توابع مثلثاتی

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به ناوبری پرش به جستجو
فارسیEnglish

در ریاضیات، منظور از توابع مثلثاتی شش تابع سینوس، کسینوس، تانژانت، کتانژانت، سکانت و کسکانت است که این توابع رابطهٔ میان زاویه‌ها و ضلع‌های یک مثلث قائم‌الزاویه را نشان می‌دهند و به همین دلیل توابع مثلثاتی نامیده می‌شوند. قدمت اولین متن‌های به جا مانده از توابع مثلثاتی به دوران پیش از میلاد در مصر و یونان بازمی‌گردد. قضیهٔ تالس توسط تالس در سدهٔ ششم پیش از میلاد در مصر مطرح شد، همچنین از قضیهٔ فیثاغورس به عنوان سنگ بنای مثلثات یاد می‌شود. علاوه بر مصر و یونان، کشورهای دیگری از جمله چین، هند، کشورهای اسلامی و کشورهای اروپایی پیشبردهای مطرحی در زمینه مثلثات داشتند که می‌توان به افرادی چون خوارزمی، بتانی، ابوالوفا محمد بوزجانی، شن کو، گو شوجینگ و رتیکوس اشاره کرد.

تعاریف متفاوتی از توابع مثلثاتی بیان شده‌است، ساده‌ترین آن‌ها بر پایهٔ دایرهٔ واحد است که در این تعریف دایره‌ای با شعاع ۱ ترسیم می‌شود و شعاعی با زاویهٔ مشخص نسبت به محور افقی روی آن رسم شده و یک مثلث را تشکیل می‌دهد. هر یک از توابع مثلثاتی را می‌توان با پاره‌خطی در این دایره نشان داد. تعاریف دیگری از توابع مثلثاتی نیز بر پایهٔ انتگرال، سری توانی و معادلهٔ دیفرانسیل بیان شده‌است که هر یک از آن‌ها کاربرد خاص خود را دارند. برای نمونه در تعریف بر پایهٔ سری توانی، از سری مکلورن استفاده می‌شود که در محاسبهٔ مقدار تقریبی آن‌ها توابع مثلثاتی استفاده فراوان دارد.

توابع مثلثاتی بر روی یک زاویه عملیات انجام می‌دهند و یک عدد حقیقی را برمی‌گردانند و هر یک از آن‌ها ویژگی‌های خاص خود را دارند، از جمله زوج یا فرد بودن، متناوب بودن، پیوسته بودن، متعامد بودن. کاربرد اصلی این تابع‌ها در محاسبهٔ اندازهٔ ضلع‌ها و زاویه‌های یک مثلث و سایر عوامل مرتبط با آن‌ها است. این کاربرد، در دانش‌های مختلفی مانند نقشه‌برداری، ناوبری و زمینه‌های گوناگون فیزیک مورد استفاده قرار می‌گیرد. در نقشه‌برداری، با استفاده از اندازه‌گیری زاویهٔ یک نقطه نسبت به دو نقطه معین، مختصات آن نقطه را محاسبه می‌کنند که امروزه از این روش برای اندازه‌گیری سه‌بعدی نوری استفاده می‌شود یا در ناوبری، تنظیم خط سیر کشتی‌ها و سایر شناورها بر پایهٔ اجسام ثابت مانند فانوس دریایی با بهره‌گیری از توابع مثلثاتی انجام می‌شود. هم‌چنین به علت خاصیت تناوبی بودن این تابع‌ها، از آن‌ها در مدل‌سازی فرایندهای نوسانی مانند نور و موج استفاده می‌شود. برای نمونه قانون اسنل بنیادی‌ترین کاربرد توابع مثلثاتی است که در پدیدهٔ شکست نور به کار می‌رود. از دیگر کاربردهای توابع مثلثاتی می‌توان به استفاده آن در صنعت برق و مخابرات اشاره کرد. از جمله کاربرد امواج سینوسی در جریان‌های متناوب و همچنین انواع مدولاسیون که برپایه همین امواج سینوسی انجام می‌شود.

تاریخچه[ویرایش]

نمونه‌ای از جداول نجومی خوارزمی

شواهد به کارگیری توابع مثلثاتی در زمینه‌های گوناگون، به ویژه در نجوم، در بسیاری از متون به جا مانده از دوران پیش از میلاد از جمله در یونان و مصر وجود دارد. یکی از کهن‌ترین مطالب مرتبط با مثلثات که در متون تاریخی بیان شده، قضیه تالس است. تالس که در سده ششم پیش از میلاد در مصر تحصیل می‌کرد، برای حل مسئلهٔ محاسبهٔ ارتفاع هرم خئوپس، روشی تازه را ارائه نمود که بعداً با عنوان قضیه تالس شناخته شد. می‌توان قضیهٔ فیثاغورس را سنگ بنای مثلثات دانست.[۱] در بسیاری از متون یونان باستان، کاربردهای مثلثات مورد توجه قرار گرفته‌اند. ابرخس، نخستین جدول مثلثاتی را ایجاد نمود و به همین دلیل، او را پدر مثلثات می‌نامند. منلائوس مثلثات کروی را پایه‌گذاری کرد.[۲] بطلمیوس در المجسطی، رابطهٔ سینوس و کسینوس مجموع و تفاضل دو زاویه را بیان کرد.[۳]

مطالعه در زمینهٔ توابع مثلثاتی در هند نیز رواج داشته‌است. از جمله، در کتاب سوریا سیدهانتا در سدهٔ چهارم میلادی از جدول سینوس به جای جدول وتری در نجوم استفاده شده‌است.[۴] هم‌چنین به نظر می‌رسد که نام‌های سینوس و کسینوس، تغییر یافتهٔ توابع جیا و کوتیجیا در نجوم دوره گوپتای هند باشند. مدهاوه در سدهٔ چهاردهم سری تیلور تابع‌های سینوس، کسینوس و تانژانت را به دست آورد.[۲]

دوران طلایی اسلام، تأثیر قابل توجهی بر پیشرفت علوم ریاضی و از جملهٔ آن‌ها مثلثات داشت. خوارزمی، جدول‌های نجومی و مثلثاتی (مربوط به سینوس و تانژانت) را تهیه کرد.[۵] مروزی جدول کتانژانت را تهیه کرد. در آثار بتانی در سدهٔ سوم شمسی (سدهٔ نهم میلادی)، مثلثات به‌طور وسیعی به کار رفته‌است که از جمله می‌توان به جدول کسکانت اشاره کرد. ابوالوفا محمد بوزجانی در سدهٔ چهارم شمسی (سدهٔ دهم میلادی)، قانون سینوس‌ها را به دست آورد.[۶] ابوریحان بیرونی مثلث‌سازی را برای تهیهٔ نقشه به کار گرفت. در پایان سدهٔ یازدهم، عمر خیام معادلات درجهٔ سوم را با حل عددی تقریبی که از درونیابی جداول مثلثاتی به دست می‌آمد، حل کرد. هم‌چنین غیاث‌الدین جمشید کاشانی در سدهٔ پانزدهم میلادی، سینوس زاویهٔ °۱ را با حل معادلهٔ درجهٔ ۳ برحسب زاویهٔ °۳ تا ۱۷ رقم اعشار محاسبه کرد.[۷]

دانشمندان چینی چندان به مطالعهٔ مثلثات نمی‌پرداختند. دو ریاضی‌دان چینی با نام شن کو و گو شوجینگ مطالعاتی را در زمینه توابع مثلثاتی انجام دادند. برای نمونه، شن کو یک رابطهٔ تقریبی برای محاسبهٔ طول کمان برحسب قطر دایره، زه و طول وتر به دست آورد.[۸]

احتمالاً رتیکوس نخستین شخص اروپایی بود که در سدهٔ شانزدهم میلادی، توابع مثلثاتی را به جای دایره برحسب زاویهٔ قائمه تعریف کرد و جدول‌های هر شش تابع را تهیه نمود. مقالهٔ اویلر در ۱۷۴۸ میلادی به عنوان پایه‌گذار اصلی رفتار تحلیلی با توابع مثلثاتی در اروپا دانسته می‌شود. اویلر توابع مثلثاتی را به صورت سری نامتناهی تعریف کرد و فرمول اویلر را ارائه نمود.[۲]

نام‌گذاری[ویرایش]

در متون سانسکریت، از نام‌های جیوا (به معنی وتر) و کوجیوا برای نام‌گذاری دو تابع اصلی مثلثاتی (سینوس و کسینوس) استفاده می‌شد. در برگرداندن به زبان عربی، جیوا به جیب تبدیل شد[۲] که البته در فارسی هم مورد استفاده قرار گرفت.[۹] دانشمندان مسلمان، سایر توابع مثلثاتی را نیز می‌شناختند و آن‌ها را نام‌گذاری کرده‌بودند. جدول زیر، نام‌های به کار رفته برای توابع مثلثاتی در متون دانشمندان مسلمان را نشان می‌دهد:[۱۰]

نام قدیم در فارسی معنی نام نام امروزی
جَیْب گریبان سینوس
جَیْبِ تمام گریبان پُر کُسینوس
ظِلّ، ظِلِّ معکوس سایه تانژانت
ظِلِّ تمام، ظِلِّ مُسْتَوی سایهٔ پُر کُتانژانت
قاطع، قطر ظِلّ بُرنده سِکانت
قاطع تمام بُرندهٔ پُر کُسکانت

دانشمندان اروپایی که متن‌های عربی را به لاتین ترجمه می‌کردند، جیب را به صورت جَیب می‌خواندند (که به معنی خلیج است). بنابراین آن را به سینوس (که واژه‌ای لاتینی به معنی خلیج است) برگرداندند.[۲]

تعریف بر پایهٔ مثلث قائم‌الزاویه[ویرایش]

شکل روبرو، یک مثلث قائم‌الزاویه را نشان می‌دهد که از سه ضلع a و b و c و زاویه‌های A و B و C تشکیل شده‌است. زاویهٔ C برابر ۹۰ درجه است و دو زاویهٔ دیگر، زاویهٔ تند و متمم هستند، به عبارت دیگر، مجموع دو زاویه برابر ۹۰ درجه است. ضلع روبرو به زاویهٔ C را وتر می‌نامند (که در شکل روبرو با نماد c نشان داده شده‌است). دو ضلع دیگر که زاویهٔ قائمه را تشکیل می‌دهند نیز شامل ضلع مجاور زاویهٔ A (و مقابل زاویهٔ B که با حرف b نشان داده می‌شود) و ضلع مقابل زاویهٔ A (و مجاور زاویهٔ B که با حرف a نشان داده می‌شود) هستند. به این ترتیب، توابع اصلی مثلثاتی برای زاویهٔ A به صورت زیر تعریف می‌شوند:[۱۱][۱۲]

یک مثلث قائم‌الزاویه را نشان می‌دهد که از سه ضلع a و b و c و زاویه‌های A و B و C تشکیل شده‌است
  • سینوس زاویهٔ A برابر است با نسبت ضلع مقابل آن به وتر. به بیان ریاضی:
  • کسینوس زاویهٔ A برابر است با نسبت ضلع مجاور آن به وتر. به بیان ریاضی:
  • تانژانت زاویهٔ A نیز به صورت نسبت ضلع مقابل به ضلع مجاور این زاویه محاسبه می‌شود:

بر پایه قضیهٔ تشابه هندسی، اگر دو مثلث دارای زاویه‌های برابر باشند، نسبت ضلع‌هایشان با یکدیگر برابر است. در نتیجه، توابع مثلثاتی که نسبت میان ضلع‌های مثلث را نشان می‌دهند، وابسته به اندازهٔ ضلع‌ها نیستند و مقدار آن‌ها با تغییر اندازهٔ ضلع‌ها تغییر نمی‌کند.

می‌توان برای زاویهٔ B نیز توابع مثلثاتی را به همین ترتیب محاسبه نمود. ضلع مجاور زاویهٔ B (ضلع a) همان ضلع مقابل زاویهٔ A است و ضلع مقابل زاویهٔ B (ضلع b) نیز ضلع مجاور زاویهٔ A می‌باشد؛ بنابراین می‌توان چنین گفت که سینوس زاویهٔ B برابر با کسینوس زاویهٔ A است و برعکس. رابطه سینوس و کسینوس دو زاویهٔ متمم به زبان ریاضی، به صورت زیر است:

با افزایش مقدار زاویهٔ A از صفر تا ۹۰ درجه، به تدریج اندازهٔ ضلع مجاور آن کاهش و اندازهٔ ضلع مقابل، افزایش می‌یابد. هنگامی که این مقدار به ۹۰ درجه نزدیک شود، مقدار ضلع مجاور به صفر نزدیک می‌شود. در نتیجه کسینوس زاویهٔ A (نسبت ضلع مجاور به وتر) به صفر میل می‌کند. از سوی دیگر، مقدار ضلع مقابل به وتر نزدیک می‌شود. (البته بر پایهٔ قضیهٔ فیثاغورس، وتر همواره از دو ضلع دیگر بزرگ‌تر است) در نتیجه، سینوس زاویهٔ A (نسبت ضلع مقابل به وتر) به ۱ میل می‌کند. به‌طور کلی، مقدار سینوس و کسینوس یک زاویه در مثلث قائم‌الزاویه، عددی در بازه صفر و یک است. تغییرات تانژانت زاویهٔ A را نیز به همین ترتیب می‌توان دنبال کرد. در نزدیکی ۹۰ درجه، تانژانت A (که نسبت سینوس به کسینوس زاویهٔ A است) به سمت بی‌نهایت میل می‌کند و با نزدیک شدن به صفر، مقدار آن به صفر نزدیک می‌شود؛ بنابراین مقدار تانژانت یک زاویه، عددی مثبت (از صفر تا بی‌نهایت) خواهد بود.

سه تابع دیگر مثلثاتی را می‌توان به عنوان عکس سه تابع بالا تعریف نمود:

سکانت (معکوس کسینوس):
کسکانت (معکوس سینوس):
کتانژانت (معکوس تانژانت):

رابطه میان دو زاویهٔ متمم، مانند آنچه که بالاتر در مورد سینوس و کسینوس گفته شد، در مورد سایر توابع مثلثاتی نیز برقرار است.

به‌طور خلاصه، رابطهٔ میان توابع مثلثاتی و ضلع‌های مثلث قائم‌الزاویه را می‌توان در جدول زیر نشان داد:[۱۳]

نام تعریف رابطه
سینوس سینوس یک زاویه برابر است با نسبت ضلع مقابل آن زاویه به وتر sinA = ضلع مقابل/وتر
کسینوس کسینوس یک زاویه برابر است با نسبت ضلع مجاور آن زاویه به وتر cosA = ضلع مجاور/وتر
تانژانت تانژانت یک زاویه برابر است با نسبت ضلع مقابل آن زاویه به ضلع مجاور tanA = ضلع مقابل/ضلع مجاور
کتانژانت کتانژانت یک زاویه برابر است با نسبت ضلع مجاور آن زاویه به ضلع مقابل (عکس تانزانت) cotA = ضلع مجاور/ضلع مقابل
سکانت سکانت یک زاویه برابر است با نسبت وتر به ضلع مجاور آن زاویه (عکس کسینوس) secA = وتر/ضلع مجاور
کسکانت کسکانت یک زاویه برابر است با نسبت وتر به ضلع مقابل آن زاویه (عکس سینوس) cscA = وتر/ضلع مقابل

مقدار توابع مثلثاتی برای زاویه‌های خاص[ویرایش]

مقادیر سینوس و کسینوس برای زوایای خاص روی دایرهٔ واحد.

برای بعضی زاویه‌ها می‌توان به سادگی مقدار توابع مثلثاتی را به دست آورد.[۱۴][۱۵]

در زاویهٔ صفر، سینوس برابر صفر و کسینوس برابر ۱ است. عکس آن در زاویهٔ ۹۰ درجه، کسینوس صفر و سینوس ۱ می‌باشد؛ بنابراین:

مثلث قائم‌الزاویه‌ای که یک زاویهٔ °۴۵ داشته باشد، زاویهٔ تند دیگر آن نیز °۴۵ است و مثلث قائم‌الزاویهٔ متساوی‌الساقین نامیده می‌شود. در این مثلث، بر پایه قضیهٔ فیثاغورس اندازه وتر، ۲√ برابر اندازهٔ هر یک از دو ساق است؛ بنابراین:

نشان دادن نحوهٔ محاسبهٔ سینوس زاویهٔ ۳۰ درجه با استفاده از مثلث متساوی‌الاضلاع.

با استفاده از ویژگی‌های مثلث متساوی‌الاضلاع (شکل روبرو) می‌توان نشان داد که ضلع روبرو به زاویهٔ °۳۰، نصف وتر است؛ بنابراین:

به همین ترتیب، اندازهٔ ضلع دیگر نیز با استفاده از قضیهٔ فیثاغورس برابر ۳/۲√ به دست می‌آید. در نتیجه:

سایر توابع مثلثاتی این زاویه‌ها نیز با استفاده از رابطه‌های داده‌شده، محاسبه می‌شوند.

مقدار توابع مثلثاتی در زاویه‌های تند در جدول زیر خلاصه شده‌است:

تابع ۰° ۱۵° (π/۱۲) ۳۰° (π/۶) ۴۵° (π/۴) ۶۰° (π/۳) ۹۰° (π/۲)
سینوس ۰ (۳–۱√)۲√/۴ ۱/۲ √۲/۲ √۳/۲ ۱
کسینوس ۱ (۳+۱√)۲√/۴ √۳/۲ √۲/۲ ۱/۲ ۰
تانژانت ۰ ۳√-۲ √۳/۳ ۱ ۳√ ∞+
کتانژانت ∞+ ۳√+۲ ۳√ ۱ √۳/۳ ۰
سکانت ۱ (۳–۱√)۲√ ۲ ۲√ √۳/۶ ∞+
کسکانت ∞+ (۳+۱√)۲√ ۲ ۲√ √۳/۲ ۱

یکای اندازه‌گیری[ویرایش]

واحد مقدار
درجه ۰° ۳۰° ۴۵° ۶۰° ۹۰° ۱۸۰° ۲۷۰° ۳۶۰°
رادیان ۰ π/۶ π/۴ π/۳ π/۲ π ۳π/۲ ۲π
گراد ۰g ۱۰۰/۳g ۵۰g ۲۰۰/۳g ۱۰۰g ۲۰۰g ۳۰۰g ۴۰۰g
دور ۰ ۱/۱۲ ۱/۸ ۱/۶ ۱/۴ ۱/۲ ۳/۴ ۱

چند یکای بی‌بعد برای اندازه‌گیری زاویه وجود دارد.

  • درجه: یکایی است که از گذشتهٔ دور مورد استفاده قرار گرفته‌است. مقدار این یکا با تقسیم‌بندی یک دایره به ۳۶۰ قسمت مساوی به دست می‌آید. به بیان دیگر، یک درجه برابر با زاویهٔ روبرو به کمانی است که اندازهٔ آن، ۱/۳۶۰ محیط دایره باشد.
  • رادیان: یکای مورد استفاده در محاسبات مربوط به مثلثات است. یک رادیان برابر با زاویهٔ روبرو به کمانی است که طول آن برابر با طول شعاع دایره متناظر باشد. طبق این تعریف، یک دایرهٔ کامل برابر ۲π رادیان (۶٫۲۸۳۲ رادیان) است.[۱۶][۱۷]
  • گراد: یک دایرهٔ کامل ۴۰۰ گراد است. به بیان دیگر، گراد یک‌صدم ربع دایره است. کاربرد عمدهٔ گراد در محاسبات نقشه‌برداری است.[۱۸]
  • دور: یک دور معادل یک دایرهٔ کامل و برابر با ۳۶۰ درجه یا ۲π رادیان است.

در محاسبات ریاضی که شامل توابع مثلثاتی هستند (مانند معادلات دیفرانسیل و انتگرال)، از یکای رادیان استفاده می‌شود.[۱۹][۲۰]

تعریف بر پایهٔ دایرهٔ واحد[ویرایش]

نمایش توابع مثلثاتی زاویه θ روی دایرهٔ واحد مثلثاتی
توابع مثلثاتی در مختصات دکارتی: سینوس، کسینوس، تانژانت، کسکانت (خط‌چین)، سکانت (خط‌چین) و کتانژانت (خط‌چین)

شکل روبرو، یک دایرهٔ واحد را نشان می‌دهد که توابع مثلثاتی زاویهٔ θ روی آن رسم شده‌اند. هنگامی که شعاع OA با زاویهٔ θ نسبت به محور افقی روی دایره زده شود، می‌توان مقدار توابع مثلثاتی را به صورت اندازهٔ پاره‌خط‌هایی مشخص به دست آورد. مقدار توابع سینوس و کسینوس با پاره‌خط‌هایی (به ترتیب به رنگ قرمز و آبی) روی دو محور اصلی مختصات رسم شده‌اند. به بیان دیگر، تصویر پاره‌خط OA روی محور افقی برابر با کسینوس θ و تصویر آن روی محور عمودی برابر با سینوس θ است. اندازهٔ پاره‌خطی (به رنگ قهوه‌ای کمرنگ) که مماس بر دایره از نقطه A تا محور افقی امتداد دارد، تانژانت θ است. امتداد همین پاره‌خط از نقطه A تا محور عمودی (به رنگ نارنجی) نیز کتانژانت θ را نشان می‌دهد. به همین ترتیب، می‌توان مقدار سکانت و کسکانت زاویهٔ θ را نیز محاسبه کرد.[۲۱]

در دایرهٔ واحد، امکان محاسبهٔ توابع مثلثاتی برای زاویه‌های بزرگتر از ۹۰ درجه نیز وجود دارد. مقدار توابع مثلثاتی برای هر زاویه‌ای، به شکلی مشابه بالا تعیین می‌شود. علامت یک تابع بر پایهٔ مقدار زاویه در دایرهٔ واحد بر پایه جدول زیر به دست می‌آید:[۲۲][۲۳]

تابع ربع اول ربع دوم ربع سوم ربع چهارم
سینوس
کسکانت
+ +
کسینوس
سکانت
+ +
تانژانت
کتانژانت
+ +

دوران[ویرایش]

توابع مثلثاتی برای زاویه‌های بزرگتر از °۹۰ را می‌توان با استفاده از روابط دوران پیرامون مرکز دایره به دست آورد. هم‌چنین زاویه‌های کوچکتر از صفر با دوران پیرامون محور افقی قابل محاسبه هستند. جدول زیر، نشان‌دهنده این رابطه‌ها است:

دوران حول محور افقی[۲۴] دوران با زاویهٔ π/۲[۲۵] دوران با زاویهٔ π[۲۶] دوران با زاویهٔ ۲π[۲۷]
پویانمایی نشان‌دهندهٔ تولید توابع سینوس و کسینوس در مختصات دکارتی با استفاده از دایرهٔ واحد.

تعریف بر پایهٔ انتگرال[ویرایش]

تعریف تابع سینوس توسط مثلث قائم الزاویه از نظر ریاضی دقیق نیست، چرا که مفهوم زاویه (یا همان طول کمان در دایرهٔ واحد) به صورت دقیق بیان نشده‌است. تعریف دیگری را می‌توان براساس طول دقیق کمان یک دایره به دست آورد. با در نظر گرفتن معادلهٔ دایره و پیدا کردن طول قوس، می‌توان رابطهٔ بین یک زاویه و را برحسب معادلهٔ ضمنی زیر نوشت:[۲۸][۲۹]

که در آن θ زاویه‌ای در محدودهٔ است.

تعریف بر پایهٔ سری توانی[ویرایش]

با استفاده از سری مکلورن هر تابع پیوسته‌ای را می‌توان به صورت یک سری توانی حول نقطه صفر (به شکل رابطه زیر) نوشت:[۳۰]

ضریب‌های رابطهٔ بالا با معلوم بودن مقدار تابع و مشتق‌های آن در نقطه صفر، قابل محاسبه هستند؛ بنابراین می‌توان مقدار تقریبی یک تابع را به صورت مجموع یک سری نامتناهی به دست آورد. در محاسبات ریاضی، از جمله‌های مرتبه بالا (که مرتبه بر اساس دقت محاسبه تعیین می‌شود) چشم‌پوشی می‌کنند.

سری توانی توابع مثلثاتی[ویرایش]

سری توانی توابع مثلثاتی برای محاسبهٔ مقدار تقریبی آن‌ها مورد استفاده قرار می‌گیرد. در ادامه، سری‌های توانی توابع مثلثاتی آورده می‌شوند.[۳۱]

سری تیلور تابع سینوس (قرمز، تا درجه ۷) تقریب خوبی برای تابع سینوس (آبی) در یک تناوب کامل (متقارن نسبت به مبدأ) است.
سری توانی سینوس و کسینوس

شکل روبرو، نمودار تابع سینوس و بسط مکلورن متناظر با آن را نشان می‌دهد. مقدار تابع سینوس در نقطه صفر برابر صفر است؛ بنابراین جمله‌های زوج سری توانی سینوس (که شامل خود تابع و مشتقات مرتبه زوج آن می‌شوند) صفر هستند. در نتیجه، سری توانی سینوس تنها دارای جمله‌های با توان فرد خواهد بود.

به‌طور مشابه، جمله‌های فرد سری توانی کسینوس صفر هستند و این سری تنها دارای جمله‌های با توان زوج است.

تعریف براساس سری توانی این مزیت را دارد که قابل استفاده در اعداد مختلط است و امکان مطالعهٔ خواص تحلیلی بودن این توابع را فراهم می‌سازد.[۲۸]

سری توانی سایر توابع مثلثاتی

توابع دیگر مثلثاتی، دارای نقطهٔ تکین در دامنه خود هستند؛ بنابراین نمی‌توان سری توانی مکلورن آن‌ها را برای هر مقداری تعریف نمود. برای توابع تانژانت و سکانت که در π/۲ (یا °۹۰) تعریف نمی‌شوند، دامنه تعریف سری توانی بین π/۲- تا π/۲ است. هم‌چنین برای توابع کتانژانت و کسکانت که در صفر درجه تعریف نمی‌شوند، دامنه تعریف سری توانی بین صفر تا π می‌باشد.

استفاده از سری‌های توانی[ویرایش]

تعداد جملات سری‌های توانی که برای تقریب توابع به کار می‌روند، نامتناهی است؛ ولی در محاسبات ریاضی از تعداد محدودی از این جملات (بسته به دقت مورد نیاز) استفاده می‌شود. سایر جملات که محاسبه نمی‌شوند، جملهٔ باقی‌مانده یا جملهٔ خطا نامیده می‌شوند. جملهٔ خطای مرتبهٔ n برای یک سری به صورت زیر تعریف می‌شود:[۳۲]

با افزایش مقدار x، تعداد بیشتری از جملات برای رسیدن به یک دقت مشخص، مورد نیاز خواهند بود و در نتیجه، سرعت همگرایی کاهش می‌یابد. افزون بر این، توابع تانژانت، کتانژانت، سکانت و کسکانت دارای نقاط ناپیوستگی هستند و سری‌های توانی این توابع تنها برای یک بازهٔ پیوسته تعریف شده‌اند.

برای جلوگیری از کند شدن همگرایی و رفع ناپیوستگی توابع، بایستی پیش از بهره گرفتن از سری‌ها زاویه را تا حد امکان کوچک کنیم. با به کار گرفتن اتحادهای مثلثاتی تبدیل زاویه، می‌توان زاویه را تا بازهٔ (۰،π/۲) و با استفاده از اتحادهای زاویه متمم تا (۰،π/۴) کاهش داد. به این ترتیب، سرعت همگرایی سری و کارایی محاسبه، افزایش می‌یابد.[۳۳]

تعریف توسط معادله دیفرانسیل[ویرایش]

یک معادلهٔ دیفرانسیل مرتبهٔ دوم با ضرایب ثابت، به صورت زیر نوشته می‌شود:

پاسخ این معادله، تابع نمایی به صورت است که در آن، و ریشه‌های معادلهٔ مشخصهٔ معادله (یعنی ) هستند. هم‌چنین و ثابت‌های انتگرال‌گیری است که بر پایهٔ شرایط اولیه به دست می‌آیند.

اگر معادلهٔ مشخصه دارای ریشه‌های مختلط باشد، پاسخ عمومی آن شامل تابع نمایی با توان مختلط است:

که در آن، جزء حقیقی و جزء موهومی ریشهٔ معادلهٔ مشخصه هستند. بر پایهٔ فرمول اویلر، تابع نمایی مختلط به توابع سینوس و کسینوس تبدیل می‌شود؛ بنابراین در صورت داشتن ریشه‌های مختلط، پاسخ معادلهٔ دیفرانسیل شامل توابع مثلثاتی خواهد بود:[۳۴]

برای نمونه، هر دو تابع سینوس و کسینوس در معادله دیفرانسیل (با معادله مشخصه که ریشه‌های آن هستند) صدق می‌کنند.[۳۵] یعنی هر دو، قرینهٔ مشتق دوم خود هستند. به بیان دیگر، این معادلهٔ دیفرانسیل، خانوادهٔ منحنی توابع سینوس و کسینوس را تعریف می‌کند.[۳۶]

در فضای دوبعدی V، نوع تابع بر پایه شرایط اولیه به صورت زیر تعیین می‌شود:

  • اگر ؛ سینوس، پاسخ یکتای معادله است؛
  • اگر ؛ کسینوس، پاسخ یکتای معادله است.

از آن‌جایی که سینوس و کسینوس، دو تابع مستقل خطی هستند، با یکدیگر تابع پایهٔ V را تشکیل می‌دهند. این روش تعریف توابع سینوس و کسینوس، معادل با استفاده از فرمول اویلر است.

هم‌چنین تابع تانژانت، پاسخ یکتای معادلهٔ دیفرانسیل غیرخطی با شرط اولیه است.

ویژگی‌های توابع مثلثاتی[ویرایش]

زوج و فرد بودن

بر پایهٔ تعریف توابع مثلثاتی و دایرهٔ واحد، می‌توان زوج یا فرد بودن هر تابع مثلثاتی را تعیین نمود. به‌طور خلاصه:[۳۷]

  • کسینوس و سکانت، تابع زوج هستند. (برای نمونه، )
  • سینوس، تانژانت، کتانژانت و کسکانت، تابع فرد هستند. (برای نمونه، )
تناوب

از تعریف دایرهٔ مثلثاتی و هم‌چنین در جدول بالا مشاهده می‌شود که توابع مثلثاتی با یک تناوب مشخص، تکرار می‌شوند. این تناوب برای توابع تانژانت و کتانژانت، °۱۸۰ و برای سایر توابع مثلثاتی، °۳۶۰ است.[۳۸][۳۹] برای نمونه، تناوب توابع سینوس و تانژانت به صورت رابطهٔ زیر است:

در تبدیل فوریه[۴۰] و معادلات موج[۴۱] از این خاصیت تناوبی توابع مثلثاتی در حل معادلات دیفرانسیل استفاده می‌کنند.

پیوستگی

توابع سینوس و کسینوس همواره پیوسته و مشتق‌پذیر هستند. این مطلب، با تعریف بر پایهٔ مثلث قائم‌الزاویه و تعریف بر پایهٔ دایره واحد، به روشنی قابل ملاحظه است. سایر تابع‌ها که در مخرجشان یکی از دو تابع سینوس یا کسینوس قرار دارد، همواره پیوسته نیستند. زیرا مقدار توابع سینوس و کسینوس در برخی نقاط برابر صفر است. نقاط ناپیوستگی توابع مثلثاتی به صورت زیر هستند (k یک عدد صحیح دلخواه است):[۴۲]

  • تانژانت و کسکانت: kπ
  • کتانژانت و سکانت: kπ+π/۲
تعامد

توابع سینوس و کسینوس برهم عمود هستند و در معادله اشتورم-لیوویل صدق می‌کنند.

همچنین داریم:

از این خواص در محاسبهٔ ضرایب سری فوریه استفاده می‌شود.[۲۸][۴۳]

مشتق و انتگرال توابع مثلثاتی

مشتق دو تابع مثلثاتی اصلی (سینوس و کسینوس) با استفاده از تعریف مشتق، به دست می‌آید. برای مشتق‌گیری سایر توابع مثلثاتی می‌توان از قاعدهٔ مشتق‌گیری تابع کسری بهره برد. مشتق اول و دوم توابع مثلثاتی به همراه تابع اولیه (انتگرال) آن‌ها به صورت زیر است:

تابع مشتق اول[۴۴] مشتق دوم مشتق n-ام[۴۵] انتگرال[۴۶]
پیچیده[۴۷]
پیچیده[۴۷]
پیچیده[۴۷]
پیچیده[۴۷]
تبدیل‌های لاپلاس و فوریه

تبدیل لاپلاس یکی از روش‌های حل معادلات دیفرانسیل است. تبدیل لاپلاس توابع سینوس و کسینوس به صورت زیر است:[۴۸]

  • تبدیل سینوس:
  • تبدیل کسینوس:

تبدیل فوریهٔ تابع‌های سینوس و کسینوس نیز به صورت زیر است:[۴۹]

  • تبدیل سینوس:
  • تبدیل کسینوس:

که در این روابط نشان‌دهندهٔ تابع دلتای دیراک است.

تابع ویژه

توابع سینوس و کسینوس یک تابع ویژه برای لاپلاسین هستند. به عنوان مثال، اگر بیانگر عملگر لاپلاس یک بعدی باشد، توابع سینوس و کسینوس در معادلهٔ صدق می‌کنند که با توجه به تعریف توسط معادله دیفرانسیل توابع مثلثاتی قابل بررسی است.[۵۰]

روش‌های محاسبه[ویرایش]

محاسبهٔ مقدار توابع مثلثاتی به صورت دستی، پیچیده‌است؛ ولی امروزه به دلیل در دسترس بودن رایانه‌ها و ماشین حساب‌های مهندسی، که مقدار مورد نیاز را برای هر زاویه‌ای به سادگی به دست می‌آورند، پیچیدگی آن از بین رفته‌است. سه روش متداول برای محاسبهٔ مقدار توابع مثلثاتی مورد استفاده است که عبارتند از بهره‌گیری از مقدارهای دقیق، روش سنتی جدول‌های مثلثاتی و روش نوین بهره‌گیری از رایانه.

برای بعضی از زاویه‌ها می‌توان مقدار دقیق توابع مثلثاتی را به دست آورد. برای نمونه، برای همه زاویه‌های ضریب °۳ مقدار توابع سینوس، کسینوس و تانژانت به صورت دقیق وجود دارد. نسبت‌های مثلثاتی زاویه °۳ با اعمال رابطه تفاضل دو زاویه برای زاویه‌های °۱۸ و °۱۵ محاسبه می‌شوند (۳=۱۵–۱۸). نسبت‌های مثلثاتی °۱۸ درجه با بهره‌گیری از پنج‌ضلعی منتظم به دست می‌آیند. برای محاسبه نسبت‌های مثلثاتی °۱۵ نیز می‌توان از اعمال رابطه نصف زاویه برای زاویه °۳۰ استفاده کرد. پس از محاسبه نسبت‌های مثلثاتی زاویه °۳، می‌توان مقادیر مربوط به زاویه‌هایی که ضریب آن هستند را با استفاده از روابط جمع دو زاویه و زاویه دو برابر، به دست آورد.

برای محاسبهٔ مقدار تابع برای هر زاویه‌ای، نخست باید زاویه را به یک بازه مشخص (مثلاً صفر تا π/۲) کاهش داد. این کار با استفاده از خاصیت تناوب و تقارن توابع مثلثاتی انجام می‌شود.[۳۳]

پیش از رایانه‌ها، مردم عموماً مقدار توابع مثلثاتی را با درون‌یابی از داده‌های موجود در جدول‌های مثلثاتی به دست می‌آوردند. این جدول‌ها پیشینه‌ای به دیرینگی تاریخ مثلثات دارند. معمولاً مقدارهای موجود در جدول‌ها با استفادهٔ پیاپی از اتحادهای نصف زاویه و مجموع دو زاویه، با آغاز از یک مقدار معلوم (مانند sin(π/۲) = ۱) به دست می‌آمدند. برای نمونه، می‌توان جداول مثلثاتی سینوس و کسینوس خوارزمی را نام برد.[۵۱]

رایانه‌های نوین، شیوه‌های گوناگونی را به کار می‌گیرند.[۵۲] یک روش متداول، به ویژه روی پردازنده‌های سطح بالا، ترکیب یک تقریب چندجمله‌ای یا کسری (مانند تقریب چبیشف، تقریب پد و معمولاً برای دقت‌های بالاتر، سری تیلور و مکلورن) با کاهش بازه و نگاه به جدول است. (با استفاده از جدول، نزدیک‌ترین زاویه انتخاب می‌شود، سپس تصحیح با بهره‌گیری از چندجمله‌ای انجام می‌شود) دستگاه‌های دارای دقت پایین‌تر، معمولاً از الگوریتم CORDIC سود می‌برند که تنها از جمع، تفریق، شیفت بیتی و نگاه به جدول استفاده می‌کند.

برای محاسبات بسیار دقیق، که سری‌ها به کندی همگرا می‌شوند، می‌توان از میانگین حسابی-هندسی برای تقریب استفاده کرد که تابع مثلثاتی را با انتگرال بیضوی تقریب می‌زند.[۵۳]

اتحادهای مثلثاتی[ویرایش]

بعضی از رابطه‌های مثلثاتی برای هر زاویهٔ دلخواهی برقرار هستند. این رابطه‌ها را اتحاد مثلثاتی می‌نامند. نمونه‌هایی از این اتحادها در زیر آورده می‌شوند.

قضیهٔ فیثاغورس

ساده‌ترین شکل قضیهٔ فیثاغورس در مثلثات به صورت زیر است:[۵۴]

جمع و تفاضل دو زاویه

کسینوس حاصل جمع:[۵۵]

سینوس حاصل جمع:[۵۶]

زاویهٔ دو برابر

رابطه‌های زیر برای محاسبهٔ سینوس و کسینوس زاویه‌ای دو برابر زاویهٔ معلوم به کار می‌روند:[۵۷]

قضیهٔ فشردگی سینوس

یک نابرابری مهم مثلثاتی، در محاسبهٔ حدهای مبهم و مشتق توابع مثلثاتی کاربرد دارد. این نابرابری که در بازهٔ /۲<θ<π/۲ معتبر است، به صورت زیر است:[۵۸]

با استفاده از این نابرابری، حد مبهم در پیدا می‌شود.[۵۹] این حد در محاسبهٔ مشتق توابع مثلثاتی مورد استفاده قرار می‌گیرد.[۶۰]

نابرابری‌هایی مشابه به شرح زیرند:[۶۱]

قانون سینوس‌ها

با استفاده از قانون سینوس‌ها در هر مثلث دلخواه، می‌توان با معلوم بودن اندازه یک ضلع و دو زاویهٔ مجاور آن، اندازهٔ دو ضلع دیگر را محاسبه نمود. هم‌چنین می‌توان مساحت مثلث (Δ) و شعاع دایرهٔ محیطی آن (R) را به دست آورد:[۶۲]

بر اساس اتحاد بالا، مساحت مثلث با معلوم بودن اندازهٔ دو ضلع و زاویهٔ میان آن‌ها از رابطهٔ زیر، قابل محاسبه است:

قانون کسینوس‌ها

با استفاده از قانون کسینوس‌ها در هر مثلث دلخواه، با معلوم بودن اندازهٔ دو ضلع و زاویهٔ میان آن‌ها، اندازهٔ ضلع سوم به صورت زیر تعیین می‌شود:[۶۳]

هم‌چنین با این قانون می‌توان با داشتن اندازهٔ سه ضلع مثلث، اندازهٔ زاویه‌های آن را به دست آورد.

رابطه توابع مثلثاتی با توابع خاص

بعضی از توابع خاص را می‌توان به صورت ترکیبی از توابع از جمله توابع مثلثاتی نوشت.

  • تابع بسل مرتبهٔ ۱/۲: تابع بسل، پاسخ معادلهٔ دیفرانسیل مرتبهٔ دوم زیر است:

که a مرتبهٔ آن را نشان می‌دهد. حل این معادله، به صورت سری توانی است. می‌توان یکی از حالت‌های خاص تابع بسل (a=۱/۲) را برحسب توابع مثلثاتی به صورت زیر نوشت:[۶۴]

که n مرتبهٔ آن را نشان می‌دهد. می‌توان چندجمله‌ای چبیشف مرتبهٔ n را برحسب توابع مثلثاتی به صورت زیر نوشت:[۶۵]

تابع معکوس[ویرایش]

توابع معکوس مثلثاتی به عنوان قرینهٔ توابع مثلثاتی نسبت به خط y=x تعریف می‌شوند. این تابع‌ها را با افزودن آرک به ابتدای نام تابع اصلی، معرفی می‌کنند. این تابع‌ها یک عدد حقیقی را می‌گیرند و یک زاویه را برمی‌گردانند.

توابع مثلثاتی در همهٔ دامنهٔ خود، یک‌به‌یک و معکوس‌پذیر نیستند. برای آن که بتوان تابع معکوس برای این توابع تعریف نمود، باید تابع به دامنه‌ای که در آن معکوس‌پذیر است، محدود شود. این دامنه، برای توابع مختلف به صورت جدول زیر است. افزون بر این، مشتق توابع معکوس مثلثاتی که با روش مشتق‌گیری ضمنی به دست می‌آید، در جدول آورده شده‌است.[۶۶]

تابع اصلی دامنهٔ تابع اصلی تابع معکوس دامنهٔ تابع معکوس مشتق تابع معکوس[۶۷]
اعداد حقیقی
اعداد حقیقی

کاربرد[ویرایش]

توابع مثلثاتی کاربردهای قابل توجهی در بسیاری از علوم پایه و مهندسی دارند.

فضای برداری[ویرایش]

در ریاضیات و فیزیک، از بردارها برای نشان دادن یک کمیت برداری (که دارای اندازه و جهت است) استفاده می‌شود. بسیاری از کمیت‌های اصلی فیزیک مانند مکان، نیرو و میدان دارای ماهیت برداری هستند. در برخی محاسبات فضای برداری از توابع مثلثاتی استفاده می‌شود. برای نمونه، ضرب داخلی دو بردار x و y را می‌توان به کمک قانون کسینوس‌ها به صورت زیر محاسبه کرد:[۶۸]

برای محاسبه ضرب خارجی نیز می‌توان رابطه زیر را به کار برد:

مختصات قطبی، استوانه‌ای و کروی[ویرایش]

نمایش دو نقطه در دستگاه مختصات قطبی

توابع مثلثاتی، پایهٔ تعریف دستگاه مختصات قطبی هستند که در ساده‌سازی بسیاری از مسائل ریاضیات و فیزیک از جمله برخی انتگرال‌ها مؤثر است. در این دستگاه مختصات، به جای طول و عرض (x,y) یک نقطه (که در دستگاه مختصات دکارتی به کار می‌رود)، فاصلهٔ آن با مرکز و زاویهٔ بردار گذرنده از مرکز و آن نقطه نسبت به خط افقی (r,θ) به عنوان مختصات یک نقطه در نظر گرفته می‌شوند.[۶۹] تبدیل مختصات دکارتی به مختصات قطبی و برعکس با استفاده از توابع مثلثاتی انجام می‌شود:[۷۰]

دستگاه‌های مختصات استوانه‌ای[۷۱] و کروی[۷۲] که تعمیم‌یافتهٔ مختصات قطبی در سه‌بعد هستند نیز بر مبنای توابع مثلثاتی شکل گرفته‌اند. از این دستگاه‌ها در مسائلی مانند انتگرال‌های سه‌بعدی که دارای تقارن استوانه‌ای یا کروی هستند استفاده می‌شود.

اعداد مختلط[ویرایش]

نمایش یک عدد مختلط در مختصات قطبی

با استفاده از تعریف مختصات قطبی می‌توان اعداد مختلط را به صورت توابع مثلثاتی بیان کرد:[۷۳]

که در آن، |z| اندازهٔ بردار z (فاصله از مبدأ)، θ زاویهٔ آن با محور افقی، و i بیانگر یکهٔ موهومی است. افزون بر این، رابطهٔ میان تابع نمایی و تابع مثلثاتی توسط فرمول اویلر برقرار می‌شود:[۷۴]

که بر پایهٔ آن، توابع سینوس و کسینوس به شکل توابع فرد و زوج متناظر بر حسب تابع نمایی نوشته می‌شوند:

مشاهده می‌شود که می‌توان کسینوس را به عنوان جزء حقیقی و سینوس را به عنوان جزء مجازی تابع نمایی مختلط در نظر گرفت. به بیان ریاضی:

شکل توسعه‌یافتهٔ فرمول اویلر، به عنوان فرمول دموآور شناخته می‌شود:[۷۵]

هم‌چنین با استفاده از تعریف بسط مکلورن برای توابع هذلولوی و مثلثاتی، می‌توان رابطه‌های زیر را که معادل با رابطه‌های بالا هستند، به دست آورد:

که در آن‌ها i2=−۱. می‌توان توابع سینوس و کسینوس مختلط را برحسب اجزای حقیقی و مجازی آن‌ها نیز نوشت:[۷۶]

این اتحاد، رابطهٔ میان توابع سینوس و کسینوس مختلط و توابع حقیقی (سینوس و کسینوس) و حقیقی هذلولوی (سینوس هذلولوی و کسینوس هذلولوی) آن‌ها را نشان می‌دهد.

نقشه‌برداری[ویرایش]

مثلثات، پایهٔ بیشتر شیوه‌های نقشه‌برداری است. زاویه‌یابی با دستگاه یا بدون دستگاه، امتدادیابی با روش ژیزمان، سیستم تصویر برای تبدیل تصویر از سطح بیضوی به سطح مستوی، ارتفاع‌یابی با دستگاه ترازیاب، پیمایش باز و بسته، طراحی قوس‌ها در راهسازی و تبدیل‌های دوبعدی در نقشه‌برداری هوایی، بخشی از کاربردهای توابع مثلثاتی در نقشه‌برداری هستند.

برای نمونه، در مثلث‌سازی که یکی از روش‌های قدیمی نقشه‌برداری است، با استفاده از اندازه‌گیری زاویهٔ یک نقطه نسبت به دو نقطه معین، مختصات آن نقطه را محاسبه می‌کنند که امروزه از این روش برای اندازه‌گیری سه‌بعدی نوری استفاده می‌شود. در مثلث‌سازی از قانون کسینوس‌ها و قانون سینوس‌ها برای محاسبهٔ زاویهٔ مثلث‌ها و تعیین دقیق موقعیت هر نقطه استفاده می‌شود.

پیمایش روشی برای نقشه‌برداری یک محدودهٔ باز یا بسته با استفاده از اندازه‌گیری زاویه‌ها و فاصله‌ها است. از توابع مثلثاتی برای محاسبهٔ موقعیت ایستگاه‌ها استفاده می‌شود.[۷۷]

ناوبری[ویرایش]

از توابع مثلثاتی در زمینه‌های مختلف ناوبری استفاده می‌شود. برای نمونه، تنظیم خط سیر کشتی‌ها و سایر شناورها بر پایهٔ اجسام ثابت مانند فانوس دریایی با بهره‌گیری از توابع مثلثاتی انجام می‌شود.[۷۸] هم‌چنین این توابع برای تعیین فاصلهٔ میان دو نقطه روی زمین با در نظر گرفتن کرویت زمین به کار می‌روند. رابطهٔ زیر برای محاسبهٔ این فاصله مورد استفاده قرار می‌گیرد:

که در آن، α۱ و α۲ عرض جغرافیایی دو نقطهٔ مورد نظر و φ اختلاف طول جغرافیایی میان دو نقطه است.[۷۹]

فیزیک نور[ویرایش]

شکست نور در هنگام عبور از یک محیط مادی به محیط مادی دیگر

بنیادی‌ترین کاربرد توابع مثلثاتی در نورشناسی، قانون اسنل است. این قانون که در پدیدهٔ شکست نور به کار می‌رود، رابطهٔ میان زاویهٔ نور در یک محیط و زاویهٔ آن پس از وارد شدن به یک محیط دیگر با ضریب شکست متفاوت را بیان می‌کند:

که در آن، n و 'n ضریب شکست و θ و 'θ زاویهٔ پرتو نور محیط اول و دوم هستند. قانون اسنل، در تعیین زاویهٔ حد شکست و نیز در شکست نور در منشورها و عدسی‌ها به کار می‌رود. مسیر حرکت نور در عبور از یک عدسی با استفاده از قانون اسنل تعیین می‌شود.

افزون بر شکست نور، از توابع مثلثاتی در زمینه‌های دیگری از نورشناسی مانند تحلیل تداخل امواج، قطبیدگی و پراش در دو شکاف استفاده می‌شود.[۸۰]

سری فوریه و تبدیل فوریه[ویرایش]

توابع سینوس و کسینوس مانند چندجمله‌ای‌ها متعامد هستند و استقلال خطی دارند. از این رو می‌توان هر تابع (عموماً متناوب) را بر حسب یک سری از این توابع به صورت رابطهٔ زیر نوشت[۸۱] که سری فوریه نامیده می‌شود:[۸۲]

برای توابع فرد، تنها جملات تابع سینوس و برای توابع زوج، تنها جملات تابع کسینوس و ضریب ثابت در نظر گرفته می‌شوند.[۸۳]

تبدیل فوریه، نوعی تبدیل انتگرالی است که شکل توسعه یافتهٔ سری فوریه است. این تبدیل به صورت زیر تعریف می‌شود:[۸۴]

که تابع نمایی با نمای مختلط توسط فرمول اویلر به توابع مثلثاتی تبدیل می‌شود. از تبدیل فوریه در حل معادلات دیفرانسیل جزئی از جمله معادلهٔ موج، تحلیل طیفی و پردازش سیگنال بهره می‌برند.[۸۵]

هم‌چنین در ذخیره‌سازی تصویر با قالب JPEG از تبدیل کسینوس گسسته برای کاهش حجم تصویر با وجود حفظ نسبی کیفیت آن استفاده می‌کنند. در این روش، تصویر به بلوک‌هایی با ابعاد یکسان تقسیم می‌شود و در هر بلوک، ضرایب چند جملهٔ نخست تبدیل فوریه (که تعداد جمله‌ها بر پایهٔ دقت تبدیل، انتخاب می‌شود) بر پایهٔ رنگ همهٔ نقطه‌های درون بلوک محاسبه می‌شوند.[۸۶]

حرکت نوسانی[ویرایش]

نمایش ساخته شدن موج مربعی با برهم‌نهی توابع نوسانی

فیزیک‌دانان برای توصیف حرکت هماهنگ ساده، از توابع سینوس و کسینوس استفاده می‌کنند. این حرکت، بسیاری از پدیده‌های فیزیکی مانند حرکت جرم متصل به فنر،[۸۷] حرکت آونگی جسم معلق با یک طناب (پاندول ساده)،[۸۸] تحلیل مدار الکتریکی[۸۹] و حرکت دایره‌ای یکنواخت یک‌بعدی را مدل می‌کند. هم‌چنین توابع مثلثاتی در مطالعهٔ توابع متناوب به کار می‌روند. ساختار موجی‌شکل توابع متناوب برای مدل‌سازی پدیده‌های رفت و برگشتی مانند نور، صدا و موج دریا، مورد استفاده قرار می‌گیرد.

در شرایط عمومی، می‌توان یک تابع متناوب (f(x را با سری فوریه به صورت مجموع موج‌های سینوسی یا موج‌های کسینوسی بیان کرد. اگر تابع سینوس یا کسینوس را با φk نشان دهیم، بسط تابع متناوب (f(t به صورت زیر خواهد بود (از آن‌جایی که توابع متناوب عموماً بر حسب زمان تعریف می‌شوند، در این‌جا به جای متغیر مکانی (x) از متغیر زمانی (t) استفاده می‌شود):

برای نمونه، موج مربعی را می‌توان با سری فوریه زیر نشان داد:

همان گونه که در شکل روبرو دیده می‌شود، چند جملهٔ اول سری می‌توانند تقریب نسبتاً خوبی را ایجاد کنند.

فیزیک مکانیک[ویرایش]

در فیزیک مکانیک، توابع مثلثاتی در معادلات حرکت دوبعدی و سه‌بعدی کاربرد دارند. برای نمونه، در تحلیل تغییرات تناوبی در سینماتیک و دینامیک دورانی، معادلات تکانه و تکانهٔ زاویه‌ای و پدیدهٔ برخورد، توابع مثلثاتی کاربرد دارند.[۹۰]

حرکت پرتابی یک ذره از مبدأ مختصات

یکی از آشناترین کاربردهای توابع مثلثاتی در مکانیک، پدیدهٔ حرکت پرتابی است که معادلات حرکت افقی و قائم آن به صورت زیر نوشته می‌شود:

که در آن، x و y مختصات موقعیت ذره در مدت t ثانیه پس از پرتاب با سرعت اولیهٔ v0 هستند.

هم‌چنین مسیر و سرعت دو ذره پس از برخورد کشسان مایل، با استفاده از توابع مثلثاتی به دست می‌آید.

برق و مخابرات[ویرایش]

مجموع چند موج سینوسی را می‌توان با استفاده از جمع فازورها (بردارهای فاز) محاسبه کرد.

امروزه جریان‌های متناوب در صنعت برق کاربرد گسترده‌ای دارند و شکل رایج آن‌ها به صورت موج سینوسی است. از دلایل اصلی محبوبیت جریان‌های متناوب نسبت به جریان مستقیم در صنعت بر می‌توان به امکان تبدیل سطح ولتاژِ جریان‌های متناوب با استفاده از ترانسفورماتورها که به واسطهٔ آن می‌توان تلفات را برای انتقال در مسافت‌های طولانی کاهش داد و نیز عدم نیاز به استفاده از کموتاتور در ژنراتورهای القایی اشاره کرد.[۹۱]

نیروگاه‌ها اغلب توان را در به صورت سه‌فاز (سه ولتاژ سینوسی با اختلاف زاویهٔ ‎۱۲۰°) تولید می‌کنند. شکل موج‌های ولتاژ و جریان به منظور سادگی اغلب ایدئال و به صورت و فرض می‌شوند و به تبع آن روابط مختلف، مثل توان لحظه‌ای، توان اکتیو، توان راکتیو، و… یا مفاهیمی مانند پیش‌فازی، پس‌فازی، زاویهٔ توان و ضریب قدرت و … با تحلیل توابع مثلثاتی محاسبه و تعریف می‌شوند.[۹۲] برق ارائه‌شده به مشترکان خانگی با شکل موج سینوسی و عموماً در فرکانس‌های ۵۰ یا ۶۰ هرتز ارائه می‌شود.[۹۳]

در مدل‌سازی خطوط بلند انتقال نیرو، پارامترهای خط را توابع هذلولی مثلثاتی مدل‌سازی می‌کنند.[۹۴]

کاربرد موج‌های سینوسی در برق به قدری گسترده‌است که برای تحلیل آن‌ها روش‌های خاصی که مؤثرتر هستند ابداع شده‌است.[۹۵] تحلیل فازور روشی است که در آن با استفاده از این خاصیت که مجموع جبری هر تعداد موج سینوسی با فرکانس زاویه‌ای یکسان و مشتق‌های مرتبه‌های مختلف آن‌ها همواره یک موج سینوسی با همان فرکانس زاویه‌ای خواهد بود، برای نمایش و تحلیل موج سینوسی تنها از دامنه و فاز آن استفاده می‌شود. با این کار برای به دست آوردن پاسخ حالت دائمی سینوسی، به جای حل معادلهٔ دیفرانسیل، تنها به حل معادلات جبری ساده نیاز خواهد بود. با استفاده از این مفهوم می‌توان پاسخ حالت دائمی سینوسی یک مدار خطی تغییرناپذیر با زمان را مستقیماً با حل شبکهٔ معادلی که بر حسب فازورهای ورودی، خروجی و فازور متغیرهای دیگر بیان شده‌است با استفاده از روش‌های جبری به دست آورد.[۹۶]

در سیستم‌های مخابراتی، معمولاً کانال ارتباطی تنها در یک گسترهٔ فرکانسی خاص سیگنال‌ها را به خوبی منتقل می‌کند که در خارج از این گستره انتقال سیگنال ناممکن یا همراه با افت شدید کیفیت است. به همین دلیل برای فرستادن یک سیگنال در مسافت‌های طولانی معمولاً آن را روی یک سیگنال فرکانس بالای دیگر سوار می‌کنند که به این کار مدولاسیون گفته می‌شود.[۹۷] سیگنال حامل در روش‌های مختلف مدولاسیون اغلب ذاتاً یک موج سینوسی است.[۹۸] برای مثال در مدولاسیون دامنهٔ سینوسی، سیگنال حاوی اطلاعات در سیگنال حامل سینوسی ضرب (مدوله) می‌شود.[۹۹]

پانویس[ویرایش]

  1. دانتزیگ، توبیاس (۱۳۵۶). میراث یونان. ترجمهٔ عباس گرمان. توکا.
  2. ۲٫۰ ۲٫۱ ۲٫۲ ۲٫۳ ۲٫۴ بویر، کارل (۱۳۸۴). تاریخ حسابان. ترجمهٔ عبدالحسین مصحفی. علمی و فرهنگی. شابک ۹۶۴-۴۴۵-۶۹۸-X.
  3. استرویک، تاریخ فشرده ریاضیات، ۷۵.
  4. استرویک، تاریخ فشرده ریاضیات، ۸۶.
  5. استرویک، تاریخ فشرده ریاضیات، ۹۲.
  6. استرویک، تاریخ فشرده ریاضیات، ۹۳.
  7. قربانی، زندگینامهٔ ریاضیدانان دورهٔ اسلامی از سدهٔ سوم تا سدهٔ یازدهم هجری، ۳۶۸.
  8. Victor J. Katz (November 1987). "The calculus of the trigonometric functions". Historia Mathematica. 14: 311–324. doi:10.1016/0315-0860(87)90064-4. Archived from the original on 16 May 2015.
  9. علی‌اکبر دهخدا و دیگران، سرواژهٔ «جیب»، لغت‌نامهٔ دهخدا (بازیابی در ۱۵ مه ۲۰۱۵).
  10. نوری، نیر (۱۳۷۵–۱۳۷۷). سهم ارزشمند ایران در فرهنگ جهان. تهران: انجمن آثار و مفاخر فرهنگی. صص. ۲۴۰. شابک ۹۶۴۶۲۷۸۲۰۵.
  11. کاکسفورد، اصول و کاربردهای مثلثات، ۵۳.
  12. آدامز، حساب دیفرانسیل و انتگرال، جلد اول، ۱۴۶.
  13. برای نمونه:سیلورمن، حساب دیفرانسیل و انتگرال با هندسه تحلیلی، ۸۶–۸۷. و توماس، حسابان، ۵۰.
  14. سیلورمن، حساب دیفرانسیل و انتگرال با هندسه تحلیلی، جلد اول، ۹۱.
  15. توماس، حسابان، ۵۰.
  16. توماس، حسابان، ۴۸.
  17. سیلورمن، حساب دیفرانسیل و انتگرال با هندسه تحلیلی، ۸۹.
  18. Lindeburg, Michael R. (2012), Civil Engineering Reference Manual for the PE Exam, Professional Publications, Inc., p. 78-7, ISBN 978-1-59126-380-7
  19. توماس، حسابان، ۵۰.
  20. سیلورمن، حساب دیفرانسیل و انتگرال با هندسه تحلیلی، ۸۹.
  21. کاکسفورد، اصول و کاربردهای مثلثات، ۲۸۵.
  22. توماس، حسابان، ۵۰.
  23. آبراموویچ و استگان، راهنمای توابع ریاضی با روابط، نمودارها و جدول‌های ریاضی، ۷۳.
  24. توماس، حسابان، ۵۳.
  25. آبراموویچ و استگان، راهنمای توابع ریاضی با روابط، نمودارها و جدول‌های ریاضی، ۷۳.
  26. آبراموویچ و استگان، راهنمای توابع ریاضی با روابط، نمودارها و جدول‌های ریاضی، ۷۳.
  27. توماس، حسابان، ۵۲.
  28. ۲۸٫۰ ۲۸٫۱ ۲۸٫۲ Gowers, T.; Barrow-Green, J.; Leader, I. (2010). The Princeton Companion to Mathematics. Princeton University Press. p. ۳۰۷–۳۰۸. ISBN 978-1-4008-3039-8. Archived from the original on 16 May 2015. Retrieved 2015-05-05.
  29. Trigonometric functions. V.I. Bityutskov (originator), Encyclopedia of Mathematics.
  30. توماس، حسابان، ۸۰۶.
  31. آبراموویچ و استگان، راهنمای توابع ریاضی با روابط، نمودارها و جدول‌های ریاضی، ۷۴–۷۵.
  32. توماس، حسابان، ۸۱۲.
  33. ۳۳٫۰ ۳۳٫۱ Robin Green. "Faster Math Functions". pp. 6–7. Archived from the original (PDF) on 16 May 2015. Retrieved April 10, 2015.
  34. بویس و دیپریما، معادلات دیفرانسیل مقدماتی و مسائل مقدار مرزی، ۱۸۷–۱۸۸.
  35. سیلورمن، حساب دیفرانسیل و انتگرال با هندسه تحلیلی، ۲۲۷.
  36. کرایه‌چیان، معادلات دیفرانسیل و کاربرد آن‌ها، ۱۹–۲۰.
  37. توماس، حسابان، ۵۳.
  38. توماس، حسابان، ۵۳.
  39. آدامز، حساب دیفرانسیل و انتگرال، جلد اول، ۱۳۸.
  40. توماس، حسابان، ۸۳۳–۸۳۵.
  41. توماس، حسابان، ۹۹۶.
  42. توماس، حسابان، ۵۰.
  43. Olver, NIST Handbook of Mathematical Functions, 122.
  44. سیلورمن، حساب دیفرانسیل و انتگرال با هندسه تحلیلی، جلد اول. تابع سینوس و کسینوس: ص. ۱۷۹؛ سایر تابع‌ها: صص. ۲۱۰–۲۱۱
  45. آبراموویچ، راهنمای توابع ریاضی با روابط، نمودارها و جدول‌های ریاضی، ۷۷.
  46. توماس، حسابان، ۵۵۴.
  47. ۴۷٫۰ ۴۷٫۱ ۴۷٫۲ ۴۷٫۳ EG Wintucky (ژوئیه ۱۹, ۱۹۷۱). «FORMULAS FOR nth ORDER DERIVATIVES OF HYPERBOLIC. AND TRIGONOMETRIC FUNCTIONS» (PDF). NASA. دریافت‌شده در مه ۱۸, ۲۰۱۵.
  48. بویس و دیپریما، معادلات دیفرانسیل مقدماتی و مسائل مقدار مرزی، ۳۷۶.
  49. Kammler, D.W. (2008). A First Course in Fourier Analysis. Cambridge University Press. ISBN 978-1-139-46903-6. Archived from the original on 16 May 2015. Retrieved 2015-05-12.
  50. Pivato, M. (2010). Linear Partial Differential Equations and Fourier Theory. Cambridge University Press. p. 243. ISBN 978-0-521-19970-4. Archived from the original on 16 May 2015. Retrieved 2015-05-10.
  51. استرویک، تاریخ فشرده ریاضیات، ۹۲.
  52. Kantabutra, Vitit (1996). "On hardware for computing exponential and trigonometric functions". IEEE Trans. Computers. 45 (3): 328–339.
  53. Brent, Richard P. (April 1976). "Fast Multiple-Precision Evaluation of Elementary Functions". J. ACM. 23 (2): 242–251. Archived from the original on 16 May 2015.
  54. سیلورمن، حساب دیفرانسیل و انتگرال با هندسه تحلیلی، جلد اول، ۸۸.
  55. کاکسفورد، اصول و کاربردهای مثلثات، ۱۵۲–۱۵۴.
  56. کاکسفورد، اصول و کاربردهای مثلثات، ۱۵۸–۱۵۹.
  57. کاکسفورد، اصول و کاربردهای مثلثات، ۱۶۷–۱۶۸.
  58. سیلورمن، حساب دیفرانسیل و انتگرال با هندسه تحلیلی، جلد اول، ۱۰۵–۱۰۶.
  59. سیلورمن، حساب دیفرانسیل و انتگرال با هندسه تحلیلی، جلد اول، ۱۳۸.
  60. سیلورمن، حساب دیفرانسیل و انتگرال با هندسه تحلیلی، جلد اول، ۱۷۹–۱۸۰.
  61. Olver, NIST Handbook of Mathematical Functions, 116.
  62. کاکسفورد، اصول و کاربردهای مثلثات، ۱۸۹–۱۹۰.
  63. کاکسفورد، اصول و کاربردهای مثلثات، ۱۹۴–۱۹۵.
  64. کرایه‌چیان، معادلات دیفرانسیل و کاربرد آن‌ها، ۲۳۴–۲۳۵.
  65. نووسلو، مثلثات مستقیم‌الخط و کروی، ۳۲۲–۳۲۳.
  66. سیلورمن، حساب دیفرانسیل و انتگرال با هندسه تحلیلی، جلد اول، ۴۶۵–۴۷۴.
  67. کاکسفورد، اصول و کاربردهای مثلثات، ۲۴۴، ۲۴۵، ۲۵۱.
  68. هالیدی، رسنیک و کرین، فیزیک.
  69. توماس، حسابان، ۷۱۴.
  70. توماس، حسابان، ۷۱۶.
  71. آدامز، حساب دیفرانسیل و انتگرال، جلد دوم، ۳۹۴–۳۹۶.
  72. آدامز، حساب دیفرانسیل و انتگرال، جلد دوم، ۳۹۶–۴۰۱.
  73. توماس، حسابان، AP-17.
  74. آبراموویچ و استگان، راهنمای توابع ریاضی با روابط، نمودارها و جدول‌های ریاضی، ۱۶.
  75. آبراموویچ و استگان، راهنمای توابع ریاضی با روابط، نمودارها و جدول‌های ریاضی، ۷۴.
  76. Mathews, J.H.; Howell, R.W. (2006). Complex Analysis for Mathematics and Engineering. Jones and Bartlett. p. ۱۷۸–۱۷۹. ISBN 978-0-7637-3748-1. Retrieved 2015-05-18.
  77. عاصی، محمدرضا (۱۳۸۸). نقشه‌برداری (ژئوماتیک) (ویراست چهارم). انتشارات علمی دانشگاه ضنعتی شریف. شابک ۹۷۸-۹۶۴-۲۰۸-۰۰۸-۳.
  78. کاکسفورد، اصول و کاربردهای مثلثات، ۶۶–۶۷.
  79. کاکسفورد، اصول و کاربردهای مثلثات، ۲۵۶–۲۵۷.
  80. جنکینز، فرانسیس ای.؛ وایت، هاردی ای. (۱۳۸۹). مبانی اپتیک. ترجمهٔ بابک حقیقی. نشر مرندیز. شابک ۹۷۸-۶۰۰-۱۰۶-۰۵۶-۴.
  81. توماس، حسابان، ۸۳۳–۸۳۵.
  82. Bary، A Treatise on Trigonometric Series، 43.
  83. Bary، A Treatise on Trigonometric Series، 50.
  84. Weisstein, Eric W. "Fourier Transform". Mathworld. Archived from the original on 16 May 2015. Retrieved May 16, 2015.
  85. Gerald B Folland (2009). "Convergence and completeness". Fourier Analysis and its Applications (Reprint of Wadsworth & Brooks/Cole 1992 ed.). American Mathematical Society. p. 225-234. ISBN 0-8218-4790-2. Archived from the original on 16 May 2015.
  86. "(JPEG (Transform Compression". The Scientist and Engineer's Guide to Digital Signal Processing. Archived from the original on 16 May 2015. Retrieved March 29, 2015.
  87. بویس و دیپریما، معادلات دیفرانسیل مقدماتی و مسائل مقدار مرزی، ۲۳۰–۲۳۹.
  88. کرایه‌چیان، معادلات دیفرانسیل و کاربرد آن‌ها، ۱۶۶–۱۶۹.
  89. برای نمونه بویس و دیپریما، معادلات دیفرانسیل مقدماتی و مسائل مقدار مرزی، ۲۴۰–۲۴۱.
  90. هالیدی، رسنیک و کرین، فیزیک.
  91. سعادت، بررسی سیستم‌های قدرت (جلد اول)، ۱.
  92. سعادت، «اصول مقدماتی»، بررسی سیستم‌های قدرت (جلد اول)، ۱۹–۶۰.
  93. سعادت، بررسی سیستم‌های قدرت (جلد اول)، ۱–۲.
  94. سعادت، بررسی سیستم‌های قدرت (جلد اول)، ۱۹۸.
  95. دسور و کوه، نظریه اساسی مدارها و شبکه‌ها - جلد اول، ۴۱۱.
  96. دسور و کوه، نظریه اساسی مدارها و شبکه‌ها - جلد اول، ۴۱۴–۴۳۱.
  97. اوپنهایم ، ویلسکی و نواب، «سیستم‌های مخابراتی»، سیگنالها و سیستم‌ها، ۵۲۷.
  98. Mahalik, Sensor Networks and Configuration: Fundamentals, Standards, Platforms, and Applications, 487.
  99. اوپنهایم ، ویلسکی و نواب، «سیستم‌های مخابراتی»، سیگنالها و سیستم‌ها، ۵۲۸.

منابع[ویرایش]

  • آدامز، رابرت (۱۳۸۸). حساب دیفرانسیل و انتگرال، جلد اول. ترجمهٔ سید حسین اورعی. انتشارات دانشگاه فردوسی مشهد. شابک ۹۶۴-۳۸۶-۰۱۵-۹.
  • آدامز، رابرت (۱۳۸۸). حساب دیفرانسیل و انتگرال، جلد دوم. ترجمهٔ سید حسین اورعی. انتشارات دانشگاه فردوسی مشهد. شابک ۹۶۴-۳۸۶-۰۶۸-X.
  • استرویک، درک (۱۳۶۶). تاریخ فشرده ریاضیات. ترجمهٔ غلامرضا برادران خسروشاهی، حشمت‌الله کامرانی. نشر نو.
  • بویس، ویلیام ای.؛ دیپریما، ریچارد سی. (۱۳۸۴). معادلات دیفرانسیل مقدماتی و مسائل مقدار مرزی. اول. ترجمهٔ علی‌اکبر عالم‌زاده (ویراست هفتم). انتشارات علمی و فنی. شابک ۹۷۸-۹۶۴-۶۲۱۵-۳۵-۱.
  • سیلورمن، ریچارد (۱۳۸۶). حساب دیفرانسیل و انتگرال با هندسه تحلیلی، جلد اول. ترجمهٔ علی‌اکبر عالم‌زاده. انتشارات ققنوس. شابک ۹۷۸-۹۶۴-۳۱۱-۰۰۵-۵.
  • قربانی، ابوالقاسم (۱۳۷۵). زندگینامهٔ ریاضیدانان دورهٔ اسلامی از سدهٔ سوم تا سدهٔ یازدهم هجری. تهران: مرکز نشر دانشگاهی. شابک ۹۶۴-۰۱-۰۸۱۷-۰.
  • کاکسفورد، آرتور (۱۳۷۰). اصول و کاربردهای مثلثات. ترجمهٔ عادل ارشقی. انتشارات رسا.
  • کرایه‌چیان، علی‌اصغر (۱۳۸۶). معادلات دیفرنسیل و کاربرد آن‌ها. انتشارات دانشگاه فردوسی مشهد. شابک ۹۶۴-۶۳۳۵-۱۳-۶.
  • لیت‌هولد، لوئیس (۱۳۸۷). حساب دیفرانسیل و انتگرال با هندسه تحلیلی. ترجمهٔ علی‌اکبر عالم‌زاده. تهران: علوم نوین. شابک ۹۷۸-۹۶۴-۶۱۳۳-۰۳-۷.
  • نووسلو، سرگی ایوسیفویچ (۱۳۶۵). مثلثات مستقیم‌الخط و کروی. ترجمهٔ پرویز شهریاری. انتشارات امیرکبیر.
  • هالیدی، دیوید؛ رسنیک، رابرت؛ کرین، کنت اس. (۱۳۸۸). فیزیک. اول، مکانیک. ترجمهٔ محمد موسوی بایگی (ویراست پنجم). مرکز نشر دانشگاهی. شابک ۹۶۴-۵۷۷۷-۵۵-۰.
  • سعادت، هادی (۱۳۹۲). بررسی سیستم‌های قدرت (جلد اول). ترجمهٔ احد کاظمی، شهرام جدید و حیدرعلی شایانفر. دانشگاه علم و صنعت ایران. شابک ۹۶۴-۴۵۴-۳۹۴-۷.
  • دسور، چارلز؛ کوه، ارنست (۱۳۹۲). نظریه اساسی مدارها و شبکه‌ها - جلد اول. ترجمهٔ پرویز جبه دارمارالانی. دانشگاه تهران. شابک ۹۷۸-۹۶۴-۰۳-۴۲۴۸-۰.
  • اوپنهایم، آلن؛ ویلسکی، آلن؛ نواب، حمید (۱۳۸۴). سیگنالها و سیستم‌ها. ترجمهٔ محمود دیانی. نص. شابک ۹۶۴-۶۲۶۴-۲۸-X.

پیوند به بیرون[ویرایش]

  • «مثلثات». مکتب خونه. بایگانی‌شده از اصلی در ۱۶ مه ۲۰۱۵. دریافت‌شده در ۲۰۱۵-۰۴-۰۷.

Basis of trigonometry: if two right triangles have equal acute angles, they are similar, so their side lengths are proportional. Proportionality constants are written within the image: sin θ, cos θ, tan θ, where θ is the common measure of five acute angles.

In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions[1][2]) are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena, through Fourier analysis.

The most widely used trigonometric functions are the sine, the cosine, and the tangent. Their reciprocals are respectively the cosecant, the secant, and the cotangent, which are less used in modern mathematics.

The oldest definitions of trigonometric functions, related to right-angle triangles, define them only for acute angles. For extending these definitions to functions whose domain is the whole projectively extended real line, one can use geometrical definitions using the standard unit circle (a circle with radius 1 unit). Modern definitions express trigonometric functions as infinite series or as solutions of differential equations. This allows extending the domain of the sine and the cosine functions to the whole complex plane, and the domain of the other trigonometric functions to the complex plane from which some isolated points are removed.

Right-angled triangle definitions

A right triangle always includes a 90° (π/2 radians) angle, here labeled C. Angles A and B may vary. Trigonometric functions specify the relationships among side lengths and interior angles of a right triangle.
Top: Trigonometric function sin θ for selected angles θ, πθ, π + θ, and 2πθ in the four quadrants.
Bottom: Graph of sine function versus angle. Angles from the top panel are identified.
Plot of the six trigonometric functions and the unit circle for an angle of 0.7 radians

In this section, the same upper-case letter denotes a vertex of a triangle and the measure of the corresponding angle; the same lower case letter denotes an edge of the triangle and its length.

Given an acute angle A of a right-angled triangle (see figure) the hypotenuse h is the side that connects the two acute angles. The side b adjacent to A is the side of the triangle that connects A to the right angle. The third side a is said opposite to A.

If the angle A is given, then all sides of the right-angled triangle are well defined up to a scaling factor. This means that the ratio of any two side lengths depends only on A. These six ratios define thus six functions of A, which are the trigonometric functions. More precisely, the six trigonometric functions are:[3]

In a right angled triangle, the sum of the two acute angles is a right angle, that is 90° or radians. This induces relationships between trigonometric functions that are summarized in the following table, where the angle is denoted by instead of A.[4]

Function Abbreviation Description Relationship (using radians)
sine sin opposite/hypotenuse
cosine cos adjacent/hypotenuse
tangent tan (or tg) opposite/adjacent
cotangent cot (or cotan or cotg or ctg or ctn) adjacent/opposite
secant sec hypotenuse/adjacent
cosecant csc (or cosec) hypotenuse/opposite

Radians versus degrees

In geometric applications, the argument of a trigonometric function is generally the measure of an angle. For this purpose, any angular unit is convenient, and angles are most commonly measured in degrees.

When using trigonometric function in calculus, their argument is generally not an angle, but rather a real number. In this case, it is more suitable to express the argument of the trigonometric as the length of the arc of the unit circle delimited by an angle with the center of the circle as vertex. Therefore, one uses the radian as angular unit: a radian is the angle that delimits an arc of length 1 on the unit circle. A complete turn is thus an angle of 2π radians.

A great advantage of radians is that many formulas are much simpler when using them, typically all formulas relative to derivatives and integrals.

This is thus a general convention that, when the angular unit is not explicitly specified, the arguments of trigonometric functions are always expressed in radians.

Unit-circle definitions

In this illustration, the six trigonometric functions of an arbitrary angle θ are represented as Cartesian coordinates of points related to the unit circle. The ordinates of A, B and D are sin θ, tan θ and csc θ, respectively, while the abscissas of A, C and E are cos θ, cot θ and sec θ, respectively.
Signs of trigonometric functions in each quadrant. The mnemonic "all science teachers (are) crazy" lists the functions which are positive from quadrants I to IV.[5] This is a variation on the mnemonic "All Students Take Calculus".

The six trigonometric functions can be defined as coordinate values of points on the Euclidean plane that are related to the unit circle, which is the circle of radius one centered at the origin O of this coordinate system. While right-angled triangle definitions permit the definition of the trigonometric functions for angles between 0 and radian (90°), the unit circle definitions allow to extend the domain of the trigonometric functions to all positive and negative real numbers.

Rotating a ray from the direction of the positive half of the x-axis by an angle θ (counterclockwise for and clockwise for ) yields intersection points of this ray (see the figure) with the unit circle: , and, by extending the ray to a line if necessary, with the line and with the line The tangent line to the unit circle in point A, which is orthogonal to this ray, intersects the y- and x-axis in points and . The coordinate values of these points give all the existing values of the trigonometric functions for arbitrary real values of θ in the following manner.

The trigonometric functions cos and sin are defined, respectively, as the x- and y-coordinate values of point A, i.e.,

and [6]

In the range this definition coincides with the right-angled triangle definition by taking the right-angled triangle to have the unit radius OA as hypotenuse, and since for all points on the unit circle the equation holds, this definition of cosine and sine also satisfies the Pythagorean identity

The other trigonometric functions can be found along the unit circle as

and
and

By applying the Pythagorean identity and geometric proof methods, these definitions can readily be shown to coincide with the definitions of tangent, cotangent, secant and cosecant in terms of sine and cosine, that is

Trigonometric functions: Sine, Cosine, Tangent, Cosecant (dotted), Secant (dotted), Cotangent (dotted)

As a rotation of an angle of does not change the position or size of a shape, the points A, B, C, D, and E are the same for two angles whose difference is an integer multiple of . Thus trigonometric functions are periodic functions with period . That is, the equalities

and

hold for any angle θ and any integer k. The same is true for the four other trigonometric functions. Observing the sign and the monotonicity of the functions sine, cosine, cosecant, and secant in the four quadrants, shows that 2π is the smallest value for which they are periodic, i.e., 2π is the fundamental period of these functions. However, already after a rotation by an angle the points B and C return to their original position, so that the tangent function and the cotangent function have a fundamental period of π. That is, the equalities

and

hold for any angle θ and any integer k.

Algebraic values

The unit circle, with some points labeled with their cosine and sine (in this order), and the corresponding angles in radians and degrees.

The algebraic expressions for sin 0, sin π/6 = sin 30°, sin π/4 = sin 45°, sin π/3 = sin 60° and sin π/2 = sin 90° are

respectively. Writing the numerators as square roots of consecutive natural numbers provides an easy way to remember the values.[7]

Such simple expressions generally do not exist for other angles which are rational multiples of a straight angle. For an angle which, measured in degrees, is a multiple of three, the sine and the cosine may be expressed in terms of square roots, see Trigonometric constants expressed in real radicals. These values of the sine and the cosine may thus be constructed by ruler and compass.

For an angle of an integer number of degrees, the sine and the cosine may be expressed in terms of square roots and the cube root of a non-real complex number. Galois theory allows proving that, if the angle is not a multiple of 3°, non-real cube roots are unavoidable.

For an angle which, measured in degrees, is a rational number, the sine and the cosine are algebraic numbers, which may be expressed in terms of nth roots. This results from the fact that the Galois groups of the cyclotomic polynomials are cyclic.

For an angle which, measured in degrees, is not a rational number, then either the angle or both the sine and the cosine are transcendental numbers. This is a corollary of Baker's theorem, proved in 1966.

Simple algebraic values

The following table summarizes the simplest algebraic values of trigonometric functions.[8] The symbol represents the point at infinity on the projectively extended real line; it is not signed, because, when it appears in the table, the corresponding trigonometric function tends to +∞ on one side, and to –∞ on the other side, when the argument tends to the value in the table.

In calculus

The sine function (blue) is closely approximated by its Taylor polynomial of degree 7 (pink) for a full cycle centered on the origin.
Animation for the approximation of cosine via Taylor polynomials.
together with the first Taylor polynomials

Trigonometric functions are differentiable. This is not immediately evident from the above geometrical definitions. Moreover, the modern trend in mathematics is to build geometry from calculus rather than the converse. Therefore, except at a very elementary level, trigonometric functions are defined using the methods of calculus.

For defining trigonometric functions inside calculus, there are two equivalent possibilities, either using power series or differential equations. These definitions are equivalent, as starting from one of them, it is easy to retrieve the other as a property. However the definition through differential equations is somehow more natural, since, for example, the choice of the coefficients of the power series may appear as quite arbitrary, and the Pythagorean identity is much easier to deduce from the differential equations.

Definition by differential equations

Sine and cosine are the unique differentiable functions such that

Differentiating these equations, one gets that both sine and cosine are solutions of the differential equation

Applying the quotient rule to the definition of the tangent as the quotient of the sine by the cosine, one gets that the tangent function verifies

Power series expansion

Applying the differential equations to power series with indeterminate coefficients, one may deduce recurrence relations for the coefficients of the Taylor series of the sine and cosine functions. These recurrence relations are easy to solve, and give the series expansions[9]

The radius of convergence of these series is infinite. Therefore, the sine and the cosine can be extended to entire functions (also called "sine" and "cosine"), which are (by definition) complex-valued functions that are defined and holomorphic on the whole complex plane.

Being defined as fractions of entire functions, the other trigonometric functions may be extended to meromorphic functions, that is functions that are holomorphic in the whole complex plane, except some isolated points called poles. Here, the poles are the numbers of the form for the tangent and the secant, or for the cotangent and the cosecant, where k is an arbitrary integer.

Recurrences relations may also be computed for the coefficients of the Taylor series of the other trigonometric functions. These series have a finite radius of convergence. Their coefficients have a combinatorial interpretation: they enumerate alternating permutations of finite sets.[10]

More precisely, defining

Un, the nth up/down number,
Bn, the nth Bernoulli number, and
En, is the nth Euler number,

one has the following series expansions:[11]

There is a series representation as partial fraction expansion where just translated reciprocal functions are summed up, such that the poles of the cotangent function and the reciprocal functions match:[12]

This identity can be proven with the Herglotz trick.[13] Combining the (–n)th with the nth term lead to absolutely convergent series:

Infinite product expansion

The following infinite product for the sine is of great importance in complex anaylsis:

For the proof of this expansion, see Sine. From this, it can be deduced that

Relationship to exponential function (Euler's formula)

and are the real and imaginary part of respectively.

Euler's formula relates sine and cosine to the exponential function:

This formula is commonly considered for real values of x, but it remains true for all complex values.

Proof: Let and One has for j = 1, 2. The quotient rule implies thus that . Therefore, is a constant function, which equals 1, as This proves the formula.

One has

Solving this linear system in sine and cosine, one can express them in terms of the exponential function:

When x is real, this may be rewritten as

Most trigonometric identities can be proved by expressing trigonometric functions in terms of the complex exponential function by using above formulas, and then using the identity for simplifying the result.

Definitions using functional equations

One can also define the trigonometric functions using various functional equations.

For example,[14] the sine and the cosine form the unique pair of continuous functions that satisfy the difference formula

and the added condition

In the complex plane

The sine and cosine of a complex number can be expressed in terms of real sines, cosines, and hyperbolic functions as follows:

By taking advantage of domain coloring, it is possible to graph the trigonometric functions as complex-valued functions. Various features unique to the complex functions can be seen from the graph; for example, the sine and cosine functions can be seen to be unbounded as the imaginary part of becomes larger (since the color white represents infinity), and the fact that the functions contain simple zeros or poles is apparent from the fact that the hue cycles around each zero or pole exactly once. Comparing these graphs with those of the corresponding Hyperbolic functions highlights the relationships between the two.

Trigonometric functions in the complex plane
Complex sin.jpg
Complex cos.jpg
Complex tan.jpg
Complex Cot.jpg
Complex Sec.jpg
Complex Csc.jpg

Basic identities

Many identities interrelate the trigonometric functions. This section contains the most basic ones; for more identities, see List of trigonometric identities. These identities may be proved geometrically from the unit-circle definitions or the right-angled-triangle definitions (although, for the latter definitions, care must be taken for angles that are not in the interval [0, π/2], see Proofs of trigonometric identities). For non-geometrical proofs using only tools of calculus, one may use directly the differential equations, in a way that is similar to that of the above proof of Euler's identity. One can also use Euler's identity for expressing all trigonometric functions in terms of complex exponentials and using properties of the exponential function.

Parity

The cosine and the secant are even functions; the other trigonometric functions are odd functions. That is:

Periods

All trigonometric functions are periodic functions of period 2π. This is the smallest period, except for the tangent and the cotangent, which have π as smallest period. This means that, for every integer k, one has

Pythagorean identity

The Pythagorean identity, is the expression of the Pythagorean theorem in terms of trigonometric functions. It is

Sum and difference formulas

The sum and difference formulas allow expanding the sine, the cosine, and the tangent of a sum or a difference of two angles in terms of sines and cosines and tangents of the angles themselves. These can be derived geometrically, using arguments that date to Ptolemy. One can also produce them algebraically using Euler's formula.

Sum
Difference

When the two angles are equal, the sum formulas reduce to simpler equations known as the double-angle formulae.

These identities can be used to derive the product-to-sum identities.

By setting and this allows expressing all trigonometric functions of as a rational fraction of :

Together with

this is the tangent half-angle substitution, which allows reducing the computation of integrals and antiderivatives of trigonometric functions to that of rational fractions.

Derivatives and antiderivatives

The derivatives of trigonometric functions result from those of sine and cosine by applying quotient rule. The values given for the antiderivatives in the following table can be verified by differentiating them. The number C is a constant of integration.

Inverse functions

The trigonometric functions are periodic, and hence not injective, so strictly speaking, they do not have an inverse function. However, on each interval on which a trigonometric function is monotonic, one can define an inverse function, and this defines inverse trigonometric functions as multivalued functions. To define a true inverse function, one must restrict the domain to an interval where the function is monotonic, and is thus bijective from this interval to its image by the function. The common choice for this interval, called the set of principal values, is given in the following table. As usual, the inverse trigonometric functions are denoted with the prefix "arc" before the name or its abbreviation of the function.

The notations sin−1, cos−1, etc. are often used for arcsin and arccos, etc. When this notation is used, inverse functions could be confused with multiplicative inverses. The notation with the "arc" prefix avoids such a confusion, though "arcsec" for arcsecant can be confused with "arcsecond".

Just like the sine and cosine, the inverse trigonometric functions can also be expressed in terms of infinite series. They can also be expressed in terms of complex logarithms. See Inverse trigonometric functions for details.

Applications

Angles and sides of a triangle

In this sections A, B, C denote the three (interior) angles of a triangle, and a, b, c denote the lengths of the respective opposite edges. They are related by various formulas, which are named by the trigonometric functions they involve.

Law of sines

The law of sines states that for an arbitrary triangle with sides a, b, and c and angles opposite those sides A, B and C:

where Δ is the area of the triangle, or, equivalently,

where R is the triangle's circumradius.

It can be proven by dividing the triangle into two right ones and using the above definition of sine. The law of sines is useful for computing the lengths of the unknown sides in a triangle if two angles and one side are known. This is a common situation occurring in triangulation, a technique to determine unknown distances by measuring two angles and an accessible enclosed distance.

Law of cosines

The law of cosines (also known as the cosine formula or cosine rule) is an extension of the Pythagorean theorem:

or equivalently,

In this formula the angle at C is opposite to the side c. This theorem can be proven by dividing the triangle into two right ones and using the Pythagorean theorem.

The law of cosines can be used to determine a side of a triangle if two sides and the angle between them are known. It can also be used to find the cosines of an angle (and consequently the angles themselves) if the lengths of all the sides are known.

Law of tangents

The following all form the law of tangents[15]

The explanation of the formulae in words would be cumbersome, but the patterns of sums and differences, for the lengths and corresponding opposite angles, are apparent in the theorem.

Law of cotangents

If

(the radius of the inscribed circle for the triangle)

and

(the semi-perimeter for the triangle),

then the following all form the law of cotangents[15]

It follows that

In words the theorem is: the cotangent of a half-angle equals the ratio of the semi-perimeter minus the opposite side to the said angle, to the inradius for the triangle.

A Lissajous curve, a figure formed with a trigonometry-based function.

Periodic functions

An animation of the additive synthesis of a square wave with an increasing number of harmonics
Sinusoidal basis functions (bottom) can form a sawtooth wave (top) when added. All the basis functions have nodes at the nodes of the sawtooth, and all but the fundamental (k = 1) have additional nodes. The oscillation seen about the sawtooth when k is large is called the Gibbs phenomenon

The trigonometric functions are also important in physics. The sine and the cosine functions, for example, are used to describe simple harmonic motion, which models many natural phenomena, such as the movement of a mass attached to a spring and, for small angles, the pendular motion of a mass hanging by a string. The sine and cosine functions are one-dimensional projections of uniform circular motion.

Trigonometric functions also prove to be useful in the study of general periodic functions. The characteristic wave patterns of periodic functions are useful for modeling recurring phenomena such as sound or light waves.[16]

Under rather general conditions, a periodic function f(x) can be expressed as a sum of sine waves or cosine waves in a Fourier series.[17] Denoting the sine or cosine basis functions by φk, the expansion of the periodic function f(t) takes the form:

For example, the square wave can be written as the Fourier series

In the animation of a square wave at top right it can be seen that just a few terms already produce a fairly good approximation. The superposition of several terms in the expansion of a sawtooth wave are shown underneath.

History

While the early study of trigonometry can be traced to antiquity, the trigonometric functions as they are in use today were developed in the medieval period. The chord function was discovered by Hipparchus of Nicaea (180–125 BCE) and Ptolemy of Roman Egypt (90–165 CE). The functions of sine and versine (1 - cosine) can be traced back to the jyā and koti-jyā functions used in Gupta period Indian astronomy (Aryabhatiya, Surya Siddhanta), via translation from Sanskrit to Arabic and then from Arabic to Latin.[18] (See Aryabhata's sine table.)

All six trigonometric functions in current use were known in Islamic mathematics by the 9th century, as was the law of sines, used in solving triangles.[19] With the exception of the sine (which was adopted from Indian mathematics), the other five modern trigonometric functions were discovered by Arabic mathematicians, including the cosine, tangent, cotangent, secant and cosecant.[19] Al-Khwārizmī (c. 780–850) produced tables of sines, cosines and tangents. Circa 830, Habash al-Hasib al-Marwazi discovered the cotangent, and produced tables of tangents and cotangents.[20][21] Muhammad ibn Jābir al-Harrānī al-Battānī (853–929) discovered the reciprocal functions of secant and cosecant, and produced the first table of cosecants for each degree from 1° to 90°.[21] The trigonometric functions were later studied by mathematicians including Omar Khayyám, Bhāskara II, Nasir al-Din al-Tusi, Jamshīd al-Kāshī (14th century), Ulugh Beg (14th century), Regiomontanus (1464), Rheticus, and Rheticus' student Valentinus Otho.

Madhava of Sangamagrama (c. 1400) made early strides in the analysis of trigonometric functions in terms of infinite series.[22] (See Madhava series and Madhava's sine table.)

The terms tangent and secant were first introduced by the Danish mathematician Thomas Fincke in his book Geometria rotundi (1583).[23]

The 16th century French mathematician Albert Girard made the first published use of the abbreviations sin, cos, and tan in his book Trigonométrie.[24]

In a paper published in 1682, Leibniz proved that sin x is not an algebraic function of x.[25]

Leonhard Euler's Introductio in analysin infinitorum (1748) was mostly responsible for establishing the analytic treatment of trigonometric functions in Europe, also defining them as infinite series and presenting "Euler's formula", as well as near-modern abbreviations (sin., cos., tang., cot., sec., and cosec.).[18]

A few functions were common historically, but are now seldom used, such as the chord (crd(θ) = 2 sin(θ/2)), the versine (versin(θ) = 1 − cos(θ) = 2 sin2(θ/2)) (which appeared in the earliest tables[18]), the coversine (coversin(θ) = 1 − sin(θ) = versin(π/2θ)), the haversine (haversin(θ) = 1/2versin(θ) = sin2(θ/2)),[26] the exsecant (exsec(θ) = sec(θ) − 1), and the excosecant (excsc(θ) = exsec(π/2θ) = csc(θ) − 1). See List of trigonometric identities for more relations between these functions.

Etymology

The word sine derives[27] from Latin sinus, meaning "bend; bay", and more specifically "the hanging fold of the upper part of a toga", "the bosom of a garment", which was chosen as the translation of what was interpreted as the Arabic word jaib, meaning "pocket" or "fold" in the twelfth-century translations of works by Al-Battani and al-Khwārizmī into Medieval Latin.[28] The choice was based on a misreading of the Arabic written form j-y-b (جيب), which itself originated as a transliteration from Sanskrit jīvā, which along with its synonym jyā (the standard Sanskrit term for the sine) translates to "bowstring", being in turn adopted from Ancient Greek χορδή "string".[29]

The word tangent comes from Latin tangens meaning "touching", since the line touches the circle of unit radius, whereas secant stems from Latin secans—"cutting"—since the line cuts the circle.[30]

The prefix "co-" (in "cosine", "cotangent", "cosecant") is found in Edmund Gunter's Canon triangulorum (1620), which defines the cosinus as an abbreviation for the sinus complementi (sine of the complementary angle) and proceeds to define the cotangens similarly.[31][32]

See also

Notes

  1. ^ Klein, Christian Felix (1924) [1902]. Elementarmathematik vom höheren Standpunkt aus: Arithmetik, Algebra, Analysis (in German). 1 (3rd ed.). Berlin: J. Springer.
  2. ^ Klein, Christian Felix (2004) [1932]. Elementary Mathematics from an Advanced Standpoint: Arithmetic, Algebra, Analysis. Translated by Hedrick, E. R.; Noble, C. A. (Translation of 3rd German ed.). Dover Publications, Inc. / The Macmillan Company. ISBN 978-0-48643480-3. Archived from the original on 2018-02-15. Retrieved 2017-08-13.
  3. ^ Protter & Morrey (1970, pp. APP-2,APP-3)
  4. ^ Protter & Morrey (1970, p. APP-7)
  5. ^ Heng, Cheng and Talbert, "Additional Mathematics" Archived 2015-03-20 at the Wayback Machine, page 228
  6. ^ Bityutskov, V.I. (2011-02-07). "Trigonometric Functions". Encyclopedia of Mathematics. Archived from the original on 2017-12-29. Retrieved 2017-12-29.
  7. ^ Larson, Ron (2013). Trigonometry (9th ed.). Cengage Learning. p. 153. ISBN 978-1-285-60718-4. Archived from the original on 2018-02-15. Extract of page 153 Archived 2018-02-15 at the Wayback Machine
  8. ^ Abramowitz, Milton and Irene A. Stegun, p.74
  9. ^ See Ahlfors, pages 43–44.
  10. ^ Stanley, Enumerative Combinatorics, Vol I., page 149
  11. ^ Abramowitz; Weisstein.
  12. ^ Aigner, Martin; Ziegler, Günter M. (2000). Proofs from THE BOOK (Second ed.). Springer-Verlag. p. 149. ISBN 978-3-642-00855-9. Archived from the original on 2014-03-08.
  13. ^ Remmert, Reinhold (1991). Theory of complex functions. Springer. p. 327. ISBN 978-0-387-97195-7. Archived from the original on 2015-03-20. Extract of page 327 Archived 2015-03-20 at the Wayback Machine
  14. ^ Kannappan, Palaniappan (2009). Functional Equations and Inequalities with Applications. Springer. ISBN 978-0387894911.
  15. ^ a b The Universal Encyclopaedia of Mathematics, Pan Reference Books, 1976, page 529-530. English version George Allen and Unwin, 1964. Translated from the German version Meyers Rechenduden, 1960.
  16. ^ Farlow, Stanley J. (1993). Partial differential equations for scientists and engineers (Reprint of Wiley 1982 ed.). Courier Dover Publications. p. 82. ISBN 978-0-486-67620-3. Archived from the original on 2015-03-20.
  17. ^ See for example, Folland, Gerald B. (2009). "Convergence and completeness". Fourier Analysis and its Applications (Reprint of Wadsworth & Brooks/Cole 1992 ed.). American Mathematical Society. pp. 77ff. ISBN 978-0-8218-4790-9. Archived from the original on 2015-03-19.
  18. ^ a b c Boyer, Carl B. (1991). A History of Mathematics (Second ed.). John Wiley & Sons, Inc. ISBN 0-471-54397-7, p. 210.
  19. ^ a b Gingerich, Owen (1986). "Islamic Astronomy". Scientific American. Vol. 254. p. 74. Archived from the original on 2013-10-19. Retrieved 2010-07-13.
  20. ^ Jacques Sesiano, "Islamic mathematics", p. 157, in Selin, Helaine; D'Ambrosio, Ubiratan, eds. (2000). Mathematics Across Cultures: The History of Non-western Mathematics. Springer Science+Business Media. ISBN 978-1-4020-0260-1.
  21. ^ a b "trigonometry". Encyclopedia Britannica.
  22. ^ O'Connor, J. J.; Robertson, E. F. "Madhava of Sangamagrama". School of Mathematics and Statistics University of St Andrews, Scotland. Archived from the original on 2006-05-14. Retrieved 2007-09-08.
  23. ^ "Fincke biography". Archived from the original on 2017-01-07. Retrieved 2017-03-15.
  24. ^ O'Connor, John J.; Robertson, Edmund F., "Trigonometric functions", MacTutor History of Mathematics archive, University of St Andrews.
  25. ^ Bourbaki, Nicolás (1994). Elements of the History of Mathematics. Springer.
  26. ^ Nielsen (1966, pp. xxiii–xxiv)
  27. ^ The anglicized form is first recorded in 1593 in Thomas Fale's Horologiographia, the Art of Dialling.
  28. ^ Various sources credit the first use of sinus to either See Merlet, A Note on the History of the Trigonometric Functions in Ceccarelli (ed.), International Symposium on History of Machines and Mechanisms, Springer, 2004
    See Maor (1998), chapter 3, for an earlier etymology crediting Gerard.
    See Katx, Victor (July 2008). A history of mathematics (3rd ed.). Boston: Pearson. p. 210 (sidebar). ISBN 978-0321387004.
  29. ^ See Plofker, Mathematics in India, Princeton University Press, 2009, p. 257
    See "Clark University". Archived from the original on 2008-06-15.
    See Maor (1998), chapter 3, regarding the etymology.
  30. ^ Oxford English Dictionary
  31. ^ Gunter, Edmund (1620). Canon triangulorum.
  32. ^ Roegel, Denis, ed. (2010-12-06). "A reconstruction of Gunter's Canon triangulorum (1620)" (Research report). HAL. inria-00543938. Archived from the original on 2017-07-28. Retrieved 2017-07-28.

References

External links