تلسکوپ

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به ناوبری پرش به جستجو
فارسیEnglish
رصدخانه مکدونالد دانشگاه تگزاس در آستین حاوی تلسکوپ هابی ابرلی با قطر آیینه مرکب ۹ متر و ۲۰ سانتیمتر

تِلِسکوپ (به انگلیسی: Telescope) وسیله‌ای برای دیدن اجرام آسمانی با استفاده از تابش الکترومغناطیس (به انگلیسی: Electromagnetic radiation) (مانند نور مرئی) به صورت واضح و دقیق است. اولین تلسکوپ کارا در ابتدای قرن هفدهم و با استفاده از لنزهای شیشه‌ای در هلند اختراع شد. در درازای چند دهه، تلسکوپ‌بازتابی که از آینه استفاده می‌کند اختراع شد، بسیاری از انواع نوتری از تلسکوپ‌ها در قرن ۲۰میلادی زاده شدند، رادیوتلسکوپ در دهه ۱۹۳۰ و تلسکوپ فرابنفش در سال ۱۹۶۰ از جملهٔ این اختراعات بودند. واژه تلسکوپ می‌تواند به تمام حیطهٔ وسایل عملیاتی درسرتاسر ناحیهٔ میدان الکترومغناطیس اشاره داشته باشد.

واژهٔ تلسکوپ، از دو واژهٔ یونانی تله(به یونانی: τῆλε) به معنی دور و اسکوپین (به یونانی: σκοπεῖν) به معنی دیدن، گرفته شده‌است، نخستین بار در سال ۱۶۱۱ به نام یک ریاضی‌دان ایتالیایی به نام جووانی دمیزیانی (به ایتالیایی: Giovanni Demisiani) که برای یکی از ابزارهای گالیلئو گالیله[۱] که در آکادمی‌دلینچی (به ایتالیایی: Accademia dei Lincei) به نمایش گذاشته شده بود بکار گرفته شد.[۲][۳][۴][۵]

پیشینه[ویرایش]

طرح تلسکوپ گالیله
طرح تلسکوپ نیوتن
طرح تلسکوپ کسگرین

اولین مدارک استفاده از تلسکوپ مربوط به تلسکوپ شکستی (به انگلیسی: Refracting Telescope) است که در سال ۱۶۰۸ در هلند پدیدار شد.در آن زمان از عدسی به عنوان عدسی شیئی استفاده می‌کردند تا یک تصویر بسازد. پیشرفت آن به سه نفر نسبت داده می‌شود: هانس لیپرشی (به انگلیسی: Hans Lippershey) و زاخاریاس یانسن (به هلندی: Zacharias Janssen) که در میدل‌بورخ آلمان، عینک ساز بودند، و یک ابزار ساز و کارشناس عدسی‌ها به نام یاکوب میتیوس (به هلندی: Jacob Metius) از شهر آلکمار.[۶] در ماه جون سال ۱۶۰۹ گالیله از ساخته‌شدنِ تلسکوپِ آلمانی با خبر می‌شود و تلسکوپ خود را در یک‌ماه می‌سازد[۷] و در درازای یک‌سال برای بهبود طراحی آن می‌کوشد.

این ایده که شیئی(عدسی شیئی|(به انگلیسی: Objective)) یا عنصرِ جمع‌آوری‌کننده نور، می‌تواند به جای یک عدسی، یک آیینه باشد، محصول تحقیقی بود که مدت کمی پس از اختراع تلسکوپ شکستی انجام شد.[۸] مزایای استفاده از آینه‌های سهمی‌گون (به انگلیسی: Parabolic reflector) به جای عدسی، از جمله کاهش ابیراهی‌کروی و عدم وجود ابیراهی‌رنگی، باعث شد تعداد زیادی طرحِ پیشنهادی و چندین تلاش برای ساخت آینه بازتابی صورت گیرد. در سال ۱۶۶۸ ایزاک نیوتن (به انگلیسی: Isaac Newton) اولین تلسکوپ بازتابی (به انگلیسی: Reflecting Telescope) کاربردی را ساخت که بعدها تلسکوپ نیوتنی(به انگلیسی: Newtonian telescope) نام گرفت. وسیلهٔ او از یک آینه مقعر و یک آینه تخت تشکیل می‌شد که در یک لوله قرار گرفته بودند. آینهٔ تلسکوپ نیوتون از فلز ساخته شده بود و قطری در حدود۵ سانتی‌متر داشت.

اختراع عدسی‌بی‌رنگ (به انگلیسی: Achromatic lens) در سال ۱۷۳۳ میلادی، خطای رنگی را اندکی تصحیح کرد و امکان ساخت عدسی‌هایی با فاصلهٔ کانونی کمتر که به کوتاه شدن لوله تلسکوپ می‌انجامید را فراهم ساخت. تلسکوپ‌های بازتابی اگرچه ابیراهی رنگی نداشتند، ولی در درازای قرن‌های ۱۸ و ۱۹ آینهٔ فلزی آن‌ها که از مس و قلع ساخته‌شده بودند به مرور زمان تیره می‌شدند. این مشکل با اندود کردن سطح شیشه با نقره در ۱۸۵۷[۹] یا آلومینیم در سال ۱۹۳۲ حل شد.[۱۰]

حداکثر اندازهٔ عدسی شیئی تلسکوپ‌های شکستی در حدود یک متر است. اغلب تلسکوپ‌های ساخته شده در قرن بیستم از نوع بازتابی بودند، این درحالی است که بزرگترین تلسکوپ‌های بازتابیِ در حال کار، بزرگتر از ۱۰ متر هستند. قرن بیستم همچنین پیشرفت در ساخت تلسکوپ‌هایِ فعال در طیف وسیعی از طول موجها از امواج رادیویی تا امواج گاما را نشان می‌دهد. اولین تلسکوپ رادیویی هدفمند نیز در سال ۱۹۳۷ وارد عملیات ساخت شد و از آن زمان پیشرفت‌های شگرفی در تنوع مجموعهٔ ابزار نجومی انجام شده‌است.

انواع تلسکوپ‌ها[ویرایش]

واژه تلسکوپ می‌تواند به تمام حیطهٔ وسایل عملیاتی درسرتاسر ناحیهٔ میدان الکترومغناطیس اشاره داشته باشد، اما تفاوت‌های عمده‌ای در جمع‌آوری نور (تابش الکترومغناطیس) توسط ستاره‌شناسان و منجمان در پهناهای فرکانسی مختلف وجود دارد.

تلسکوپ‌ها ممکن است براساس طول موجِ نوری که تشخیص می‌دهند، دسته‌بندی شوند:

  • پرتو ایکس (به انگلیسی: X-ray)، استفاده از طول‌موج کوتاه‌تر از نور فرابنفش
  • فرابنفش (UV)، استفاده از طول‌موج کوتاه‌تر از نور مرئی
  • نوری (visible)، استفاده از نور مرئی
  • فروسرخ، استفاده از طول‌موج بلندتر از نور مرئی
  • زیرمیلی‌متری(به انگلیسی: Submillimetre)، استفاده از طول‌موج بلندتر از نور فروسرخ
مقایسه نورها
نام طول‌موج (نانومتر) فرکانس (هرتز) انرژی فوتون (کیلو الکترون ولت)
پرتو گاما کمتر از ۰٫۰۱ بیش از ۱۰ EHZ ۱۰۰ keV تا +۳۰۰ GeV
پرتو ایکس ۰٫۰۱ تا ۱۰ ۳۰ PHz تا ۳۰ EHZ ۱۲۰ eV تا ۱۲۰ keV
فرابنفش ۱۰–۴۰۰ ۳۰ EHZ تا ۷۹۰ THz ۳ ev تا ۱۲۴ eV
مرئی ۳۹۰–۷۵۰ ۷۹۰ THz تا ۴۵۰ THz ۱٫۷ eV تا ۳٫۳ eV
فروسرخ ۷۵۰–۱ میلی‌متر ۴۵۰ Thz تا ۳۰۰ GHz ۱٫۲۴ meV تا ۱٫۷ eV
ریزموج ۱ م‌م تا ۱ متر ۳۰۰ GHz تا ۳۰۰ MHz ۱٫۲۴ meV تا ۱٫۲۴ µeV
رادیو ۱ م‌م تا ۱ کیلومتر ۳ Hz تا ۳۰۰ GHz ۱٫۲۴ meV تا ۱۲٫۴ feV

هرچه میزان طول‌موج، بلندتر می‌شود، استفاده از فناوری آنتن برای تعامل با تابش الکترومغناطیس آسان‌تر می‌شود، حتی ممکن است برای دریافت آن‌ها بتوان آنتن‌های بسیار کوچکی ساخت. نورهای نزدیک به طول‌موج فرابنفش را می‌توان بسیار شبیه به تور مرئی بکارگرفت، با این حال در محدوده نور فروسرخ دور و زیرمیلی‌متر، تلسکوپ‌ها می‌تواند بیشتر شبیه یک تلسکوپ رادیویی به کار گرفته شوند. برای نمونه، تلسکوپِ جِیمز کلارک ماکسوِل(به انگلیسی: James Clerk Maxwell Telescope | JCMT) می‌تواند با استفاده از یک آنتن سهمی آلومینیومی، از طول‌موجِ ۳ میکرومتر(۰٫۰۰۳ میلی‌متر) تا ۲۰۰۰ میکرومتر(۲ میلی‌متر) را مشاهده کند،[۱۱] از سوی دیگر، تلسکوپ فضایی اسپیتزر (به انگلیسی: Spitzer Space Telescope)، با استفاده از یک آینه بازتابنده (بازتاب نوری)، از طول‌موجِ ۳ میکرومتر(۰٫۰۰۳ میلی‌متر) تا ۱۸۰ میکرومتر(۰٫۱۸ میلی‌متر) را مشاهده می‌کند. همچنین با استفاده از بازتاب‌های نوری، تلسکوپ فضایی هابل (به انگلیسی: Hubble Space Telescope)، توسط دوربین دید گستردهٔ ۳(به انگلیسی: Wide Field Camera 3)، توان مشاهده طول موج‌های بین ۲ میکرومتر(۰٫۰۰۲ میلی‌متر) تا ۱٫۷ میکرومتر(۰٫۰۰۱۷ میلی‌متر)، از محدوده نور فرابنفش تا فروسرخ را دارد.[۱۲]

ˌ
یکی دیگر دست‌آوردها در طراحی تلسکوپ، و برای افزایش انرژی فوتونها (طول‌موج کوتاه‌تر و فرکانس(بسامد) بالاتر) استفاده از یک بازتابنده کامل نوری است. تلسکوپ‌هایی مانند ترِیس(به انگلیسی: TRACE) و سوهو(به انگلیسی: SOHO)، از آیینه‌های ویژه‌ای برای تشدیدِ انعکاس پرتو فرابنفش استفاده می‌کنند، به همین دلیل تولیدِ تفکیک‌پذیری بالاتر و وضوح بیشتر تصاویر از این تلسکوپ‌ها ممکن شده‌است. دهانه بزرگتر تنها به معنی جمع‌آوری نور بیشتر نیست، بلکه تلسکوپ را قادر به تفکیک‌پذیری زاویه‌ای دقیق‌تری می‌کند.

تلسکوپ‌ها همچنین بر اساس محل قرارگیری نیز دسته‌بندی می‌شوند: نوع زمینی، تلسکوپ فضایی یا تلسکوپ پروازی(به انگلیسی: Flying telescope) یا بر پایهٔ استفاده توسط منجمان حرفه‌ای یا آماتور.

تلسکوپ نوری[ویرایش]

یک تلسکوپ مدرن آماتوری
تلسکوپ فضایی مادون قرمز IRAS

یک تلسکوپ نوری طیف مرئی نور را گردآوری می‌کند. تلسکوپ‌های نوری قطر زاویه‌ای و روشنی اجرام مورد رصد را افزایش می‌دهند.[۱۳] در یک تلسکوپ نوری به منظور ایجاد تصویر از آینه یا عدسی استفاده شده‌است. از این نظر تلسکوپ‌ها را به سه گروه عمده تقسیم‌بندی می‌کنند:

  • تلسکوپ‌های شکستی
  • تلسکوپ‌های بازتابی
  • تلسکوپ‌های شکستی – بازتابی[۱۴]

تلسکوپ‌های شکستی[ویرایش]

تلسکوپ گالیله‌ای

در یک تلسکوپ شکستی برای ایجاد تصویر از عدسی استفاده می‌شود. اولین بار گالیله از این نوع تلسکوپ استفاده کرد و از این رو به این گونه تلسکوپ‌ها گالیله‌ای نیز می‌گویند.

تلسکوپ‌های شکستی انواع مختلفی دارند که عبارتند از:

  • تلسکوپ شکستی آکروماتیک
  • تلسکوپ شکستی آپوکروماتیک

تلسکوپ شکستی آکروماتیک[ویرایش]

در تلسکوپ‌های شکستی از دو عدسی شیئی و چشمی استفاده می‌شود. عدسی شیئی برای جمع‌آوری نور و کانونی کردن آن و عدسی چشمی برای بزرگنمایی تصویر. استفاده اشز عدسی به عنوان شیئی دارای معایب مهمی مانند ابیراهی رنگی است. برای رفع این مشکل می‌توان شیئی را از دو عدسی ساخت که منجر به ساخت تلسکوپ شکستی نوع آکروماتیک می‌شود. نسبت کانونی این نوع تلسکوپ‌ها از f/۷ تا f/۱۱ است که به این تلسکوپ‌ها اصطلاحاً «تلسکوپ کند» می‌گویند.

تلسکوپ شکستی آپوکروماتیک[ویرایش]

تلسکوپ‌های شکستی آکروماتیک سنتی پس از دو قرن استفاده گسترده حالا جای خود را به مدلی پیشرفته‌تر به نام آپوکروماتیک می‌دهند. عدسی شیئی این نوع تلسکوپ‌ها از چندین عدسی ساخته شده‌است که از جنس ED هستند. تلسکوپ‌هایی که شیئی آن‌ها از سه قسمت تشکیل شده باشد به اصطلاح تریبلت می‌گویند. فضای بین این عدسی‌ها را از گاز نیتروژن پر می‌کنند. نسبت کانونی تلسکوپ‌های شکستی آپوکروماتیک معمولاً ازf/۴ تا f/۹ می‌باشد که به این تلسکوپ‌ها «تلسکوپ تند» می‌گویند. همچنین به علت پایین بودن نسبت کانونی از این نوع تلسکوپ‌ها برای عکاسی نجومی نیز استفاده می‌کنند.

تلسکوپ‌های بازتابی[ویرایش]

در این تلسکوپ‌ها جمع‌آوری نور به عهدهٔ یک آینهٔ مقعر است. پوشش بازتابندهٔ آینه می‌تواند نقره یا آلومینیم باشد. پوشش آلومینیومی این مزیت را دارد که اکسیده شدن آن باعث از بین رفتن قابلیت بازتاب آینه نمی‌شود. در بعضی دیگر از تلسکوپ‌ها از نقره استفاده می‌شود، سپس روی آن پوششی قرار می‌گیرد که مانع اکسید شدن نقره می‌شود. آینهٔ مقعر می‌تواند قسمتی از یک کره (کروی) یا قسمتی از یک سهمی (سهموی) باشد. در تلسکوپ‌های بازتابی اگر از آینه سهموی استفاده شود، ابیراهی کروی به حداقل کاهش می‌یابد. تلسکوپ‌های بازتابی پس از مدتی نیاز به تمیز کردن آینه و پس از آن بسته به کیفیت روکش آلومینیوم، نیاز به تجدید روکش دارند. تلسکوپ‌های بازتابی در مقایسه با نوع شکستی یک مزیت عمده دارند: آینه خمیده در قسمت انتهایی تلسکوپ نصب می‌شود که باعث می‌شود آینه زیر وزن خود تغییر شکل ندهد.

تلسکوپ‌های بازتابی به دو دستهٔ اصلی تقسیم می‌شوند:

  • تلسکوپ نیوتنی
  • تلسکوپ کسگرین

تلسکوپ نیوتنی[ویرایش]

تلسکوپ نیوتونی

در این نوع تلسکوپ، نور جمع‌آوری شده به وسیلهٔ یک آیینهٔ کاو (مقعر)، با یک آینهٔ ثانویهٔ تخت یا منشور به بیرون از لولهٔ تلسکوپ هدایت شده و به عدسی چشمی ارسال می‌شود. اگرچه تلسکوپ‌های نیوتنی از انواع شکستی کوتاهترند، ولی همچنان از مدل‌های جدیدتر کسگرین یا اشمیت-کسگرین بلندتر و سنگین‌تر هستند.

تلسکوپ کسگرین[ویرایش]

تلسکوپ‌های نیوتنی نسبتاً بلند هستند و هنگامی که اندازهٔ آینه اصلی آن‌ها بزرگ‌تر می‌شود، طول تلسکوپ بسیار زیاد می‌شود. برای حل این مشکل از روشی به نام کاسگرین استفاده می‌شود.

در این روش مرکز آینهٔ اصلی تلسکوپ سوراخ شده و چشمی در پشت تلسکوپ قرار می‌گیرد. آینهٔ ثانویه پرتوهای آینهٔ اصلی را از میان سوراخ آینهٔ اصلی به سمت چشمی می‌فرستد. در این روش به دلیل اینکه پرتوها طول تلسکوپ را دو بار طی می‌کنند، طول تلسکوپ به نصف کاهش می‌یابد. از روش کاسگرین در لنزهای آینه‌ای دوربین‌های عکاسی نیز استفاده می‌شود.

تلسکوپ‌های شکستی-بازتابی[ویرایش]

این تلسکوپ‌ها شبیه تلسکوپ‌های بازتابی هستند، با این تفاوت که در ساخت آنان از تیغه‌های شیشه‌ای‌ای استفاده شده‌است تا بتوان از آینه کروی به جای آینهٔ سهموی استفاده کرد. تلسکوپ‌های اشمیت و ماکسوتف - باورز از این دسته‌اند.

تلسکوپ اشمیت[ویرایش]

در دهانهٔ این تلسکوپ تیغه باریکی به نام تیغه اشمیت قرار می‌گیرد که کار تصحیح خطای آینه را بر عهده دارد و بر اساس تراش و خطای آینه ساخته می‌شود.

تلسکوپ اشمیت-کاسگرین[ویرایش]

تلسکوپ اشمیت-کاسگرین

تلسکوپ اشمیت-کاسگرین به تلسکوپی گفته می‌شود که از هر دو فناوری کاسگرین و تیغه اشمیت در آن استفاده شده باشد. این روش عموماً برای تلسکوپ‌های ۸ اینچ به بالا به کار می‌رود.

عدم شفافیت جو برای امواج الکترومغناطیس[ویرایش]

نمودار طیف الکترومغناطیس با مشخص شدن قسمت‌هایی که جو برای آن شفاف یا غیرشفاف است به همراه انواع تلسکوپ‌هایی که برای دریافت تصویر از قسمت‌های مختلف طیف به کار می‌رود.

از آنجا که جو زمین برای عمده طیف الکترومغناطیس شفاف نیست، تنها چند محدوده از امواج الکترومغناطیس در سطح زمین قابل دریافت است. این محدوده‌ها عبارتند از فروسرخ نزدیک و بعضی از امواج رادیویی. به همین دلیل هیچ تلسکوپ پرتو ایکس یا فروسرخ دوری در سطح زمین قابل استفاده نیست. چنین تلسکوپ‌هایی باید به مدار زمین زمین فرستاده شوند تا خارج از جو رصد خود را انجام دهند. حتی برای طول موج‌هایی که در سطح زمین قابل دریافت‌اند، تلسکوپی در مدار زمین به دلیل بدور بودن از اغتشاشات جوی، کارایی بسیار بیشتری دارد.

استقرار تلسکوپ[ویرایش]

تکیه‌گاه تلسکوپ باید محکم و استوار باشد تا از لرزش آن جلوگیری کند؛ ضمن اینکه باید در هنگام رصد، تلسکوپ را به نرمی و به صورت یکنواخت چرخاند. دو شیوهٔ اصلی در استقرار تلسکوپ وجود دارد: استوایی و سمتی-ارتفاعی.

استقرار استوایی[ویرایش]

در استقرار استوایی، یک محور تلسکوپ به سمت قطب سماوی نشانه می‌رود. این محور را محور قطبی یا محور ساعت نام نهاده‌ند. محور دیگر، عمود بر این محور، محور مِیل است. با توجه به موازی بودن محور ساعت و محور چرخش زمین، اگر تلسکوپ را با یک سرعت ثابت حول این محور بچرخانیم، چرخش ظاهری آسمان جبران می‌شود. مهم‌ترین مشکل فنی در نصب استوایی، محور میل می‌باشد. زمانی که تلسکوپ به سمت جنوب نشانه رفته است، وزن آن، نیرویی عمود بر این محور وارد می‌کند. چنانچه تلسکوپ در تعقیب یک جسم به سمت غرب بچرخد، یاتاقان‌ها باید یک بار اضافی را، موازی با محور میل، تحمل کنند.

استقرار سمتی-ارتفاعی[ویرایش]

در استقرار سمتی- ارتفاعی، یکی از محورها عمودی و دیگری افقی است. سوار کردن تلسکوپ به این صورت، از نصب استوایی ساده‌تر بوده، پایداری آن در تلسکوپهای خیلی بزرگ بیشتر می‌باشد. برای دنبال کردن چرخش آسمان، تلسکوپ باید با سرعت متغیر حول هر دو محور بچرخد. بدین ترتیب میدان دید نیز می‌چرخد؛ و این مسئله‌ای است که باید در هنگام استفاده از تلسکوپ جهت عکس‌برداری مورد توجه قرار گرفته، جبران شود. زمانی که یک جسم سماوی به سمت‌الرأس نزدیک می‌شود، مختصه سمتی آن در مدت زمانی بسیار کوتاه تغییر می‌کند. از این رو، در اطراف سمت‌الرأس ناحیه کوچکی وجود دارد که رصد آن با یک تلسکوپ سمتی غیرممکن است.[۱۵]

استقرار سمت ارتفاعی بهتر است یا استوایی؟[ویرایش]

پایه‌های سمتی-ارتفاعی، درست مانند پایه‌های دروبین عکاسی فقط به بالا و پایین و چپ و راست حرکت می‌کنند و از این رو لوله تلسکوپ فقط در همین جهات حرکت خواهد کرد. بهترین نوع از پایه‌های سمت-ارتفاعی، آن‌هایی هستند که پیچ حرکت آرام دارند که به درد دنبال کردن جرم مورد نظر می‌خورند (البته فقط در جهت‌های گفته شده). با وجود این، پایه‌های سمت-ارتفاعی نمی‌توانند ستاره‌ها را در حرکت قوسی شان دنبال کند.

رادیو تلسکوپ[ویرایش]

رادیو تلسکوپ‌ها انتن‌های رادیویی کنترل شونده‌ای هستند که در اخترشناسی رادیویی استفاده می‌شوند. این دیش‌ها گاهی روی شبکه فلزی رسانایی با دهانه‌ای کوچکتر از طول موج در حال مشاهده ساخته می‌شوند. رادیو تلسکوپ‌های چند قسمتی از جفت یا گروه‌های بزرگتری از این دیش‌ها ساخته شده‌اند. برای برهم نهی دهانه‌های مجازی که اندازه‌های یکسانی دارند به منظور تفکیک بین دو تلسکوپ. این فرایند به تطبیق دهانه‌ها معروف است. رکورد فعلی مربوط به اندازه چینش تلسکوپها برای سال ۲۰۰۵ است که برای چندین بار عرض زمین با استفاده از پایه‌های فضایی براساس تداخل طولانی‌ترین مدار مبنا (VLBI) تلسکوپها از قبیل هالسی (HALCA) ژاپنی (آزمایشگاه پیشرفته برای ارتباطات و نجوم) ماهواره VSOP(VLBI برنامه رصد فضایی) با استفاده از اطلاعات نوری (کنار هم قرار دادن تلسکوپهایی نوری) و مانع دید شدن تداخل دهانه‌ها در تلسکوپهای بازتابی تنها برهم نهی دهانه‌ها هم‌اکنون در مورد تلسکوپهای نوری نیز عملی شده‌است. از رادیوتلسکوپها برای گردآوری اشعه میکروموجی استفاده می‌شود. همچنین برای گردآوری اشعه وقتی که یک نور مرئی یا تیرگی (از قبیل اخترنماها) مانع می‌شود. بعضی از رادیو تلسکوپ‌ها در پروژه‌هایی از قبیل SETI و رصدخانه AREIBO برای بررسی کردن زندگی EXTERRESTRIAL استفاده می‌شوند.

رادیو تلسکوپ نوعی آنتن رادیویی است که در اخترشناسی رادیویی به منظور پیدا کردن و جمع‌آوری اطلاعات از ماهواره‌ها و کاوشگرهای فضایی و هر گونه منبع رادیویی در فضا استفاده می‌شود.

این نوع تلسکوپ‌ها با تلسکوپ‌های نوری متفاوت هستند چون فقط می‌توانند از منابع رادیویی اطلاعات بگیرند.

رادیو تلسکوپ‌ها دارای دیش‌های بزرگی هستند که به صورت تکی یا چند تایی کار می‌کنند و معمولاً برای جلوگیری از تداخل امواج الکترومغناطیسی منتشر شده از تلویزیون و رادیو و رادار و... در مکان‌های خالی از جمعیت واقع شده‌اند این دقیقاً مانند تلسکوپ‌های نوری است که باید از آلودگی نوری پرهیز کند.

رادیو تلسکوپ برای مطالعه رخدادهای رادیویی از ستاره‌ها، کهکشان‌ها اخترنماها، و سایر اشیاء فضایی استفاده می‌شود در طول موجی بین ۱۰ متر (۳۰ مگاهرتز) و ۱ میلی‌متر (۳۰۰کیلوهرتز) در طول موج‌های بلندتر مانند ۲۰ سانتیمتر (۱۰۵ گیگاهرتز) بی قاعدگی‌ها در طبقه یونسفر زمین باعث خمیدگی امواج ورودی می‌شود، به این پدیده جرقه زدن می‌گویند که قابل قیاس با چشمک زدن ستارگان در طول موج مرئی می‌شود جذب امواج کهکشانی توسط لایه یونسفر با افزایش طول موج افزایش می‌یابد تا جایی که طول موج‌ها ی بالاتر از ۱۰ متر با رادیو تلسکوپ‌های زمینی قابل دریافت نیستند.

اولین رادیو تلسکوپ Reber در سال ۱۹۳۷

رادیو تلسکوپ‌های اولیه[ویرایش]

اولین آنتن رادیویی استفاده شده برای تشخیص منابع رادیویی نجومی توسط Karl Guthe Jansky یکی از مهندسان لابراتوار تلفن بل در سال ۱۹۳۱ ساخته شد. جان اسکای شغل خود را به شناسایی منابع ایستا که توانایی مداخله با سرویس رادیویی تلفن را دارند اختصاص داد.آنتن جان اسکای برای دریافت سیگنال‌های رادیویی موج کوتاه در یک فرکانس ۲۰٫۵ MHz (طول موجی تقریباً ۱۴٫۶ m) طراحی شده بود. آن نصب شده بوددر یک صفحه گردون که اجازه می‌داد تابه هر سمتی بچرخد، و چرخ و فلک جان اسکای نام گرفت. آن دارای ضخامتی تقریباً ۱۰۰ فوت(۳۰ متر) و ۲۰فوت (۶ متر) ارتفاع بود. و به وسیلهٔ مجموعهای از چهار چرخ چرخش و هدایت می‌شد در دریافت منابع رادیویی مزاحم (ایستا) و می‌توانست با دقت اشاره کند. بخشی کوچک امواج از یک طرف آنتن با سیستم خودکار و کاغذ آنالوگ ذخیره می‌شدند. بعد از ثبت سیگنال‌ها از همه مسیرها در چندین ماه، جان اسکای عاقبت آن‌ها را به سه نوع ایستا دسته‌بندی کرد:نزدیک به وسیلهٔ توفان همراه با آذرخش و صاعقه، دور توفان همراه با آذرخش و صاعقه و یک صدای ضعیف هیس از منبعی نا شناخته.

اخترشناسی رادیویی[ویرایش]

اخترشناسی رادیویی یکی از شاخه‌های مهم اخترشناسی است که به مطالعه اجرام سماوی در زمینه امواج الکترومغناطیسی می‌پردازد.

تکنیک‌های اخترشناسی رادیویی شبیه به تکنیک‌های اخترشناسی اپتیکی است با این تفاوت که در اخترشناسی رادیویی از رادیو تلسکوپ استفاده می‌شود ولی در اخترشناسی از تلسکوپ نوری از این رو تنها می‌تواند از منابع رادیویی اطلاعات بگیرد.

تاریخچه[ویرایش]

این ایده که اجرام سماوی می‌توانند تشعشعات رادیویی داشته باشند نخستین بار توسط معادله ماکسول نشان داده شد که تشعشعات رادیویی از ستارگان می‌توانند با هر طول موجی وجود داشته باشند.

بسیاری از دانشمندان برجسته مانند توماس الوا ادیسون، الیور جوزف لوج و ماکس پلانک پیش‌بینی کرده بودنند که خورشید دارای تشعشعات رادیویی است. حتی لوج سعی کرد که سیگنال‌های خورشیدی را دریافت کند ولی به دلیل مشکلات دستگاهش در این امر موفق نبود.

اولین تشعشعات دریافت شده از یک منبع رادیویی در فضا که به‌طور اتفاقی در اوایل دهه ۳۰ ثبت شد به وسیله کارل گوت جانسکی انجام شد. او که به عنوان یک مهندس در آزمایشگاه تلفن بل کار می‌کرد در حال تحقیق و بررسی روی فرستادن امواج صوتی به آن سوی اقیانوس اطلس بود که بدین منظور از یک آنتن بزرگ استفاده می‌کرد سپس او متوجه شد که سیستم آنالوگ ضبط وی مدام یک سیگنال را از منبعی نامعین ضبط می‌کند از آنجا که این سیگنال روزی شدت گرفت جانسکی گمان کرد که منبع آن ممکن است خورشید باشد. پس از بررسی‌ها او متوجه شد که سیگنال دقیقاً با طلوع و غروب خورشید مطابق نیست ولی در عوض در یک سیکل ۲۳ ساعت و ۵۶ دقیقه تکرار می‌شود نوعی از اجرام سماوی که ساکن در کره سماوی می‌باشند و با شب و روز زمین می‌چرخند با مقایسه مشاهدات وی با نقشه‌های فضایی، دریافت که این سیگنال‌ها از کهکشان راه شیری می‌آید و در مرکز کهکشان قوت می‌گیرد در صورت فلکی کماندار او نتایج مشاهدات و اکتشافاتش را در سال ۱۹۳۳ رسماً اعلام کرد؛ ولی از آنجا که آزمایشگاه بل وی را به شاخه دیگری منتقل کرد او نتوانست تحقیقات خود را در این زمینه ادامه دهد. گرت ربر با ساختن یک دیش شلجمی با ۹ متر طول در شعاع که در ساخت رادیو تلسکوپ استفاده می‌شد کمک شایانی به اخترشناسی رادیوی کرد این کار در ۱۹۳۷ انجام گرفت بعد از مدتی وی موفق به ترسیم اولین نقشه آسمانی از امواج رادیویی شد.

در ۱۹۴۲ ج. س هی که یک محقق نظامی در بریتانیا بود کشف کرد که خورشید امواج رادیویی می‌دهد.

در اوایل دهه ۵۰ مارتین ریل و آنتونی هویش دردانشگاه کمبریج از تداخل سنج امواج که در دانشگاه موجود بود استفاده کرده و موفق به ترسیم نقشه‌های معروف ۲c و ۳c شدند.

تلسکوپ‌های ذرات پر انرژی[ویرایش]

تلسکوپ امواج ایکس از تلسکوپ WOLTER که ترکیب شده از شکل حلقوی اجمالی اینه‌های ساخته شده از فلزات سنگین قادر به بازتاب امواج با درجه کم هستند، استفاده می‌کنند. این آینه‌ها معمولاً مقطعی از یک سهمی دوران داده شده و هذلولی یا بیضی هستند. در سال۱۹۵۲هانس والتر سه راه که یک تلسکوپ می‌توانست با استفاده از این نوع خاص از آینه‌ها ساخته شود را شرح داد. تلسکوپ‌های امواج گاما مانع از تمرکز کامل می‌شوند و از پنهان کردن رمزی دهانه استفاده می‌کنند. الگوهای پنهان کردن ایجاد شده می‌تواند برای تشکیل یک تصویر احیا شوند. تلسکوپ‌های امواج ایکس و گاما معمولاً در ماهواره‌هایی در مدار زمین یا بالن‌های بلند پرواز خارج از جو زمین که برای این قسمت از طیف الکترو مغناطیس مات هست، قرار دارند.

در گونه‌های دیگر از تلسکوپ‌های ذرات پرانرژی، هیچ سیستم تشکیل تصویر نوری وجود ندارد. تلسکوپ‌های امواج کیهانی معمولاً از کنار هم قرار دادن انواع آشکار سازهای مختلف پخش شده در یک منطقه بزرگ، تشکیل شده‌اند. تلسکوپ نوترینو از جرم زیادی از آب ویخ احاطه شده به وسیله مجموعه‌ای از آشکار سازهای حساس به نور به نام لوله PHOTOMULTIPLIER تشکیل شده‌است.

جستارهای وابسته[ویرایش]

پیوند به بیرون[ویرایش]

منابع[ویرایش]

  1. The Galileo Project: Website | http://galileo.rice.edu | review: Apr 19, 2015
  2. The Medici Family: Website | http://galileo.rice.edu | review: Apr 19, 2015
  3. archive.org "Galileo His Life And Work" BY James La Rosa "Galileo usually called the telescope occhicde or cannocchiale ; and now he calls the microscope occhialino. The name telescope was first suggested by Demisiani in 1612"
  4. Sobel (2000, p.43), Drake (1978, p.196)
  5. Rosen, Edward, The Naming of the Telescope (1947)
  6. galileo.rice.edu The Galileo Project> Science> The Telescope by Al Van Helden "The Hague discussed the patent applications first of Hans Lipperhey of Middelburg, and then of Jacob Metius of Alkmaar... another citizen of Middelburg, Sacharias Janssen had a telescope at about the same time but was at the Frankfurt Fair where he tried to sell it"
  7. Aleck Loker, Profiles in Colonial History, page 15
  8. Stargazer – By Fred Watson, Inc NetLibrary, Page 109
  9. «madehow.com – Inventor Biographies – Jean-Bernard-Léon Foucault Biography (1819–1868)». بایگانی‌شده از اصلی در ۲۲ مه ۲۰۱۲. دریافت‌شده در ۱۹ آوریل ۲۰۱۵.
  10. Bakich sample pages Chapter 2, Page 3 "John Donavan Strong, a young physicist at the California Institute of Technology, was one of the first to coat a mirror with aluminum. He did it by thermal vacuum evaporation. The first mirror he aluminized, in 1932, is the earliest known example of a telescope mirror coated by this techniaeque."
  11. The James-Clerk-Maxwell Observatory: The largest submillimetre radio telescope in the world
  12. ESA/Hubble – Hubble's Instruments: WFC3 – Wide Field Camera 3
  13. Barrie William Jones, The search for life continued: planets around other stars, page 111
  14. مقاله آشنایی با انواع تلسکوپ‌های نوری نویسنده: علی شهبازی
  15. کتاب مبانی ستاره‌شناسی، صفحه ۶۹ و ۷۰

https://www.isna.ir/news/98042614125/رونمایی

The 100 inch (2.54 m) Hooker reflecting telescope at Mount Wilson Observatory near Los Angeles, USA

A telescope is an optical instrument that makes distant objects appear magnified by using an arrangement of lenses or curved mirrors and lenses, or various devices used to observe distant objects by their emission, absorption, or reflection of electromagnetic radiation.[1] The first known practical telescopes were refracting telescopes invented in the Netherlands at the beginning of the 17th century, by using glass lenses. They were used for both terrestrial applications and astronomy.

The reflecting telescope, which uses mirrors to collect and focus light, was invented within a few decades of the first refracting telescope. In the 20th century, many new types of telescopes were invented, including radio telescopes in the 1930s and infrared telescopes in the 1960s. The word telescope now refers to a wide range of instruments capable of detecting different regions of the electromagnetic spectrum, and in some cases other types of detectors.

Etymology

The 60 inch Hale debuted in 1908

The word telescope (from the Ancient Greek τῆλε, tele "far" and σκοπεῖν, skopein "to look or see"; τηλεσκόπος, teleskopos "far-seeing") was coined in 1611 by the Greek mathematician Giovanni Demisiani for one of Galileo Galilei's instruments presented at a banquet at the Accademia dei Lincei.[2][3] In the Starry Messenger, Galileo had used the term perspicillum.

History

The "onion" dome at the Royal Observatory, Greenwich housing a 28-inch refracting telescope with a remaining segment of William Herschel's 120-centimetre (47 in) diameter reflecting telescope (called the "40-foot telescope" due to its focal length) in the foreground.

The earliest existing record of a telescope was a 1608 patent submitted to the government in the Netherlands by Middelburg spectacle maker Hans Lippershey for a refracting telescope.[4] The actual inventor is unknown but word of it spread through Europe. Galileo heard about it and, in 1609, built his own version, and made his telescopic observations of celestial objects.[5][6]

The idea that the objective, or light-gathering element, could be a mirror instead of a lens was being investigated soon after the invention of the refracting telescope.[7] Shortly following the release of Galileo's original telescope model, critics and academic minds across the European continent attempted to provide innovative solutions for correcting the telescope's color aberration design flaw. In 1613, a French philosopher named Descartes wrote to Galileo, suggesting for replacement of the telescope's simple lens in favor of hyperbolic lenses.[8] In 1632, one of Galileo's pupils, and the University of Bologna's professor of mathematics, Bonaventura Cavalieri published Specchio ustorio. Within the work, Cavalieri proclaimed his desire for constructing a reflecting telescope for testing the possibility of igniting a fleet of wooden ships using only a telescope.[8][9] Following his fantasy proclamation, Cavalieri discussed the data he obtained through his observation of beams of white light reflecting off of glass prisms.[8] Cavalieri found that according to the law of reflection, a beam of light directed upon the conical section of a prism, the reflected beam will radiate from the opposite end in a pattern reminiscent of Euclidian geometry.[8] The potential advantages of using parabolic mirrors—reduction of spherical aberration and no chromatic aberration—led to many proposed designs and several attempts to build reflecting telescopes.[10] Cavalieri constructed three different illustrated concepts for incorporating reflective mirrors within his telescope model. Plan one consisted of a large, concave mirror directed towards the sun as to reflect light into a second, smaller, convex mirror. Cavalieri's second concept comprized of a main, truncated, paraboloid mirror and a second, convex mirror. His third option illustrated a strong resemblance to his previous concept, replacing the convex secondary lens with a concave lens.[8] In 1663,[11] James Gregory had constructed his design for a reflecting telescope, which incorporated two large, parabolic, primary mirrors along with one large, elliptical mirror, located just past the focal point of the two primary mirrors, within the telescope.[11] Following the completion of his sketch, Gregory commissioned London optician, Richard Reeves to construct the telescope's mirror, only for Reeves to accidentally damage the mirror through improper polishing methods and rendering it unusable. As a consequence of Reeves' mistake, Gregory was unable to construct a physical model, eventually resulting in him forcefully abandoning the project.[12] Shortly proceeding the cancellation of Gregory's telescope, Sir Issac Newton continued to abject heavy criticism in regards to Reeves' polishing methods, believing that he should have used quick-silvered glass as opposed to speculum metal.[13] In 1666, Sir Issac Newton had noted that the effect of chromatic aberration was the result of light creating optical refraction as it passed through a lens. Newton had taken advantage of the time he granted following a severe bubonic plague outbreak at Cambridge, to begin creating sketches for his modified telescope design.[14] The design of Newton's telescope incorporated one large, concave spectrum mirror positioned at the along with a secondary mirror angled at a 45° angle, which allowed for the image to reflect into the eye lens at a 90° angle.[14] In 1668, Isaac Newton built the first practical reflecting telescope, of a design which now bears his name, the Newtonian reflector. While the exact appearance of Newton's first telescope remains a mystery, autograph illustrations preserved at the Cambridge University Library suggested that the telescope had measured around 8-9 inches long and possessed a crude, unstable mount. Newton tested his first telescope by observing Jupiter, and with its four Galilean satellites, along with recording Venus and its many phases.[15] Information involving Newton's first telescope remained restricted among only his close friends, with the telescope achieving recognition following the development of Newton's second telescope.[16] Newton's second telescope had a measured focal length of ~6.25-6.33 in and incorporated a wooden ball within the mount, which allowed nearly 360° rotation at a fixed joint. This new telescope also possessed a thicker, clearer, 2 in diameter spectrum, which improved viewing image quality.[16] Newton heavily favored his second telescope over the original, as he seldom preserved articles detailing his first telescope. Following the creation of the second telescope, Sir Issac Newton received an invitation from the newly founded Royal Society in London for evaluation. Newton's telescope managed to highly impress the Royal Society's council members, resulting in Newton's election as an official member of the Society.[16][17] In 1672, a Frenchman named Cassegrain (no records of first name present) constructed a third, unique reflecting telescope design. Cassegrain's design incorporated a single, concave primary mirror, in a similar vein to the Newtonian model, but also included a convex secondary mirror.[18] Despite information regarding Classical Cassegrain reflecting telescope usage and its creator remaining unknown, Cassegrain sketch models saw increased modification by fellow scientists, such as astronomers George Willis Ritchey and Henri Chrétien in 1910, as the field of astronomy continues to advance.[19]

The invention of the achromatic lens in 1733 partially corrected color aberrations present in the simple lens and enabled the construction of shorter, more functional refracting telescopes. Reflecting telescopes, though not limited by the color problems seen in refractors, were hampered by the use of fast tarnishing speculum metal mirrors employed during the 18th and early 19th century—a problem alleviated by the introduction of silver coated glass mirrors in 1857,[20] and aluminized mirrors in 1932.[21] The maximum physical size limit for refracting telescopes is about 1 meter (40 inches), dictating that the vast majority of large optical researching telescopes built since the turn of the 20th century have been reflectors. The largest reflecting telescopes currently have objectives larger than 10 m (33 feet), and work is underway on several 30-40m designs.

The 20th century also saw the development of telescopes that worked in a wide range of wavelengths from radio to gamma-rays. The first purpose built radio telescope went into operation in 1937. Since then, a large variety of complex astronomical instruments have been developed.

Types

The primary mirror assembly of James Webb Space Telescope under construction. This is a segmented mirror and its coated with Gold to reflect (orange-red) visible light, through near-infrared to the mid-infrared

The name "telescope" covers a wide range of instruments. Most detect electromagnetic radiation, but there are major differences in how astronomers must go about collecting light (electromagnetic radiation) in different frequency bands.

Telescopes may be classified by the wavelengths of light they detect:

As wavelengths become longer, it becomes easier to use antenna technology to interact with electromagnetic radiation (although it is possible to make very tiny antenna). The near-infrared can be collected much like visible light, however in the far-infrared and submillimetre range, telescopes can operate more like a radio telescope. For example, the James Clerk Maxwell Telescope observes from wavelengths from 3 μm (0.003 mm) to 2000 μm (2 mm), but uses a parabolic aluminum antenna.[22] On the other hand, the Spitzer Space Telescope, observing from about 3 μm (0.003 mm) to 180 μm (0.18 mm) uses a mirror (reflecting optics). Also using reflecting optics, the Hubble Space Telescope with Wide Field Camera 3 can observe in the frequency range from about 0.2 μm (0.0002 mm) to 1.7 μm (0.0017 mm) (from ultra-violet to infrared light).[23]

With photons of the shorter wavelengths, with the higher frequencies, glancing-incident optics, rather than fully reflecting optics are used. Telescopes such as TRACE and SOHO use special mirrors to reflect Extreme ultraviolet, producing higher resolution and brighter images than are otherwise possible. A larger aperture does not just mean that more light is collected, it also enables a finer angular resolution.

Telescopes may also be classified by location: ground telescope, space telescope, or flying telescope. They may also be classified by whether they are operated by professional astronomers or amateur astronomers. A vehicle or permanent campus containing one or more telescopes or other instruments is called an observatory.

Modern telescopes typically use CCDs instead of film for recording images. This is the sensor array in the Kepler spacecraft.
Light Comparison
Name Wavelength Frequency (Hz) Photon Energy (eV)
Gamma ray less than 0.01 nm more than 10 EHz 100 keV – 300+ GeV X
X-Ray 0.01 to 10 nm 30 EHz – 30 PHz 120 eV to 120 keV X
Ultraviolet 10 nm – 400 nm 30 PHz – 790 THz 3 eV to 124 eV
Visible 390 nm – 750 nm 790 THz – 405 THz 1.7 eV – 3.3 eV X
Infrared 750 nm – 1 mm 405 THz – 300 GHz 1.24 meV – 1.7 eV X
Microwave 1 mm – 1 meter 300 GHz – 300 MHz 1.24 meV – 1.24 μeV
Radio 1 mm – km 300 GHz3 Hz 1.24 meV – 12.4 feV X

Optical telescopes

50 cm aperture refracting telescope at Nice Observatory
A modern-day 8-meter reflector's dome open for night-time observations

An optical telescope gathers and focuses light mainly from the visible part of the electromagnetic spectrum (although some work in the infrared and ultraviolet).[24] Optical telescopes increase the apparent angular size of distant objects as well as their apparent brightness. In order for the image to be observed, photographed, studied, and sent to a computer, telescopes work by employing one or more curved optical elements, usually made from glass lenses and/or mirrors, to gather light and other electromagnetic radiation to bring that light or radiation to a focal point. Optical telescopes are used for astronomy and in many non-astronomical instruments, including: theodolites (including transits), spotting scopes, monoculars, binoculars, camera lenses, and spyglasses. There are three main optical types:

A Fresnel Imager is a proposed ultra-lightweight design for a space telescope that uses a Fresnel lens to focus light.

Beyond these basic optical types there are many sub-types of varying optical design classified by the task they perform such as astrographs, comet seekers and solar telescopes.

Radio telescopes

The Very Large Array at Socorro, New Mexico, United States.

Radio telescopes are directional radio antennas that typically employ a large dish to collect radio waves. The dishes are sometimes constructed of a conductive wire mesh whose openings are smaller than the wavelength being observed.

Unlike an optical telescope, which produces a magnified image of the patch of sky being observed, a traditional radio telescope dish contains a single receiver and records a single time-varying signal characteristic of the observed region; this signal may be sampled at various frequencies. In some newer radio telescope designs, a single dish contains an array of several receivers; this is known as a focal-plane array.

By collecting and correlating signals simultaneously received by several dishes, high-resolution images can be computed. Such multi-dish arrays are known as astronomical interferometers and the technique is called aperture synthesis. The 'virtual' apertures of these arrays are similar in size to the distance between the telescopes. As of 2005, the record array size is many times the diameter of the Earth — utilizing space-based Very Long Baseline Interferometry (VLBI) telescopes such as the Japanese HALCA (Highly Advanced Laboratory for Communications and Astronomy) VSOP (VLBI Space Observatory Program) satellite.

Aperture synthesis is now also being applied to optical telescopes using optical interferometers (arrays of optical telescopes) and aperture masking interferometry at single reflecting telescopes.

Radio telescopes are also used to collect microwave radiation, which has the advantage of being able to pass through the atmosphere and interstellar gas and dust clouds.

Some radio telescopes are used by programs such as SETI and the Arecibo Observatory to search for extraterrestrial life.

X-ray telescopes

Einstein Observatory was a space-based focusing optical X-ray telescope from 1978.[25]

X-rays are much harder to collect and focus than electromagnetic radiation of longer wavelengths. X-ray telescopes can use X-ray optics, such as Wolter telescopes composed of ring-shaped 'glancing' mirrors made of heavy metals that are able to reflect the rays just a few degrees. The mirrors are usually a section of a rotated parabola and a hyperbola, or ellipse. In 1952, Hans Wolter outlined 3 ways a telescope could be built using only this kind of mirror.[26][27] Examples of observatories using this type of telescope are the Einstein Observatory, ROSAT, and the Chandra X-Ray Observatory. By 2010, Wolter focusing X-ray telescopes are possible up to photon energies of 79 keV.[25]

Gamma-ray telescopes

The Compton Gamma Ray Observatory is released into orbit by the Space Shutte in 1991, and it would operate until the year 2000

Higher energy X-ray and Gamma-ray telescopes refrain from focusing completely and use coded aperture masks: the patterns of the shadow the mask creates can be reconstructed to form an image.

X-ray and Gamma-ray telescopes are usually installed on Earth-orbiting satellites or high-flying balloons since the Earth's atmosphere is opaque to this part of the electromagnetic spectrum. An example of this type of telescope is the Fermi Gamma-ray Space Telescope.

The detection of very high energy gamma rays, with shorter wavelength and higher frequency than regular gamma rays, requires further specialization. An example of this type of observatory is VERITAS.

A discovery in 2012 may allow focusing gamma-ray telescopes.[28] At photon energies greater than 700 keV, the index of refraction starts to increase again.[28]

Other types of telescopes

The reflectors of HEGRA detect flashes of light in the atmosphere, thus detecting high energy particles

Astronomy is not limited to using electromagnetic radiation. Additional information can be obtained by detecting other signals, with detectors analogous to telescopes. These are:

Equatorial-mounted Keplerian telescope

Types of mount

A telescope mount is a mechanical structure which supports a telescope. Telescope mounts are designed to support the mass of the telescope and allow for accurate pointing of the instrument. Many sorts of mounts have been developed over the years, with the majority of effort being put into systems that can track the motion of the stars as the Earth rotates. The two main types of tracking mount are:

By the 21 century, although not a structure a type of control system called a GoTo telescope was more popular. In this case a computer software system can in part or whole direct the telescope to a certain coordinate in the sky.

Atmospheric electromagnetic opacity

Since the atmosphere is opaque for most of the electromagnetic spectrum, only a few bands can be observed from the Earth's surface. These bands are visible – near-infrared and a portion of the radio-wave part of the spectrum. For this reason there are no X-ray or far-infrared ground-based telescopes as these have to be observed from orbit. Even if a wavelength is observable from the ground, it might still be advantageous to place a telescope on a satellite due to astronomical seeing.

A diagram of the electromagnetic spectrum with the Earth's atmospheric transmittance (or opacity) and the types of telescopes used to image parts of the spectrum.

Telescopic image from different telescope types

Different types of telescope, operating in different wavelength bands, provide different information about the same object. Together they provide a more comprehensive understanding.

A 6′ wide view of the Crab nebula supernova remnant, viewed at different wavelengths of light by various telescopes

By spectrum

Telescopes that operate in the electromagnetic spectrum:

Name Telescope Astronomy Wavelength
Radio Radio telescope Radio astronomy
(Radar astronomy)
more than 1 mm
Submillimetre Submillimetre telescopes* Submillimetre astronomy 0.1 mm – 1 mm
Far Infrared Far-infrared astronomy 30 μm – 450 μm
Infrared Infrared telescope Infrared astronomy 700 nm – 1 mm
Visible Visible spectrum telescopes Visible-light astronomy 400 nm – 700 nm
Ultraviolet Ultraviolet telescopes* Ultraviolet astronomy 10 nm – 400 nm
X-ray X-ray telescope X-ray astronomy 0.01 nm – 10 nm
Gamma-ray Gamma-ray astronomy less than 0.01 nm

*Links to categories.

Lists of telescopes

See also

References

  1. ^ Company, Houghton Mifflin Harcourt Publishing. "The American Heritage Dictionary entry: TELESCOPE". www.ahdictionary.com.
  2. ^ Sobel (2000, p.43), Drake (1978, p.196)
  3. ^ Rosen, Edward, The Naming of the Telescope (1947)
  4. ^ galileo.rice.edu The Galileo Project > Science > The Telescope by Al Van Helden: The Hague discussed the patent applications first of Hans Lipperhey of Middelburg, and then of Jacob Metius of Alkmaar... another citizen of Middelburg, Zacharias Janssen is sometimes associated with the invention
  5. ^ "NASA - Telescope History". www.nasa.gov.
  6. ^ Loker, Aleck (20 November 2017). Profiles in Colonial History. Aleck Loker. ISBN 978-1-928874-16-4 – via Google Books.
  7. ^ Watson, Fred (20 November 2017). Stargazer: The Life and Times of the Telescope. Allen & Unwin. ISBN 978-1-74176-392-8 – via Google Books.
  8. ^ a b c d e Ariotti, Piero E. (September 1975). "Bonaventura Cavalieri, Marin Mersenne, and the Reflecting Telescope". Isis. 66 (3): 303–321. doi:10.1086/351471. ISSN 0021-1753.
  9. ^ Eves, Howard (March 1991). "Two Surprising Theorems on Cavalieri Congruence". The College Mathematics Journal. 22 (2): 118. doi:10.2307/2686447. ISSN 0746-8342.
  10. ^ Attempts by Niccolò Zucchi and James Gregory and theoretical designs by Bonaventura Cavalieri, Marin Mersenne, and Gregory among others
  11. ^ a b Turnbull, Herbert Westren (1940-04-01). "Early Scottish relations with the Royal Society I.- James Gregory, F. R. S. (1635-1675)". Notes and Records of the Royal Society of London. 3 (1): 22–38. doi:10.1098/rsnr.1940.0003.
  12. ^ "1991jbaa..101..335r Page 335". adsabs.harvard.edu. Retrieved 2019-12-05.
  13. ^ Turner, G. L’e.; Hartley, Harold Brewer; Jones, Reginald Victor (1969-06-01). "James Short, F. R. S., and his contribution to the construction of reflecting telescopes". Notes and Records of the Royal Society of London. 24 (1): 91–108. doi:10.1098/rsnr.1969.0008.
  14. ^ a b Owen, R. C. (1991-01-01). "Easily fabricated wide-angle telescope". 1990 Intl Lens Design Conf. SPIE. doi:10.1117/12.47912.
  15. ^ Mills, A. A.; Turvey, P. J. (1979). "Newton's Telescope. An Examination of the Reflecting Telescope Attributed to Sir Isaac Newton in the Possession of the Royal Society". Notes and Records of the Royal Society of London. 33 (2): 133–155. ISSN 0035-9149.
  16. ^ a b c Hall, A. Rupert; Simpson, A. D. C.; King-Hele, Desmond George (1996-01-01). "An account of the Royal Society's Newton telescope". Notes and Records of the Royal Society of London. 50 (1): 1–11. doi:10.1098/rsnr.1996.0001.
  17. ^ Simpson, A. D. C.; Jones, Reginald Victor; Paton, William Drummond MacDonald (1984-03-01). "Newton's telescope and the cataloguing of the Royal Society's repository". Notes and Records of the Royal Society of London. 38 (2): 187–214. doi:10.1098/rsnr.1984.0012.
  18. ^ Langley, R.J.; Parker, E.A. (1976). "Filtering secondary mirror for a dual-band Cassegrain reflector antenna". Electronics Letters. 12 (15): 366. doi:10.1049/el:19760281. ISSN 0013-5194.
  19. ^ Eisenberg, Shai (1986-08-20). "Alignment Of A Cassegrain Telescope Using An Optical Design Program". Advanced Technology Optical Telescopes III. International Society for Optics and Photonics. 0628: 462–465. doi:10.1117/12.963565.
  20. ^ "Jean-Bernard-Léon Foucault Biography (1819–1868)". www.madehow.com.
  21. ^ "Home" (PDF). Cambridge University Press.
  22. ^ ASTROLab du parc national du Mont-Mégantic (January 2016). "The James-Clerk-Maxwell Observatory". Canada under the stars. Retrieved 2017-04-16.
  23. ^ "Hubble's Instruments: WFC3 - Wide Field Camera 3". www.spacetelescope.org. Retrieved 2017-04-16.
  24. ^ Jones, Barrie W. (2 September 2008). The Search for Life Continued: Planets Around Other Stars. Springer Science & Business Media. ISBN 978-0-387-76559-4.
  25. ^ a b "NuStar: Instrumentation: Optics". Archived from the original on 2010-11-01.
  26. ^ Wolter, H. (1952), "Glancing Incidence Mirror Systems as Imaging Optics for X-rays", Annalen der Physik, 10 (1): 94–114, Bibcode:1952AnP...445...94W, doi:10.1002/andp.19524450108.
  27. ^ Wolter, H. (1952), "Verallgemeinerte Schwarzschildsche Spiegelsysteme streifender Reflexion als Optiken für Röntgenstrahlen", Annalen der Physik, 10 (4–5): 286–295, Bibcode:1952AnP...445..286W, doi:10.1002/andp.19524450410.
  28. ^ a b "Silicon 'prism' bends gamma rays – Physics World". 9 May 2012.

Further reading

External links