcode:1992JAP....72.3072S. doi:10.1063/1.351465.
  30. ^ Schubert, E.F. "The hardness scale introduced by Friederich Mohs" (PDF). Archived from the original on 3 June 2010.
  31. ^ Truini, Joseph (May 1988). "Drill Bits". Popular Mechanics. 165 (5): 91. ISSN 0032-4558.
  32. ^ Baliga, B. Jayant (2005). Silicon carbide power devices. World Scientific. p. 91. ISBN 978-981-256-605-8.
  33. ^ "Titanium carbide product information". H. C. Starck. Retrieved 16 November 2015.
  34. ^ Seong, S.; et al. (2009). Titanium: industrial base, price trends, and technology initiatives. Rand Corporation. p. 10. ISBN 978-0-8330-4575-1.
  35. ^ Johnson, Richard W. (1998). The Handbook of Fluid Dynamics. Springer. pp. 38–21. ISBN 978-3-540-64612-9.
  36. ^ Coates, Robert M.; Paquette, Leo A. (2000). Handbook of Reagents for Organic Synthesis. John Wiley and Sons. p. 93. ISBN 978-0-470-85625-3.
  37. ^ Hartwig, J. F. (2010) Organotransition Metal Chemistry, from Bonding to Catalysis. University Science Books: New York. ISBN 189138953X
  38. ^ Tshuva, Edit Y.; Miller, Maya (2018). "Chapter 8. Coordination Complexes of Titanium(IV) for Anticancer Therapy". In Sigel, Astrid; Sigel, Helmut; Freisinger, Eva; Sigel, Roland K. O. Metallo-Drugs: Development and Action of Anticancer Agents. 18. Berlin: de Gruyter GmbH. pp. 219–250. doi:10.1515/9783110470734-014. ISBN 9783110470734.
  39. ^ a b c d e f g h Emsley 2001, p. 452
  40. ^ Gregor, William (1791) "Beobachtungen und Versuche über den Menakanit, einen in Cornwall gefundenen magnetischen Sand" (Observations and experiments regarding menaccanite [i.e., ilmenite], a magnetic sand found in Cornwall), Chemische Annalen …, 1, pp. 40–54, 103–119.
  41. ^ Gregor, William (1791) "Sur le menakanite, espèce de sable attirable par l'aimant, trouvé dans la province de Cornouilles" (On menaccanite, a species of magnetic sand, found in the county of Cornwall), Observations et Mémoires sur la Physique, 39: 72–78, 152–160.
  42. ^ Klaproth, Martin Heinrich (1795) "Chemische Untersuchung des sogenannten hungarischen rothen Schörls" (Chemical investigation of the so-called Hungarian red tourmaline [rutile]) in: Beiträge zur chemischen Kenntniss der Mineralkörper (Contributions to the chemical knowledge of mineral substances), vol. 1, (Berlin, (Germany): Heinrich August Rottmann, 233–244. From page 244: "Diesem zufolge will ich den Namen für die gegenwärtige metallische Substanz, gleichergestalt wie bei dem Uranium geschehen, aus der Mythologie, und zwar von den Ursöhnen der Erde, den Titanen, entlehnen, und benenne also diese neue Metallgeschlecht: Titanium; … " (By virtue of this I will derive the name for the present metallic substance — as happened similarly in the case of uranium — from mythology, namely from the first sons of the Earth, the Titans, and thus [I] name this new species of metal: "titanium"; … )
  43. ^ a b c Roza 2008, p. 9
  44. ^ a b Greenwood 1997, p. 955
  45. ^ van Arkel, A. E.; de Boer, J. H. (1925). "Preparation of pure titanium, zirconium, hafnium, and thorium metal". Zeitschrift für anorganische und allgemeine Chemie. 148: 345–50. doi:10.1002/zaac.19251480133.
  46. ^ Yanko, Eugene; Omsk VTTV Arms Exhibition and Military Parade JSC (2006). "Submarines: general information". Retrieved 2 February 2015.
  47. ^ Stainless Steel World (July–August 2001). "VSMPO Stronger Than Ever" (PDF). KCI Publishing B.V. pp. 16–19. Retrieved 2 January 2007.
  48. ^ National Materials Advisory Board, Commission on Engineering and Technical Systems (CETS), National Research Council (1983). Titanium: Past, Present, and Future. Washington, D.C.: national Academy Press. p. R9. NMAB-392.
  49. ^ "Titanium Metals Corporation. Answers.com. Encyclopedia of Company Histories". Answers Corporation. 2006. Retrieved 2 January 2007.
  50. ^ Defense National Stockpile Center (2008). Strategic and Critical Materials Report to the Congress. Operations under the Strategic and Critical Materials Stock Piling Act during the Period October 2007 through September 2008 (PDF). United States Department of Defense. p. 3304. Archived from the original on 11 February 2010.
  51. ^ Bush, Jason (15 February 2006). "Boeing's Plan to Land Aeroflot". BusinessWeek. Archived from the original on 9 April 2009. Retrieved 29 December 2006.
  52. ^ "Roskill Information Services: Global Supply of Titanium is Forecast to Increase", Titanium Metal: Market Outlook to 2015 (5th edition, 2010).
  53. ^ "ISRO's titanium sponge plant in Kerala fully commissioned". timesofindia-economictimes. Retrieved 2015-11-08.
  54. ^ DuPont (12 September 2006). "U.S. Defense Agency Awards $5.7 Million to DuPont and MER Corporation for New Titanium Metal Powder Process" (Press release). Retrieved 1 August 2009.
  55. ^ Donachie 1988, Ch. 4
  56. ^ Barksdale 1968, p. 733
  57. ^ Chen, George Zheng; Fray, Derek J.; Farthing, Tom W. (2000). "Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride". Nature. 407 (6802): 361–364. Bibcode:2000Natur.407..361C. doi:10.1038/35030069. PMID 11014188.
  58. ^ Roza 2008, p. 23
  59. ^ "Titanium". Microsoft Encarta. 2005. Archived from the original on 27 October 2006. Retrieved 29 December 2006.
  60. ^ Donachie 1988, p. 16, Appendix J
  61. ^ ASTM International (2006). Annual Book of ASTM Standards (Volume 02.04: Non-ferrous Metals). West Conshohocken, PA: ASTM International. section 2. ISBN 978-0-8031-4086-8. ASTM International (1998). Annual Book of ASTM Standards (Volume 13.01: Medical Devices; Emergency Medical Services). West Conshohocken, PA: ASTM International. sections 2 & 13. ISBN 978-0-8031-2452-3.
  62. ^ Donachie 1988, pp. 13–16, Appendices H and J
  63. ^ Roza 2008, p. 25
  64. ^ "Titanium". The Essential Chemical Industry online. York, UK: CIEC Promoting Science at the University of York. 15 January 2015.
  65. ^ AWS G2.4/G2.4M:2007 Guide for the Fusion Welding of Titanium and Titanium Alloys. Miami: American Welding Society. 2006. Archived from the original on 10 December 2010.
  66. ^ Titanium Metals Corporation (1997). Titanium design and fabrication handbook for industrial applications. Dallas: Titanium Metals Corporation. Archived from the original on 9 February 2009.
  67. ^ "Solderability". Retrieved 16 June 2011.
  68. ^ Hampel, Clifford A. (1968). The Encyclopedia of the Chemical Elements. Van Nostrand Reinhold. p. 738. ISBN 978-0-442-15598-8.
  69. ^ Smook, Gary A. (2002). Handbook for Pulp & Paper Technologists (3rd ed.). Angus Wilde Publications. p. 223. ISBN 978-0-9694628-5-9.
  70. ^ Moiseyev, Valentin N. (2006). Titanium Alloys: Russian Aircraft and Aerospace Applications. Taylor and Francis, LLC. p. 196. ISBN 978-0-8493-3273-9.
  71. ^ a b Kramer, Andrew E. (5 July 2013). "Titanium Fills Vital Role for Boeing and Russia". The New York Times. Retrieved 6 July 2013.
  72. ^ a b Emsley 2001, p. 454
  73. ^ Donachie 1988, p. 13
  74. ^ Sevan, Vardan (23 September 2006). "Rosoboronexport controls titanium in Russia". Sevanco Strategic Consulting. Archived from the original on 11 November 2012. Retrieved 26 December 2006.
  75. ^ "Iroquois" a 1957 Flight article
  76. ^ "GlobalSecurity". GlobalSecurity.org. April 2006. Retrieved 23 April 2008.
  77. ^ Scharf, Caleb A. (June 17, 2016) The Jupiter Vault. Scientific American.
  78. ^ Donachie 1988, pp. 11–16
  79. ^ Kleefisch, E.W., ed. (1981). Industrial Application of Titanium and Zirconium. West Conshohocken, PA: ASTM International. ISBN 978-0-8031-0745-8.
  80. ^ Bunshah, Rointan F., ed. (2001). "Ch. 8". Handbook of Hard Coatings. Norwich, NY: William Andrew Inc. ISBN 978-0-8155-1438-1.
  81. ^ Bell, Tom; et al. (2001). Heat Treating. Proceedings of the 20th Conference, 9–12 October 2000. ASM International. p. 141. ISBN 978-0-87170-727-7.
  82. ^ National Corvette Museum (2006). "Titanium Exhausts". Archived from the original on 3 January 2013. Retrieved 26 December 2006.
  83. ^ Compact Powerhouse: Inside Corvette Z06’s LT4 Engine 650-hp supercharged 6.2L V-8 makes world-class power in more efficient package. media.gm.com. 20 August 2014
  84. ^ Davis, Joseph R. (1998). Metals Handbook. ASM International. p. 584. ISBN 978-0-87170-654-6.
  85. ^ a b c Donachie 1988, pp. 11, 255
  86. ^ Gruntman, Mike (2004). Blazing the Trail: The Early History of Spacecraft and Rocketry. Reston, VA: American Institute of Aeronautics and Astronautics. p. 457. ISBN 978-1-56347-705-8.
  87. ^ Lütjering, Gerd; Williams, James Case (12 June 2007). "Appearance Related Applications". Titanium. ISBN 978-3-540-71397-5.
  88. ^ "Denver Art Museum, Frederic C. Hamilton Building". SPG Media. 2006. Retrieved 26 December 2006.
  89. ^ "Apple PowerBook G4 400 (Original – Ti) Specs". everymac.com. Retrieved 8 August 2009.
  90. ^ Gafner, G. (1989). "The development of 990 Gold-Titanium: its Production, use and Properties" (PDF). Gold Bulletin. 22 (4): 112–122. doi:10.1007/BF03214709. Archived from the original on 29 November 2010.
  91. ^ "Fine Art and Functional Works in Titanium and Other Earth Elements". Archived from the original on 13 May 2008. Retrieved 8 August 2009.
  92. ^ Alwitt, Robert S. (2002). "Electrochemistry Encyclopedia". Archived from the original on 2 July 2008. Retrieved 30 December 2006.
  93. ^ "Body Piercing Safety". doctorgoodskin.com. Retrieved 1 August 2009.
  94. ^ "World Firsts | British Pobjoy Mint". www.pobjoy.com. Retrieved 2017-11-11.
  95. ^ Turgeon, Luke (20 September 2007). "Titanium Titan: Broughton immortalised". The Gold Coast Bulletin. Archived from the original on 28 September 2013.
  96. ^ "Orthopaedic Metal Alloys". Totaljoints.info. Retrieved 27 September 2010.
  97. ^ "Titanium foams replace injured bones". Research News. 1 September 2010. Retrieved 27 September 2010.
  98. ^ Lavine, Marc S., Make no bones about titanium, Science Magazine, 2018.01.08, Volume 359, Issue 6372, pp. 173-174 DOI: 10.1126/science.359.6372.173-f
  99. ^ Pinsino, Annalisa; Russo, Roberta; Bonaventura, Rosa; Brunelli, Andrea; Marcomini, Antonio; Matranga, Valeria (2015-09-28). "Titanium dioxide nanoparticles stimulate sea urchin immune cell phagocytic activity involving TLR/p38 MAPK-mediated signalling pathway". Scientific Reports. 5: 14492. Bibcode:2015NatSR...514492P. doi:10.1038/srep14492. PMC 4585977. PMID 26412401.
  100. ^ Shoesmith, D. W.; Noel, J. J.; Hardie, D.; Ikeda, B. M. (2000). "Hydrogen Absorption and the Lifetime Performance of Titanium Nuclear Waste Containers". Corrosion Reviews. 18 (4–5). doi:10.1515/CORRREV.2000.18.4-5.331.
  101. ^ Carter, L. J.; Pigford, T. J. (2005). "Proof of Safety at Yucca Mountain". Science. 310 (5747): 447. doi:10.1126/science.1112786. PMID 16239463.
  102. ^ Elekes, Carmen Cristina; Busuioc, Gabriela. "The Mycoremediation of Metals Polluted Soils Using Wild Growing Species of Mushrooms" (PDF). Engineering Education. Archived from the original (PDF) on 3 March 2016. Retrieved 28 January 2014.
  103. ^ Berglund, Fredrik; Carlmark, Bjorn (October 2011). "Titanium, Sinusitis, and the Yellow Nail Syndrome". Biological Trace Element Research. 143 (1): 1–7. doi:10.1007/s12011-010-8828-5. PMC 3176400. PMID 20809268.
  104. ^ Cotell, Catherine Mary; Sprague, J. A.; Smidt, F. A. (1994). ASM Handbook: Surface Engineering (10th ed.). ASM International. p. 836. ISBN 978-0-87170-384-2.
  105. ^ Compressed Gas Association (1999). Handbook of compressed gases (4th ed.). Springer. p. 323. ISBN 978-0-412-78230-5.
  106. ^ Solomon, Robert E. (2002). Fire and Life Safety Inspection Manual. National Fire Prevention Association (8th ed.). Jones & Bartlett Publishers. p. 45. ISBN 978-0-87765-472-8.

Bibliography

External links