این یک مقالهٔ خوب است. برای اطلاعات بیشتر اینجا را کلیک کنید.

اکسیژن

از ویکی‌پدیا، دانشنامهٔ آزاد
فارسیEnglish

اکسیژن، 8O
Liquid oxygen in a beaker 2.jpg
اکسیژن مایع که در اثر سرد کردن گاز اکسیژن تشکیل می شود و رنگی متمایل به آبی دارد.
اکسیژن
دگرشکلیO۲, O۳
جرم اتمی استاندارد Ar, استاندارد(O)[۱۵٫۹۹۹۰۳, ۱۵٫۹۹۹۷۷]
قراردادی: ۱۵٫۹۹۹
اکسیژن در جدول تناوبی
Element 1: هیدروژن (H), Other non-metal
Element 2: هلیوم (He), Noble gas
Element 3: لیتیم (Li), Alkali metal
Element 4: برلیم (Be), Alkaline earth metal
Element 5: بور (B), Metalloid
Element 6: کربن (C), Other non-metal
Element 7: نیتروژن (N), Halogen
Element 8: اکسیژن (O), Halogen
Element 9: فلوئور (F), Halogen
Element 10: نئون (Ne), Noble gas
Element 11: سدیم (Na), Alkali metal
Element 12: منیزیم (Mg), Alkaline earth metal
Element 13: آلومینیم (Al), Other metal
Element 14: سیلسیم (Si), Metalloid
Element 15: فسفر (P), Other non-metal
Element 16: گوگرد (S), Other non-metal
Element 17: کلر (Cl), Halogen
Element 18: آرگون (Ar), Noble gas
Element 19: پتاسیم (K), Alkali metal
Element 20: کلسیم (Ca), Alkaline earth metal
Element 21: اسکاندیم (Sc), Transition metal
Element 22: تیتانیم (Ti), Transition metal
Element 23: وانادیم (V), Transition metal
Element 24: کروم (Cr), Transition metal
Element 25: منگنز (Mn), Transition metal
Element 26: آهن (Fe), Transition metal
Element 27: کبالت (Co), Transition metal
Element 28: نیکل (Ni), Transition metal
Element 29: مس (Cu), Transition metal
Element 30: روی (Zn), Other metal
Element 31: گالیم (Ga), Other metal
Element 32: ژرمانیم (Ge), Metalloid
Element 33: آرسنیک (As), Metalloid
Element 34: سلنیم (Se), Other non-metal
Element 35: برم (Br), Halogen
Element 36: کریپتون (Kr), Noble gas
Element 37: روبیدیم (Rb), Alkali metal
Element 38: استرانسیم (Sr), Alkaline earth metal
Element 39: ایتریم (Y), Transition metal
Element 40: زیرکونیم (Zr), Transition metal
Element 41: نیوبیم (Nb), Transition metal
Element 42: مولیبدن (Mo), Transition metal
Element 43: تکنسیم (Tc), Transition metal
Element 44: روتنیم (Ru), Transition metal
Element 45: رودیم (Rh), Transition metal
Element 46: پالادیم (Pd), Transition metal
Element 47: نقره (Ag), Transition metal
Element 48: کادمیم (Cd), Other metal
Element 49: ایندیم (In), Other metal
Element 50: قلع (Sn), Other metal
Element 51: آنتیموان (Sb), Metalloid
Element 52: تلوریم (Te), Metalloid
Element 53: ید (I), Halogen
Element 54: زنون (Xe), Noble gas
Element 55: سزیم (Cs), Alkali metal
Element 56: باریم (Ba), Alkaline earth metal
Element 57: لانتان (La), Lanthanoid
Element 58: سریم (Ce), Lanthanoid
Element 59: پرازئودیمیم (Pr), Lanthanoid
Element 60: نئودیمیم (Nd), Lanthanoid
Element 61: پرومتیم (Pm), Lanthanoid
Element 62: ساماریم (Sm), Lanthanoid
Element 63: اروپیم (Eu), Lanthanoid
Element 64: گادولینیم (Gd), Lanthanoid
Element 65: تربیم (Tb), Lanthanoid
Element 66: دیسپروزیم (Dy), Lanthanoid
Element 67: هولمیم (Ho), Lanthanoid
Element 68: اربیم (Er), Lanthanoid
Element 69: تولیم (Tm), Lanthanoid
Element 70: ایتربیم (Yb), Lanthanoid
Element 71: لوتتیم (Lu), Lanthanoid
Element 72: هافنیم (Hf), Transition metal
Element 73: تانتال (Ta), Transition metal
Element 74: تنگستن (W), Transition metal
Element 75: رنیم (Re), Transition metal
Element 76: اوسمیم (Os), Transition metal
Element 77: ایریدیم (Ir), Transition metal
Element 78: پلاتین (Pt), Transition metal
Element 79: طلا (Au), Transition metal
Element 80: جیوه (Hg), Other metal
Element 81: تالیم (Tl), Other metal
Element 82: سرب (Pb), Other metal
Element 83: بیسموت (Bi), Other metal
Element 84: پولونیم (Po), Other metal
Element 85: آستاتین (At), Metalloid
Element 86: رادون (Rn), Noble gas
Element 87: فرانسیم (Fr), Alkali metal
Element 88: رادیم (Ra), Alkaline earth metal
Element 89: آکتینیم (Ac), Actinoid
Element 90: توریم (Th), Actinoid
Element 91: پروتاکتینیم (Pa), Actinoid
Element 92: اورانیم (U), Actinoid
Element 93: نپتونیم (Np), Actinoid
Element 94: پلوتونیم (Pu), Actinoid
Element 95: امریسیم (Am), Actinoid
Element 96: کوریم (Cm), Actinoid
Element 97: برکلیم (Bk), Actinoid
Element 98: کالیفرنیم (Cf), Actinoid
Element 99: اینشتینیم (Es), Actinoid
Element 100: فرمیم (Fm), Actinoid
Element 101: مندلیفیم (Md), Actinoid
Element 102: نوبلیم (No), Actinoid
Element 103: لارنسیم (Lr), Actinoid
Element 104: رادرفوردیم (Rf), Transition metal
Element 105: دوبنیم (Db), Transition metal
Element 106: سیبورگیم (Sg), Transition metal
Element 107: بوهریم (Bh), Transition metal
Element 108: هاسیم (Hs), Transition metal
Element 109: مایتنریم (Mt)
Element 110: دارمشتادیم (Ds)
Element 111: رونتگنیم (Rg)
Element 112: کوپرنیسیم (Cn), Other metal
Element 113: نیهونیم (Nh)
Element 114: فلروویم (Fl)
Element 115: مسکوویم (Mc)
Element 116: لیورموریم (Lv)
Element 117: تنسین (Ts)
Element 118: اوگانسون (Og)


O

گوگرد
نیتروژناکسیژنفلوئور
عدد اتمی (Z)8
گروه۱۶
دورهدوره ۲
بلوکبلوک-p
دسته نافلز
آرایش الکترونی[2s2 2p4] He
لایه الکترونی۲,۶
ویژگی‌های فیزیکی
فاز در STPگاز
نقطه ذوب(O۲) ۵۴٫۳۶ کلوین
(−۲۱۸٫۷۹ سانتی‌گراد ​)
نقطه جوش(O۲) ۹۰٫۱۸۸ کلوین
(−۱۸۲٫۹۶۲ سانتی‌گراد ​)
چگالی
(در STP)
۱٫۴۲۹ گرم/لیتر
در حالت مایع (در b.p.)۱٫۱۴۱ گرم بر سانتی‌متر مکعب
نقطه سه‌گانه۵۴٫۳۶۱ کلوین • ​۰٫۱۴۶۳ کیلوپاسکال
نقطه بحرانی۱۵۴٫۵۸۱ کلوین • ۵٫۰۴۳ مگاپاسکال
آنتالپی ذوب(O۲) ۰٫۴۴۴ ژول بر مول
آنتالپی تبخیر(O۲) ۶٫۸۲ کیلوژول بر مول
ظرفیت حرارتی مولی(O۲) ۲۹٫۳۷۸ ژول بر (مول در کلوین)
فشار بخار
فشار (Pa) ۱ ۱۰ ۱۰۰ ۱ K ۱۰ K ۱۰۰ K
در دمای (K) ۶۱ ۷۳ ۹۰
ویژگی‌های اتمی
عدد اکسایش۲−, ۱−, ۰, ۱+, ۲+
الکترونگاتیویمقیاس پائولینگ: ۳٫۴۴
انرژی یونش
  • اول: ۱۳۱۳٫۹ کیلوژول بر مول
  • دوم: ۳۳۸۸٫۳ کیلوژول بر مول
  • سوم: ۵۳۰۰٫۵ کیلوژول بر مول
شعاع کووالانسی۶۶±۲ pm
شعاع واندروالسی۱۵۲ pm
Color lines in a spectral range
خطوط طیف نوری اکسیژن
دیگر ویژگی‌ها
ساختار بلوریمکعبی
Cubic ساختار کریستالی برای اکسیژن
سرعت صوت۳۳۰ متر بر ثانیه (گاز در ۲۷ سلسیوس)
رسانندگی گرمایی۲۶٫۵۸×۱۰−۳ وات بر (کلوین در متر)
مغناطیسپارامغناطیس
پذیرفتاری مغناطیسی+۳۴۴۹٫۰·۱۰−۶ سانتی‌متر مکعب بر مول (۲۹۳ K)[۱]
شماره ثبت سی‌ای‌اس۷۷۸۲-۴۴-۷
تاریخچه
کشفکارل ویلهلم شیله (۱۷۷۱)
نام‌گذاریآنتوان لاووازیه (۱۷۷۷)
ایزوتوپ‌های اصلی اکسیژن
ایزوتوپ فراوانی طبیعی نیمه‌عمر (t۱/۲) واپاشی هسته‌ای محصول واپاشی
۱۶O ۹۹٫۷۶٪ ضریب ایزوتوپ پایدار با ۸ نوترون
۱۷O ۰٫۰۴٪ پایدار با ۹ نوترون
۱۸O ۰٫۲۰٪ پایدار با ۱۰ نوترون
رده رده: اکسیژن
| منابع اطلاعاتی عناصر شیمیایی

اکسیژن (به انگلیسی: Oxygen) یکی از عناصر شیمیایی در جدول تناوبی است که نشان شیمیایی آن O و عدد اتمی آن ۸ است. این عنصر که عضوی از خانواده عناصر گروه کالکوژن، یعنی گروه شانزدهم در جدول تناوبی است، نافلزی بسیار واکنش‌پذیر و عاملی اکسیدکننده است که به آسانی موجب اکسید شدن عناصر و ترکیبات شیمیایی می‌شود. از نظر جرمی، پس از هیدروژن و هلیوم، اکسیژن، سومین عنصر فراوان در کیهان است. در دما و فشار استاندارد، دو اتم اکسیژن با اتصال به‌یک‌دیگر موجب تولید ساختاری موسوم به دی‌اکسیژن یا اصطلاحاً موجب شکل‌گیری یک مولکول اکسیژن می‌شوند. مولکول اکسیژن در حالت گازی، بی‌رنگ، بی‌بو و دارای فرمول O۲ است. مولکول اکسیژن ۲۰٫۹۵ درصد از اتمسفر کره زمین را تشکیل می‌دهد. با درنظر گرفتن اکسیژن موجود در فرمول شیمیایی ترکیب‌های دارای اکسیژن موجود در پوسته زمین، اکسیژن تقریباً تشکیل دهنده نیمی از عناصر سازنده پوسته زمین است.

اکسیژن مولکولی موجب تولید انرژی در فرایند سوختن، تنفس یاخته‌ای هوازی است. بسیاری از مولکول‌های آلی موجود در موجودات زنده مانند پروتئین‌ها، نوکلئیک اسیدها، کربوهیدرات‌ها، چربی‌ها و هم‌چنین گستره وسیعی از ترکیبات معدنی پوسته بدن جانوران، دندان‌ها و استخوان‌ها دارای اتم‌های اکسیژن هستند. اغلب جرم تشکیل دهنده موجودات زنده متشکل از اکسیژن است، چرا که بدن جانوران به‌طور عمده از آب تشکیل شده‌است و اکسیژن عنصر اصلی سازنده آب است. اکسیژن موجود در اتمسفر زمین به‌طور پیوسته توسط فرایند فتوسنتز تأمین می‌شود، فرایندی که طی آن نور خورشید موجب تبدیل آب و کربن دی‌اکسید به اکسیژن می‌شود. از لحاظ شیمیایی، اکسیژن خیلی فعال است و درنتیجه نمی‌تواند در هوای آزاد به‌صورت آزاد و اتمی باقی بماند. به‌غیر از اکسیژن مولکولی، اکسیژن دارای دگرشکل‌های دیگری نیز است که ازون یکی از آن‌ها است. مولکول ازون قادر است نور فرابنفش بی منتشر شده از طرف خورشید را جذب کند و درنتیجه لایه ازون پوشاننده کره زمین، حیات موجود بر روی زمین را از پرتوهای مخرب فرابنفش محافظت می‌کند. با این‌حال ازونی که نزدیک سطح زمین تولید می‌شود محصول جانبی واکنش مه‌دودها است و درنتیجه به‌عنوان یک عامل آلاینده محسوب می‌شود.

اکسیژن توسط مایکل سندی‌ووجیس قبل از سال ۱۶۰۴ جداسازی شد با این‌حال، باور عمومی رایج این است که اکسیژن توسط کارل ویلهلم شیله در اوپسالا و در سال ۱۷۷۳ یا توسط جوزف پریستلی در ویلتشر در سال ۱۷۷۴ کشف شده‌است. در میان این دو نیز به‌طور معمول تقدم کشف اکسیژن به پریستلی نسبت داده می‌شود، چرا که مقاله او زودتر از شیله چاپ شد. پریستلی اکسیژن را هوای فلوژیستون‌زدایی شده نامید و آن را به‌عنوان یک عنصر شیمیایی به‌حساب نیاورد.[توضیح ۱] واژه اکسیژن در سال ۱۷۷۷ و توسط آنتوان لاووازیه رواج داده شد. لاوازیه اولین کسی بود که اکسیژن را به‌عنوان یک عنصر شیمیایی مستقل به‌شمار آورد و به‌درستی به نقش آن در سوختن اشاره کرد.

اکسیژن به صورت متداول در تولید فولاد، پلاستیک، پارچه، برشکاری اکسیژنی فولاد، پیشران راکت، اکسیژن‌درمانی و سامانه پشتیبان حیات در هواپیما، زیردریایی‌ها، پروازهای فضایی و غواصی استفاده می‌شود.

تاریخچه[ویرایش]

آزمایش‌های اولیه[ویرایش]

پژوهش فیلو و برگرداندن ظرف روی یک شمع روشن

یکی از اولین آزمایش‌های شناخته شده در مورد رابطه بین سوختن و هوا دو سده پیش از میلاد مسیح، توسط نویسنده یونانی در زمینه مکانیک، فیلو انجام شد. او در کار خود با استفاده از پنوماتیک، به اشتباه تصور می‌کرد که با برگرداندن یک ظرف بر روی یک شمع در حال سوختن که پیرامون آن آب است وقتی بخشی از مایع از گردنه ظرف بالا می‌رود مقداری از هوای موجود در ظرف به آتش یکی از عناصر چهارگانه تبدیل شده‌است و قادر به فرار از منافذ موجود در شیشه است.[۲] قرن‌ها بعد، لئوناردو دا وینچی براساس کارهای فیلو، مشاهده کرد که بخشی از هوا در هنگام سوختن و تنفس مصرف می‌شود.[۳]

در اواخر سده هفدهم، رابرت بویل شیمی‌دان، فیزیک‌دان، فیلسوف و مخترع ایرلندی ثابت کرد که هوا برای سوختن لازم است، سپس شیمی‌دان انگلیسی جان مایو (۱۶۴۱–۱۶۴۱) نشان داد که آتش فقط به بخشی از هوا احتیاج دارد و نام آن را اسپریتوس نیتروآروس[a] گذاشت و کار بویل را تصحیح کرد. در یک آزمایش او با قرار دادن یک موش و یک شمع کوچک روشن در یک ظرف وارونه روی آب شاهد بالا آمدن سطح آب به مقدار یک چهاردهم از حجم هوا قبل از خاموش شدن شمع و مرگ موش بود.[۴] از این رو او تصور کرد که نیتروآروس هم در تنفس و هم با سوختن مصرف می‌شود.

مایو همچنین مشاهده کرد که وزن آنتیموان هنگام گرم شدن افزایش یافته و براین اساس استنباط می‌کند که دلیل آن ترکیب شدن با نیتروآروس می‌باشد. او همچنین تصور کرد که ریه‌ها نیتروآروس را از هوا جدا کرده و آن را درون خون منتقل می‌کنند و گرمای بدن حیوانات و حرکت ماهیچه‌ها ناشی از واکنش نیتروآروس با مواد خاصی در بدن است. وی گزارش‌هایی از این آزمایش‌ها و ایده‌های دیگر را در سال ۱۶۶۸ در در اثری به‌نام دو مجرا[b] در دستگاه تنفس[c] منتشر شد.[۴]

نظریه فلوژیستون[ویرایش]

رابرت هوک، اوله بورچ،[d] میخاییل لومونسف و پیر باین[e] همه در آزمایش‌هایی که در سده ۱۷ و ۱۸ میلادی انجام می‌دادند اکسیژن تولید می‌کردند اما هیچ‌کدام آن را به‌عنوان یک عنصر شیمیایی به رسمیت نشناختند.[۵] که این ممکن است تا حدودی به‌دلیل نشر فلسفه سوختن و خوردگی به نام تئوری فلوژیستون باشد که در آن زمان توضیحی ارجح برای این نوع فرایندها بود.[۶]

این نظریه که بعدها به‌طور کامل رد گردید، برای اولین بار توسط شیمی‌دان آلمانی یوهان یوآکیم بکر بیان شد و سپس در سال ۱۷۳۱ توسط جرج ارنست استال اصلاح شد.[۷] بر مبنای این تئوری همهٔ مواد قابل سوختن از جزئی به نام فلوژیستون تشکیل شده بودند که با سوختن آن ماده، فلوژیستون از ماده جدا شده و به شکل یک مادهٔ ساده‌تر کاهش می‌یافت. در حالی که تصور می‌شد که قسمت اصلی آن از نظر ظاهری شکل واقعی یا کالکس[توضیح ۲] است.[۳]

باور بر این بود که مواد دارای قابلیت احتراق بالا مانند چوب یا زغال‌سنگ که پس از سوختن، باقی مانده اندکی از آنها به جا می‌ماند، غالباً از فلوژیستون ساخته شده‌اند و مواد غیرقابل احتراق مانند آهن که دچار خوردگی می‌شوند، حاوی فلوژیستون بسیار کمی هستند. این تئوری نقش هوا در سوختن را صرفاً محدود به انتقال فلوژیستون آزادشده از جسم می‌کرد. به‌عنوان مثال طبق این نظریه از سوختن چوب، خاکستر به جا می‌مانَد و فلوژیستون آن توسط هوا جدا می‌شود که اختلاف جرم بین چوب و خاکستر بر جای مانده، ناشی از خارج شدن فلوژیستون می‌باشد. هیچ آزمایشی برای این ایده انجام نشد و تمامی نظرات مبتنی بر مشاهده آنچه اتفاق می‌افتاد بود که اکثر اشیاء با سوختن سبک‌تر می‌شوند و به نظر می‌رسد در روند کار چیزی را از دست می‌دهند.[۳]

کشف[ویرایش]

مایکل سندی‌ووجیس، کشف کرد که هوا یک ماده واحد نیست و حاوی ماده زندگی‌بخش است که بعداً اکسیژن نامیده شد.
معمولاً ادعا می‌شود که کاشف اکسیژن شیله است ولی مقاله پریستلی زودتر از شیله چاپ شد.
تقدم کشف اکسیژن به پریستلی نسبت داده می‌شود.

کیمیاگر، فیلسوف و پزشک لهستانی مایکل سندی‌ووجیس در سال ۱۶۰۴ ماده موجود در هوا را شرح داد و از آن به عنوان غذای زندگی[f] یاد کرد،[۸] و این ماده با اکسیژن یکسان است.[۹] سندی‌ووجیس، در طول آزمایش‌های خود که بین سال‌های ۱۵۹۸ و ۱۶۰۴ انجام داد، به درستی تشخیص داد که این ماده معادل محصول جانبی گازی است که با تجزیه حرارتی پتاسیم نیترات آزاد می‌شود. از دیدگاه بوگاج،[g] جداسازی اکسیژن و ارتباط مناسب ماده با آن قسمت از هوا که برای زندگی لازم است، دلیل کافی برای کشف اکسیژن توسط سندی‌ووجیس فراهم می‌کند.[۹] اما این کشف سندی‌ووجیس اغلب توسط نسل دانشمندان و شیمی‌دانان جانشین او انکار می‌شد.[۸]

همچنین معمولاً ادعا می‌شود که اکسیژن اولین بار توسط داروساز سوئدی کارل ویلهلم شیله کشف شد. وی با گرم کردن اکسید جیوه و نیترات‌های مختلف در سال ۱۷۷۱، گاز اکسیژن تولید کرده بود.[۱۰][۳] شیله گاز را هوای آتش[h] نامید زیرا در آن زمان تنها عامل شناخته شده برای پشتیبانی از سوختن بود. وی روایتی از این کشف را در یک نسخه خطی با عنوان رساله‌ای در باب هوا و آتش[i] نوشت که در سال ۱۷۷۵ برای ویراستار خود فرستاد. با این‌حال این رساله تا سال ۱۷۷۷ منتشر نشد.[۵]

در همین حال، در اول اوت سال ۱۷۷۴، آزمایشی که توسط شیمی‌دان و فیلسوف و مخالف کلیسای انگلستان، جوزف پریستلی انجام شد، نور خورشید را روی اکسید جیوه (HgO) موجود در یک لوله شیشه ای متمرکز کرد، که موجب آزاد شدن گازی از آن شد و آن را با عنوان هوای فلوژیستون زدایی[j] شده یاد کرد.[۳] وی خاطرنشان کرد: شمع‌ها در حضور این گاز روشن‌تر می‌سوزند و موش فعال تر بوده و با تنفس آن مدت زمان بیشتری زنده بوده‌است. پریستلی پس از تنفس گاز خود نوشت: «احساس آن در ریه‌هایم به‌طور قابل ملاحظه ای با هوای معمولی تفاوت چندانی نداشت، اما احساس کردم سینه‌ام به خصوص بعد از مدتی سبک و راحت است»[۵] پریستلی یافته‌های خود را در سال ۱۷۷۵ در مقاله ای با عنوان «گزارشی از اکتشافات بیشتر در هوا» منتشر کرد که در جلد دوم کتاب وی با عنوان آزمایش‌ها و مشاهدات در انواع مختلف هوا[k] گنجانده شده‌است.[۳][۱۱] از آنجا که او برای اولین بار یافته‌های خود را منتشر کرد، معمولاً از او به عنوان کاشف اکسیژن نام برده می‌شود. شیمی‌دان فرانسوی آنتوان لورنت لاووازیه بعداً ادعا کرد که این ماده را به‌طور مستقل کشف کرده‌است. با این حال، پریستلی در اکتبر سال ۱۷۷۴ به دیدار لاووازیه رفت و در مورد آزمایش خود و نحوه انتشار گاز جدید به وی گفت. شیله همچنین در ۳۰ سپتامبر همان سال نامه‌ای را به لاووازیه ارسال کرده بود که شرح کشف ماده ناشناخته را توصیف می‌کرد، اما لاووازیه هرگز پذیرش آن را تأیید نکرد. پس از مرگ شیله نسخه‌ای از نامه در وسایلش پیدا شد.[۵]

مشارکت لاووازیه[ویرایش]

آنتوان لاووازیه نظریه فلوژیستون را بی‌اعتبار ساخت.

لاووازیه اولین آزمایش‌های کمی مناسب در مورد اکسیداسیون را انجام داد و اولین توضیح صحیح در مورد چگونگی عملکرد سوختن را ارائه کرد.[۳] او از این آزمایش و آزمایش‌های مشابه دیگر، که در سال ۱۷۷۴ شروع شده بود، استفاده کرد تا نظریه فلوژیستون را بی‌اعتبار کند و نشان دهد ماده کشف شده توسط پریستلی و شیله یک عنصر شیمیایی است. در یک آزمایش، لاووازیه مشاهده کرد که هنگام گرم کردن قلع و هوا در یک ظرف بسته، افزایش کلی وزن وجود ندارد.[۳]

وی خاطرنشان کرد: هنگام بازکردن ظرف، ناگهان هوا وارد ظرف شد و این نشان می‌دهد که برخی از هوای به دام افتاده مصرف شده‌است و نشان داد که مقدار وزن افزایش یافته قلع پس از سوختن برابر با مقدار هوایی بوده‌است که پس از بازکردن ظرف وارد آن شده‌است. این آزمایش به همراه دیگر آزمایش‌های او در کتابی با عنوان در مورد احتراق[l] در سال ۱۷۷۷ منتشر و ثبت شد. با انجام این کار، او ثابت کرد که هوا ترکیبی از دو گاز است. هوای حیاتی[m] که برای سوختن و تنفس ضروری است و آزوت[n] یا هوای بی‌جان[o] که پیش تر ازت در انگلیسی نیتروژن نام گرفت، اگرچه این نام در فرانسوی و چند زبان اروپایی دیگر نگه داشته شد.[۱۲][۱۳]

لاووازیه نام هوای حیاتی را در ۱۷۷۷ به اکسیژن تغییر نام داد که از ریشه یونانی اوکسیس[p] به معنای تیز برای طعم اسیدها و -جنز[q] به معنای تولیدکننده یا مولد، گرفته شده بود زیرا او به اشتباه فکر می‌کرد که اکسیژن ماده تشکیل دهنده همه اسیدها است.[۱۴] بعد از او، شیمی‌دان‌هایی مانند همفری دیوی، در ۱۸۱۲ سرانجام تشخیص دادند که لاووازیه در ارزیابی خود اشتباه کرده‌است و این هیدروژن است که پایه اسیدها را تشکیل می‌دهد، اما این نام قبلاً رایج شده بود. واژه اکسیژن علی‌رغم مخالفت دانشمندان انگلیسی و این واقعیت که دانشمند انگلیسی پریستلی ابتدا آن را کشف کرده و دربارهٔ آن نوشته بود، وارد زبان انگلیسی شد که تا حدودی ناشی از شعری است که با عنوان «اکسیژن» در کتاب محبوب باغ گیاه‌شناسی (۱۷۹۱)[r] اثر اراسموس داروین، پدر بزرگ چارلز داروین از آن تحسین می‌کند.[۵]

تاریخ بعد[ویرایش]

رابرت گودارد و یک راکت اکسیژن-بنزین مایع
راکت گودارد

نظریه جان دالتون بر این اساس بود که تمام اتم‌های یک عنصر یکسانند و اتم موجود در ترکیبات معمولاً ساده‌ترین نسبت‌های اتمی را نسبت به یک‌دیگر دارند. او به اشتباه تصور می‌کرد که ساده‌ترین حالت ترکیب بین دو عنصر همواره ترکیب یک اتم از هر کدام است؛ بنابراین مولکول آب را به اشتباه HO فرض می‌کرد و به این نتیجه رسید که جرم اتمی اکسیژن ۸ برابر بیشتر از هیدروژن است در حالیکه امروزه با در نظر گرفتن فرمول درست آب می‌دانیم که اتم اکسیژن ۱۶ برابر از هیدروژن سنگین تر است.[۱۵] در سال ۱۸۰۵، ژوزف لویی گیلوساک و الکساندر فون هومبولت نشان دادند که نسبت حجمی هیدروژن نسبت به اکسیژن در آب ۲ به ۱ است و در سال ۱۸۱۱ آمدئو آووگادرو شیمی‌فیزیک‌دان ایتالیایی با فرض مولکول‌های دو اتمی ابتدایی، تفسیر صحیحی از ترکیب مایعات ارائه داد که امروز به عنوان قانون آووگادرو شناخته می‌شود.[۱۶][توضیح ۳]

در اواخر سده نوزدهم دانشمندان دریافتند که می‌توان هوا را به مایع تبدیل کرد و اجزای آن را با فشرده‌سازی و خنک کردن آن جدا کرد. با استفاده از روش آبشاری، رائول پیکتت شیمی‌دان و فیزیک‌دان سوئیسی، گوگرد دی‌اکسید را به‌منظور مایع‌سازی کربن دی‌اکسید، تبخیر کرد. این مایع سازی از طریق جذب گرمای کربن دی‌اکسید توسط گوگرد دی‌اکسید در هنگام تبخیر شدن به انجام می‌رسد. وی در ۲۲ دسامبر سال ۱۸۷۷ تلگرافی را به فرهنگستان علوم فرانسه ارسال کرد و خبر از کشف اکسیژن مایع داد[۱۷] و تنها دو روز بعد، فیزیک‌دان فرانسوی لوئیس پل کایتت روش خود را برای مایع کردن اکسیژن مولکولی اعلام کرد. در هر دو مورد، فقط چند قطره از اکسیژن مایع تولید می‌شد، بنابراین امکان یک تجزیه و تحلیل قطعی را نمی‌داد. اکسیژن برای اولین بار در ۲۹ مارس ۱۸۸۳ توسط دانشمندان لهستانی، زیگمونت وروبلوسکی و کارول اولژوسکی از دانشگاه یاگیلونیا در حالت پایدار مایع شد.[۱۸]

یک چیدمان آزمایشی، برای تهیه اکسیژن در آزمایشگاه‌های دانشگاهی

در سال ۱۸۹۱، شیمی‌دان اسکاتلندی، جیمز دیوئر، قادر به تولید اکسیژن مایع کافی برای مطالعه آن شد.[۵] اولین فرایند تجاری مناسب برای تولید اکسیژن مایع به‌طور مستقل در سال ۱۸۹۵ توسط مهندس آلمانی کارل فن لینده و مهندس بریتانیایی ویلیام هامسون توسعه یافت. آنها دمای هوا را تا زمان مایع شدن آن کاهش می‌دادند و سپس مخلوط را به صورت جز به جز تقطیر و آنها را جداگانه استخراج می‌کردند[۱۹] بعدتر، در سال ۱۹۰۱، جوشکاری اکسی‌استیلن برای اولین بار با سوختن مخلوطی از استیلن و اکسیژن فشرده شده استفاده شد که برای برش فلزات متداول گشت. در سال ۱۸۹۸، ویلیام تامسون محاسبه کرد که تنها برای حدود ۴۰۰ یا ۵۰۰ سال اکسیژن روی زمین باقی مانده‌است که مقدار دقیق آن به سرعت سوختن مواد قابل احتراق بستگی دارد.[۲۰][۲۱]

در سال ۱۹۲۳، دانشمند آمریکایی رابرت گدارد اولین شخصی بود که موتور موشکی را ساخت که از بنزین برای سوخت و اکسیژن مایع به عنوان عامل اکسنده استفاده می‌کرد و اولین موشک سوخت مایع را در تاریخ ۱۶ مارس ۱۹۲۶ در اوبرن پرتاب کرد که ۵۶ متر را با سرعت ۹۷ کیلومتر در ساعت طی نمود.[۲۲] در آزمایشگاه‌های دانشگاهی، اکسیژن را می‌توان با گرم کردن مخلوطی از پتاسیم کلرات و مقدار کمی از منگنز دی‌اکسید تهیه کرد.[۲۳] سطح اکسیژن موجود در جو در حال کاهش است که دلیل آن استفاده از سوخت‌های فسیلی است.[۲۴]

ویژگی[ویرایش]

خواص و ساختار مولکولی[ویرایش]

ترکیب دو اتم اکسیژن و تشکیل O۲
نمودار اوربیتال مولکولی اکسیژن (برگرفته از بارت ۲۰۰۲)[۲۵]
نمودار نشان می‌دهد، زمانی‌که اوربیتال‌های اتمی دو اتم اکسیژن با یک‌دیگر همپوشانی می‌کنند، منجر به تشکیل یک اوربیتال مولکولی می‌شوند، مطابق اصل آفبا، نحوه پر شدن این اوربیتال‌ها با دوازده الکترون مهیا شده (۶ الکترون از هر اتم)، به صورتی است که ابتدا اوربیتال‌های با انرژی کم‌تر پر می‌شوند. نمودار نشان می‌دهد که در نهایت دو الکترون جفت نشده برای مولکول اکسیژن باقی می‌ماند که خصلت پارامغناطیس یک مولکول اکسیژن سه‌تایی، ناشی از همین دو الکترون است.

در شرایط استاندارد دما و فشار، اکسیژن، گازی بدون بو، رنگ و مزه، با فرمول شیمیایی O۲ است که خود از دو اتم اکسیژن تشکیل شده‌است.[۲۶] پیوند میان دو اتم اکسیژن در یک مولکول اکسیژن، می‌تواند بر اساس نظریه‌های مختلفی تفسیر داده شود با این‌حال، منطقی است که آن را یک پیوند دوگانه کووالانسی درنظر گرفت که در اثر پر شدن اوربیتال‌های مولکولی با الکترون‌های مهیا شده از دو اتم مجزای اکسیژن ایجاد می‌شود. به‌صورت دقیق‌تر، این پیوند دوگانه مطابق اصل آفبا از پر شدن متوالی اوربیتال‌های مولکولی در یک مولکول اکسیژن، با ترتیب چینش از انرژی کم به انرژی زیاد، ایجاد می‌شود. پیوندهای سیگما (σ) و سیگما استار (*σ) ناشی از هم‌پوشانی به‌ترتیب پیوندی و ضدپیوندی اوربیتال‌های 2s دو اتم اکسیژن، یک‌دیگر را خنثی می‌کنند. پیوند سیگمای ناشی از هم‌پوشانی اوربیتال‌های 2p دو اتم اکسیژن، عامل ایجاد پیوند یگانه اکسیژن-اکسیژن (O-O) هستند و پیوند پای (π) حاصل از هم‌پوشانی جانبی اوربیتال‌های 2p این دو اتم است. به‌علت حضور دو الکترون در اوربیتال ضدپیوندی پای استار (*π)، بخشی از هم‌پوشانی اوربیتالی پای پیوندی خنثی می‌شود که در نتیجه آن پیوند موجود در یک مولکول اکسیژن دار کاهش رتبه پیوند شده و خصلتی دوگانه و دارای واکنش‌پذیری بالا پیدا می‌کند.[۲۵] آرایش الکترونی اکسیژن در حالت پایه خود به علت داشتن دو الکترون منفرد و جفت نشده، اصطلاحاً سه‌تایی[توضیح ۴] نامیده می‌شود.[۲۷] اکسیژن سه‌تایی مولکولی پارامغناطیس است که این خصلت ناشی از وجود دو الکترون جفت نشده در ساختار آن است. زمانی که اکسیژن سه‌تایی در مجاورت میدان مغناطیسی قرار می‌گیرد، گشتاور مغناطیسی اسپینی این الکترون‌ها و همچنین تبادل انرژی بین مولکول‌های اکسیژن نزدیک، موجب می‌شود که اکسیژن خصلتی مغناطیسی پیدا کند. اکسیژن مایع به‌قدری مغناطیسی است که در مشاهدات آزمایشگاهی، پلی از اکسیژن مایع، می‌تواند وزن خود را بین قطب‌های یک آهن‌ربای قوی تحمل کند.[۲۸]

اکسیژن سه‌تایی به علت داشتن دو الکترون جفت‌نشده به آرامی با اغلب ترکیبات آلی واکنش می‌کند، چرا که آن‌ها دارای الکترون‌های جفت‌شده هستند و میل ترکیبی کمتری دارند، در نتیجه این موضوع سبب می‌شود که جلوی احتراق خودبه‌خودی این ترکیبات گرفته شود.[۲۹] اکسیژن می‌تواند حالت الکترونی دیگری نیز داشته باشد و آن حالت اکسیژن یک‌تایی است. اکسیژن یک‌تایی همانند مورد سه‌تایی دارای فرمول O۲ است، با این تفاوت که از لحاظ الکترونی، فاقد الکترون جفت نشده‌است و تمامی الکترون‌های موجود در اوربیتال‌های مولکولی آن به صورت جفت‌شده به‌سر می‌برند. اکسیژن یک‌تایی در مقابل ترکیبات آلی متداول واکنش‌پذیری بسیار بالاتری از خود نشان می‌دهد. به صورت طبیعی، اکسیژن یک‌تایی در طول فتوسنتز با کمک نور خورشید از آب تولید می‌شود.[۳۰] این گونه همچنین در تروپوسفر و بر اثر نورکافت مولکول‌های ازون به‌وسیله پرتوهای خورشیدی پرقدرت و دارای طول موج کوتاه نیز تولید می‌شود.[۳۱] اکسیژن یک‌تایی همچنین توسط سیستم ایمنی بدن نیز تولید می‌شود.[۳۲] در جاندارانی که فتوسنتز می‌کنند، کاروتنوئیدها نقشی اساسی در جذب انرژی از اکسیژن یک‌تایی و تبدیل آن به حالت پایدارتر برای جلوگیری از آسیب رسانی به بافت‌ها را دارند.[۳۳]

دگرشکل‌ها[ویرایش]

گاز اکسیژن در لوله خلأ

اصلی‌ترین و متداول‌تر دگرشکل متداول اکسیژن، دی‌اکسیژن یا همان اکسیژن مولکولی (O۲) است که بخش بزرگی از اتمسفر اکسیژنی کره زمین را تشکیل می‌دهد. اکسیژن مولکولی دارای پیوندی به طول ۱۲۱ پیکومتر و انرژی پیوندی ۴۹۸ کیلو ژول بر مول است.[۳۴] مولکول اکسیژن توسط شکل‌های پیچیده حیات مانند حیوانات مصرف می‌شود.

اکسیژن سه‌اتمی (O۳) که به‌صورت متداول با نام ازون شناخته می‌شود، یکی از فعال‌ترین دگرشکل‌های اکسیژن است که به‌خاطر فعالیت بالایش می‌تواند به بافت‌های ریه انسان آسیب بزند.[۳۵] ازون در لایه بالایی اتمسفر تولید می‌شود، جایی که اکسیژن مولکولی با اکسیژن اتمی حاصل از تفکیک اکسیژن مولکولی توسط پرتوهای ماورای بنفش خورشیدی، ترکیب می‌شود.

باریکه اکسیژن مایع توسط یک میدان مغناطیسی منحرف می‌شود که این موضوع نشان‌دهنده خاصیت پارامغناطیسی اکسیژن است.

به‌علت این‌که ازون نور ماورای بنفش را به‌شدت جذب می‌کند، لایه ازون در لایه بالایی اتمسفر به‌مانند لایه‌ای محافظ عمل می‌کند و از کره زمین را در مقابل پرتوهای مخرب ماورای بنفش محافظت می‌کند. در نزدیکی سطح زمین، ازون به‌عنوان آلاینده‌ای شناخته می‌شود که در دود خودروها به عنوان محصول جانبی حضور دارد.[۳۵] در ارتفاع واقع در مدار نزدیک زمین، اکسیژن اتمی لازم برای ایجاد اثر خورندگی بر روی بدنه فضاپیماها وجود دارد.[۳۶]

اکسیژن چهار اتمی که مولکولی شبه‌پایدار است، در سال ۲۰۰۱ کشف شد.[۳۷][۳۸] فرض بر این بود که این گونه در یکی از شش حالت جامد اکسیژن وجود دارد. درسال ۲۰۰۶ اثبات شد که این گونه که مجموعه‌ای از خوشه‌های اکسیژن هشت اتمی (O۸) و دارای شبکه بلوری شش‌گوشه است را می‌توان به‌وسیله قرار دادن اکسیژن مولکولی در فشاری به میزان ۲۰ گیگاپاسکال، تولید کرد.[۳۹] این خوشه دارای قدرت اکسایشی بالاتری در مقایسه با اکسیژن دواتمی (O۲) یا سه‌اتمی (O۳) دارد و ممکن است بتواند جایگزین خوبی در سوخت موشک باشد.[۳۷][۳۸]

در سال ۱۹۹۰، زمانی که اکسیژن تحت فشاری به اندازه ۹۶ گیگاپاسکال قرار گرفت، فازی فلزی از اکسیژن مشاهده شد[۴۰] و در سال ۱۹۹۸ مشخص شد که چنان‌چه این فاز به‌دست آمده در دماهای پایین قرار گرفته شود، از خود خصلت ابررسانایی بروز می‌دهد.[۴۱]

ویژگی‌های فیزیکی[ویرایش]

میزان حلالیت اکسیژن در آب در سطح دریا[۴۲]
(برحسب میلی‌لیتر اکسیژن در لیتر آب)
۵ °C ۲۵ °C
آب شیرین ۱٫۹mL ۶٫۳ mL
آب دریا ۷ mL ۵ mL
اکسیژن مایع، به رنگ آبی کم رنگ است و مصارف مختلف پزشکی، صنعتی و آزمایشگاهی دارد.

اکسیژن در مقایسه با نیتروژن راحت‌تر در آب حل می‌شود و همچنین حلالیت آن در آب شیرین بیش‌تر از آب شور است. آب در تعادل با هوا، تقریباً شامل یک مولکول حل شده اکسیژن به ازای هر دو مولکول نیتروژن است (نسبت ۴:۱) درحالی‌که در اتمسفر، نسبت نیتروژن چهار برابر اکسیژن است. میزان حلالیت اکسیژن در آب به دما وابسته‌است، به‌طوری که میزان حل شدن آن در آب در دمای صفر درجه سانتی‌گراد و فشار استاندارد یک اتمسفر (۱۰٫۲ میلی‌لیتر بر لیتر)، بسیار بیش‌تر از مقدار مشابه در دمای ۲۰ درجه سانتی‌گراد (۶٫۸ میلی‌لیتر بر لیتر) است.[۴۲] در دمای ۲۵ درجه سانتی‌گراد و فشار استاندارد یک اتمسفر (۱۰۱٫۳ کیلوپاسکال)، آب شیرین حاوی حدود ۶٫۳ میلی‌لیتر اکسیژن در هر لیتر است، در حالی‌که این مقدار برای آب دریا برابر با ۵ میلی‌لیتر در هر لیتر است.[۴۲] در دمای ۵ درجه سانتی‌گراد، میزان حلالیت اکسیژن به ۹٫۱ میلی‌لیتر (تقریباً ۵۰ درصد بیش‌تر از دمای ۲۵ درجه سانتی‌گراد) برای هر لیتر از آب شیرین می‌رسد.[۴۲] میزان حلالیت در دمای مشابه برای آب دریا برابر با ۷ میلی‌لیتر برای هر لیتر از آب دریا است.[۴۲]

اکسیژن در دمای ۹۰٫۲۰ کلوین (۱۸۲٫۹۵- سلسیوس، ۲۹۷٫۳۱- فارنهایت) متراکم و در دمای ۲۱۸٫۷۹- درجه سانتی‌گراد منجمد می‌شود.[۴۳] هم اکسیژن مایع و هم اکسیژن جامد، هردو موادی شفاف با سایه‌ای آبی‌رنگ هستند که براثر جذب نور قرمز ایجاد می‌شود.[توضیح ۵] اکسیژن مایع دارای خلوص بالا معمولاً توسط تقطیر جزء به جزء هوای مایع شده به‌دست می‌آید.[۴۴] اکسیژن مایع همچنین می‌تواند توسط متراکم کردن هوا با استفاده نیتروژن مایع نیز تولید شود.[۴۵] اکسیژن ماده‌ای به‌شدت واکنش‌پذیر است و باید از مواد دارای قابلیت احتراق دور نگه داشته شود.[۴۵]

ایزوتوپ‌ها و منشأ ستاره‌ای[ویرایش]

فعل و انفعالات هسته‌ای مربوط به مراحال پایانی عمر یک ستاره کلان‌جرم. میزان اکسیژن-۱۶ در پوسته اکسیژنی، اکسیژن-۱۷ در پوسته هیدروژنی و اکسیژن-۱۸ در پوسته هلیومی افزایش می‌یابد.
سحابی چشم گربه دارای مناطقی سرشار از اکسیژن یونیزه است که به رنگ سبز نشان داده شده‌است.

به‌طور طبیعی اکسیژن به شکل سه ایزوتوپ اکسیژن-۱۶ (۱۶O)، اکسیژن-۱۷ (۱۷O) و اکسیژن-۱۸ (۱۸O) وجود دارد که از میان آن‌ها اکسیژن-۱۶ دارای بیش‌ترین میزان فراوانی است (فراوانی طبیعی: ۹۹٫۷۶۲ درصد).[۴۶]

اغلب اکسیژن-۱۶، در پایان دوره همجوشی هلیوم در ستارگان کلان‌جرم و طی فرایند سوختن نئون تولید می‌شود.[۴۷] اکسیژن-۱۷، به‌طور عمده بر اثر سوختن هیدروژن و تبدیل آن به هلیوم طی چرخه CNO تولید می‌شود.[۴۷] اغلب اکسیژن-۱۸ زمانی تولید می‌شود که نیتروژن-۱۴ (۱۴N) که خود غالباً در چرخه CNO تولید می‌شود، هسته‌های هلیوم-۴ (۴He) را به‌دام می‌اندازد.[۴۷]

در مجموع چهارده نوع اکسیژن رادیواکتیو شناسایی شده‌است. پایدارترین آن‌ها اکسیژن-۱۵ (۱۵O) با نیمه‌عمری برابر ۱۲۲٫۲۴ ثانیه و اکسیژن-۱۴ با نیمه‌عمر ۷۰٫۶۰۶ ثانیه است.[۴۶] تمامی ایزوتوپ‌های دیگر دارای نیمه‌عمری برابر با ۲۷ ثانیه هستند و اغلب آن‌ها دارای زمان نیمه‌عمری کمتر از ۸۳ میلی‌ثانیه هستند.[۴۶]

رایج‌ترین حالت واپاشی هسته‌ای ایزوتوپ‌های سبک‌تر از ۱۶O نشر پوزیترون[۴۸][۴۹][۵۰] و تبدیل شدن به نیتروژن است و متداول‌ترین حالت برای ایزوتوپ‌های سنگین تر از ۱۸O واپاشی بتا و تبدیل شدن به فلوئور است.[۴۶]

فراوانی[ویرایش]

۱۰ عنصر فراوان راه شیری بر مبنای تخمین‌های طیف‌سنجی[۵۱]
Z عنصر کسر جرمی در هر ppm
۱ هیدروژن ۷۳۹۰۰۰ ۷۱ برابر جرم اکسیژن (میله قرمز)
۲ هلیوم ۲۴۰۰۰۰ ۲۳ برابر جرم اکسیژن (میله قرمز)
۸ اکسیژن ۱۰٬۴۰۰ 10400
 
۶ کربن ۴۶۰۰ 4600
 
۱۰ نئون ۱۳۴۰ 1340
 
۲۶ آهن ۱۰۹۰ 1090
 
۷ نیتروژن ۹۶۰ 960
 
۱۴ سیلیسیم ۶۵۰ 650
 
۱۲ منیزیم ۵۸۰ 580
 
۱۶ گوگرد ۴۴۰ 440
 


از لحاظ جرمی، اکسیژن یکی از فراوان‌ترین عناصر بر روی زمین است. این عنصر، به‌لحاظ فراوانی، بعد از هیدروژن و هلیوم، سومین عنصر شیمیایی در کیهان محسوب می‌شود.[۵] در حدود ۰٫۹ درصد از خورشید را از اکسیژن تشکیل شده‌است.[۳] این عنصر ۴۹٫۲ درصد پوسته زمین را شامل می‌شود.[۵۲]

با در نظر گرفتن مشارکت اکسیژن در ساختار سیلیسیم دی‌اکسید، اکسیژن فراوان‌ترین عنصر پوسته زمین و همچنین فراوان‌ترین عنصر موجود در اقیانوس‌ها است به‌طوری که ۸۸٫۸ درصد جرمی اقیانوس‌ها را تشکیل می‌دهد.[۳][۵][توضیح ۶] در مقایسه با سایر سیاره‌های منظومه شمسی، زمین با داشتن مقدار زیادی اکسیژن، سیاره‌ای متفاوت است. مریخ (با حجم ۰٫۱ درصد O۲) و زهره مقدار بسیار کمتری دارا می‌باشد. O۲ پیرامون آن سیارات با تابش نور ماوراء بنفش بر روی مولکول‌های حاوی اکسیژن مانند دی‌اکسید کربن تولید می‌شود.[۵۳]

نقشه نشان می‌دهد که میزان اکسیژن موجود در سطح دریاها در مناطق استوایی به صورت آشکاری تهی‌تر از مناطق نزدیک به قطب‌ها است.
آب سرد در مقایسه با آب گرم، مقدار اکسیژن (O۲) حل شده بیش‌تری دارد.

نقشه جهانی نشان می‌دهد که اکسیژن سطح دریا در اطراف استوا خارج شده و به سمت قطب‌ها افزایش می‌یابد. آب سرد در مقایسه با آب گرم، مقدار اکسیژن (O۲) حل شده بیش‌تری دارد. افزایش غیرمنتظره غلظت بالای گاز اکسیژن در کره زمین نتیجه چرخه اکسیژن است. این چرخه زیست ژئوشیمیایی حرکت اکسیژن در داخل و بین سه منبع اصلی آن روی زمین را توصیف می‌کند: اتمسفر، بیوسفر و لیتوسفر. عامل اصلی محرک چرخه اکسیژن فتوسنتز است، که مسئول اتمسفر مدرن زمین است. فتوسنتز اکسیژن را وارد اتمسفر می‌کند، در حالی که تنفس یاخته‌ای، پوسیدگی و احتراق آن را از اتمسفر خارج می‌کند. در تعادل موجود، تولید و مصرف به همان میزان اتفاق می‌افتد.[۵۴]

اکسیژن آزاد همچنین در مایعات داخل بدن نیز وجود دارد. افزایش قابلیت انحلال O۲ در در دماهای پایین‌تر آب پیامدهای مهمی برای زندگی اقیانوس‌ها دارد به‌طوری که آب‌های نزدیک نواحی قطبی، به‌علت میزان بیش‌تر اکسیژن، دارای تنوع حیات بیش‌تری در مقایسه آب‌های نواحی گرم‌تر است.[۵۵] آب آمیخته‌شده به مواد مغذی گیاهی مانند نیترات‌ها یا فسفات‌ها ممکن است رشد جلبک‌ها را با فرایندی به نام اوتریفیکاسیون تحریک کند و پوسیدگی این ارگانیسم‌ها و سایر مواد بیولوژیکی ممکن است باعث کاهش محتوای O۲ در بدن آب‌های اوتریفیک شود. افزایش بیش از حد مواد طبیعی یا مصنوعی در یک محیط آبی می‌توانند در جایگاه مواد مغذی برای ارگانیسم‌ها مانند هومین‌ها یا مواد شیمیایی مانند نیترات یا فسفات باشند که از طریق کود شیمیایی یا پساب وارد آب شده‌اند. دانشمندان این جنبه کیفیت آب را با اندازه‌گیری میزان اکسیژن بیوشیمیایی آب یا مقدار O۲ مورد نیاز، که شاخصی برای اندازه‌گیری مواد آلی قابل تجزیه توسط باکتری‌ها در آب است برای بازگرداندن آن به غلظت طبیعی ارزیابی می‌کنند.[۵]

آنالیز و بررسی[ویرایش]

تغییرات غلظت اکسیژن-۱۸ در طول زمان در مقیاس ۵۰۰ میلیون سال نشان دهنده قله‌های زیادی در نواحی مختلف است.
میزان اکسیژن-۱۸ و تغییرات آب‌وهوایی در طول ۵۰۰ میلیون سال

دیرینه‌اقلیم‌شناسان نسبت اکسیژن-۱۸ به اکسیژن-۱۶ در پوسته‌ها و اسکلت جانواران دریایی را اندازه می‌گیرند تا با کمک آن تغییرات آب و هوایی میلیون‌ها سال پیش را تعیین نمایند. مولکول‌های آب دریا که حاوی ایزوتوپ سبک‌تر اکسیژن-۱۶ هستند، سریع‌تر از مولکول‌های آبی که متشکل از ۱۲ درصد اتم اکسیژن-۱۸ هستند، تبخیر می‌شوند و این تفاوت سرعت تبخیر با کاهش دما، افزایش می‌یابد.[۵] در طول دوره‌های با دمای کمتر، برف و بارانی که ناشی از آب تبخیر شده از سطح اقیانوس‌ها هستند، دارای اکسیژن-۱۶ بیش‌تری هستند و درنتیجه این موضوع سبب می‌شود که میزان غلظت مولکول‌های دارای اکسیژن-۱۸ در آب اقیانوس‌ها بیش‌تر می‌شود. جانداران دریایی با مصرف مولکول‌های آب حاوی اتم اکسیژن-۱۸ که به اثر تبخیر شدن مولکول‌های با اکسیژن-۱۶، بیش‌تر از قبل دردسترس قرار گرفته‌اند، آنها را وارد ساختمان شیمیایی استخوان‌ها و پوسته‌های خود می‌نمایند.[۵] دیرینه‌اقلیم‌شناسان همچنین می‌توانند نسبت اکسیژن-۱۸ به اکسیژن-۱۶ را به‌صورت مستقیم و با اندازه‌گیری نسبت مولکول‌های آب موجود به‌دست آمده از مغزه یخی نمونه‌های چندهزار ساله تهیه شده از اعماق یخ‌ها به دست آورند.[۵۶]

زمین‌شناسان مقدار نسبی ایزوتوپ‌های اکسیژن در نمونه‌های زمین، ماه، مریخ و شهاب‌سنگ‌ها را تعیین کرده‌اند اما تاکنون در اندازه‌گیری نسبت مقادیر این ایزوتوپ‌ها در خورشید، ناموفق بوده‌اند. باور براین است که مقدار این نسبت برای خورشید معادل این نسبت در زمان تشکیل سحابی اولیه است. بررسی نوارهای سیلیسیمی قرار گرفته در معرض پرتوهای خورشیدی در فضا نشان داده‌است که میزان اکسیژن-۱۶ در خورشید بیشتر از زمین است. این اندازه‌گیری می‌گوید که فرایند نامعلومی موجب کاهش میزان اکسیژن-۱۶ قرص پیش‌سیاره‌ای پیش از زمان تشکیل زمین شده‌است.[۵۷]

اکسیژن دو نوار جذبی در طیف‌سنجی از خود نشان می‌دهد که در طول موج‌های ۶۸۷ و ۷۶۰ نانومتر دیده می‌شوند. دانشمندان علوم سنجش از دور پیشنهاد کرده‌اند که با استفاده از پرتوهای دریافتی از طریق یک ماهواره دیدبانی زمین و بررسی شدت این نوارها، می‌توان به وضعیت سلامت سیارات دوردست دست یافت. این روش برمبنای این حقیقت است که با کمک این نوارهای جذبی می‌توان میان بازتاب ناشی از پوشش گیاهی و بازتاب فلوئورسانسی تمایز قایل شد.[۵۸] از نظر فنی اندازه‌گیری به دلیل پایین بودن نسبت سیگنال به نویز و ساختار فیزیکی پوشش گیاهی دشوار است. اما به عنوان یک روش برای نظارت بر چرخه کربن از ماهواره‌ها در مقیاس جهانی ارائه شده‌است.[۵۹]

ترکیبات[ویرایش]

آب (H
۲
O
) شناخته شده‌ترین ترکیب اکسیژن است.

حالت اکسایش اکسیژن تقریباً در کلیه ترکیبات شناخته شده اکسیژن ۲− است. حالت اکسایش ۱− در چند ترکیب مانند پراکسیدها یافت می‌شود.[۶۰] ترکیبات حاوی اکسیژن در سایر حالات اکسایش بسیار نادر است: ۱/۲- (سوپر اکسیدها)، ۱/۳ (ازونیدها)، ۰ (عنصری، هیپوفلورو اسید)، ۱/۲+ (دیاکسیژنیل)، ۱ (دی‌اکسیژن دی‌فلوئورید)، و ۲+ (دی‌اکسید اکسید).[۶۱]

اکسیدها و ترکیبات معدنی[ویرایش]

آب (H
۲
O
) اکسید هیدروژن و آشناترین ترکیب اکسیژن است. در یک مولکول آب، هر یک از دو اتم هیدروژن موجود از طریق یک پیوند کووالانسی و مستقل با اتم اکسیژن مرکزی پیوند می‌دهند اما آنها علاوه‌بر این اتصال، دارای یک نیروی جاذبه اضافی نسبت به هر اتم اکسیژن موجود در مولکول‌های مجاور هستند که مقدار آن حدود ۲۳٫۳ کیلوژول برمول برای هر اتم هیدروژن است.[۶۲] این پیوندهای هیدروژن بین مولکول‌های آب آنها را تقریباً ۱۵٪ نزدیکتر از آنچه انتظار می‌رود در یک مایع ساده که فقط دارای نیروی واندروالسی باشد، قرار داده‌است.[۶۳][توضیح ۷]

با توجه به الکترونگاتیوی بالا، اکسیژن تقریباً با تمام عناصر دیگر در دماهای بالا پیوندهای شیمیایی تشکیل می‌دهد تا اکسید آن را تولید کند. با این حال، برخی از عناصر به‌طور مستقیم تحت شرایط عادی فشار و دما مانند آهن، آهن اکسید تشکیل می‌دهند. سطح فلزاتی مانند آلومینیوم و تیتانیم در حضور هوا اکسید می‌شود و با یک لایه نازک اکسید پوشیده شده که فلز را غیرفعال می‌کند و موجب کند شدن خوردگی می‌گردد. برخی از اکسیدهای فلزی در طبیعت به عنوان ترکیبات غیر استوکیومتری یافت می‌شوند و مقدار فلز کمتری از حالت استوکیومتری نشان می‌دهند برای نمونه، ماده معدنی وستیت با فرمول مولکولی FeO به صورت Fe۱-xO نوشته می‌شود جایی که x معمولاً در حدود ۰٫۰۵ است.[۶۴]

اکسیدها، مانند اکسید آهن یا زنگ‌زدگی، وقتی اکسیژن با عناصر دیگر ترکیب می‌شود، شکل می‌گیرد.

ترکیب یک یا چند اتم اکسیژن و یک یا چند اتم از عناصر دیگر تشکیل اکسید می‌دهد. اگر ترکیب اکسیژن با فلز باشد اکسید بازی و اگر اکسیژن با نافلز باشد اکسید اسیدی تشکیل می‌شود. زنگ زدن عبارتی است که به اکسایش آهن اطلاق می‌شود.[۶۵] اکسایش آهن معمولاً از طریق واکنش با اکسیژن صورت می‌گیرد. اما نوع‌های دیگری از زنگ زدن وجود دارد که حاصل واکنش آهن و کلر است که به آن زنگ سبز می‌گویند.[۶۶]

اکسیژن به عنوان یک ترکیب در مقادیر کمی به شکل کربن دی‌اکسید (CO۲) در جو موجود است. سنگ پوسته زمین از قسمت‌های بزرگی از اکسیدهای سیلیسیم به صورت سیلیسیم دی‌اکسید (SiO۲) که در گرانیت و کوارتز یافت می‌شود، آلومینیوم (آلومینیوم اکسید (Al۲O۳)، در بوکسیت و کرندومآهن اکسید (Fe۲O۳)، (در هماتیت و زنگ زدگی) و کلسیم (کلسیم کربنات (CaCO۲)، در سنگ آهک). بقیه پوسته زمین نیز از ترکیبات اکسیژن، به ویژه سیلیکات‌های پیچیده مختلف (در کانی‌های سیلیکات) ساخته شده‌است.[۶۷][۶۸] گوشته زمین، که جرم بسیار بیشتری از پوسته دارد، تا حد زیادی از سیلیکات‌های منیزیم و آهن تشکیل شده‌است.[۶۹] سیلیکات محلول در آب به شکل Na۲SiO۳ ،Na۴SiO۴ و Na۲Si۲O۵ به‌عنوان مواد شوینده و چسب استفاده می‌شود.[۳] اکسیژن همچنین به عنوان یک لیگاند برای فلزات انتقالی عمل می‌کند و موجب تشکیل کمپلکس‌های فلزات واسطه–دی‌اکسیژن[s] می‌شود که مشخصه آن‌ها، پیوند O۲– فلز است. این دسته از ترکیبات شامل هم پروتئین‌های هموگلوبین و میوگلوبین است.[۷۰] یکی از واکنش‌های غیرمعمول اکسیژن، واکنش با پلاتین هگزافلوئورید (PtF۶) است که منجر به تولید گونه O۲+PTF۶ می‌شود.[t][۳]

ترکیبات آلی[ویرایش]

A ball structure of a molecule. Its backbone is a zig-zag chain of three carbon atoms connected in the center to an oxygen atom and on the end to 6 hydrogens.
استون از مهم‌ترین مواد مورد استفاده در صنایع شیمیایی است.
  اکسیژن
  کربن
  هیدروژن

پیوند کربن-اکسیژن یک پیوند کووالانسی میان کربن و اکسیژن است که در شیمی آلی و زیست‌شیمی به فراوانی یافت می‌شود.[۷۱] اکسیژن ۶ الکترون در لایهٔ ظرفیت دارد که بیشتر، دوتای آن‌ها را در پیوند با کربن درگیر می‌کند و چهار الکترون دیگر به صورت الکترون‌های غیر پیوندی باقی می‌ماند. کربن و اکسیژن در گروه‌های عاملی پیوند دوگانه می‌سازند که در این صورت با نام ترکیب‌های کربونیل شناخته می‌شوند؛ کتون، استر، کربوکسیلیک اسید و بسیاری مواد دیگر همگی از این دست اند.[۷۱]

مهم‌ترین ترکیبات آلی حاوی اکسیژن عبارت‌اند از: (در این ترکیبات "R" یک گروه آلی است): الکلها (R-OH)، اترها (ROR)، کتون (R-CO-R)، آلدهیدها (R-CO-H)، کربوکسیلیک اسیدها (R-COOH)، استرها (R-COO-R)، انیدرید اسیدها (R-CO-O-CO-R)، و آمیدها (R-CO-NR۲).[۷۱] بسیاری از حلال‌های مهم آلی که حاوی اکسیژن هستند عبارت‌اند از: استون، متانول، اتانول، ایزوپروپانول، فوران، تتراهیدروفوران، دی‌اتیل اتر، دیوکسان، اتیل استات، دی‌متیل فرم‌آمید، دی‌متیل سولفوکسید و استیک اسید.[۷۲]

استون (CH۳-CO-CH۳) به‌عنوان یکی از حلال‌های مهم مورد استفاده در صنعت[۷۳] و فنول (C۶H۵OH) به‌عنوان یک پیش‌ماده مهم در سنتز بسیاری از مواد مختلف[۷۴] محسوب می‌شوند. سایر ترکیبات مهم آلی که حاوی اکسیژن هستند، عبارت‌اند از: گلیسیرین، فرمالدهید، گلوتار آلدئید، سیتریک اسید، استیک انیدرید و استامید.

اپوکسایدها اترهایی هستند که در آنها اتم اکسیژن بخشی از یک ترکیب حلقوی سه عضوی است. این ساختارها که بسیار سمی هستند[۷۵] دارای کاربردهای متنوعی هستند[۷۶] و در فرمول ترکیبات شیمیایی و طبیعی متعددی دیده می‌شوند.[۷۷][۷۸]

اکسیژن به صورت خود به خودی زیر دمای اتاق در یک فرایند به نام خوداکسایش با بسیاری از ترکیبات آلی واکنش نشان می‌دهد.[۳] بیشتر ترکیبات آلی که حاوی اکسیژن هستند با واکنش مستقیم اکسیژن ساخته نمی‌شوند. ترکیبات آلی مهم در صنعت و تجارت که با اکسایش مستقیم یک پیش ساز ساخته می‌شوند شامل اتیلن اکسید و پراستیک اسید است.[۳]

برخی از گروه‌های عاملی اکسیژن‌دار
گروه فرمول فرمول ساختاری پیشوند پسوند مثال
هیدروکسیل ROH
Hydroxy-group-bw.svg
هیدروکسی- -اُل Methanol
متانول
آلدهید RCHO Skeletal formula of an aldehyde group.svg فرمیل- -ال استالدهید
استالدهید
(اتانال)
کربونیل R'COR کتون اُکسو- -اُن بوتانون
بوتانون
(اتیل متیل کتون)
کربوکسیل RCOOH کربوکسیلیک اسید کربوکسی- -اوییک اسید استیک اسید
استیک اسید
(استیک اسید)
استر R'COOR استر آلکوکسی کربونیل- آلکیل آلکانوات اتیل بوتیرات
اتیل بوتیرات
(اتیل بوتیرات)
انیدرید اسید R'COOCOR Carboxylic anhydride انیدرید Butyric anhydride
بوتیریک انیدرید
پراکسید R'OOR Peroxy پراکسی- پراکسید Di-tert-butyl peroxide
دی-ترشری-بوتیل‌پراکسید
اتر R'OR
Ether
آلکوکسی- اتر Diethyl ether
دی‌اتیل اتر

نقش زیستی اکسیژن مولکولی[ویرایش]

فتوسنتز و تنفس[ویرایش]

تولید اکسیژن در چرخه کالوین و واکنش فتوسنتز
گیاه کربن دی‌اکسید و آب را از ریشه‌ها گرفته و با استفاده از نور خورشید آنها را به قند و اکسیژن تبدیل می‌کند.

در طبیعت، اکسیژن آزاد، به‌وسیله تفکیک نوری در طول فرایند فتوسنتز تشکیل می‌شود. مطابق برخی تخمین‌ها، جلبک سبز و سیانوباکتریهای موجود در محیط‌های آبی، عامل تولید بیش از ۷۰ درصد از اکسیژن تولید شده بر روی زمین هستند و ۳۰ درصد دیگر توسط گیاهان روی سطح زمین تولید می‌شود.[۷۹] اگرچه برخی تخمین‌های دیگر از مشارکت بالاتر اقیانوس‌ها در تولید اکسیژن موجود در اتمسفر حکایت دارند، بعضی دیگر مقادیر کمتری پیشنهاد می‌دهند به‌صورتی که پیشنهاد می‌کنند، ۴۵ درصد اکسیژن اتمسفری در هر سال توسط اقیانوس‌ها تأمین می‌شود.[۸۰]

واکنش کلی و ساده شده برای فتوسنتز به‌صورت زیر است:[۸۱]

۶CO۲ + ۶H۲O + فوتون‌ها → C۶H۱۲O۶ + ۶O۲

که می‌توان واکنش را به زبان نوشتاری نوشت:

گلوکز + دی‌اکسیژن → کربن دی‌اکسید + آب + نور خورشید

تکامل اکسیژن نورکافتی در غشای تیلاکوئید موجودات فتوسنتزی رخ می‌دهد و به انرژی چهار فوتون نیاز دارد.[توضیح ۸] مراحل زیادی انجام می‌شود، اما نتیجه آن تشکیل یک گرادیان پروتون در سراسر غشای تیلاکوئید است که برای سنتز آدنوزین تری‌فسفات (ATP) از طریق فسفردار شدن نوری[u] استفاده می‌شود.[۸۲] O۲ باقیمانده پس از تولید مولکول آب، در جو آزاد می‌شود.[توضیح ۹]

انرژی شیمیایی اکسیژن در میتوکندری آزاد می‌شود تا در طول فسفرگیری اکسایشی آدنوزین تری‌فسفات تولید شود.[۸۳] واکنش تنفس هوازی در واقع معکوس فتوسنتز است و به شرح زیر ساده می‌شود:

C۶H۱۲O۶ + ۶O۲ → ۶CO۲+ ۶H۲O+ 2880 kJ/mol

در مهره‌داران، O۲ از طریق غشاهای موجود در ریه‌ها و گلبول‌های قرمز خون واپخش می‌شود. هموگلوبین به O۲ متصل می‌شود و رنگ خون را از قرمز مایل به آبی به قرمز روشن تغییر می‌دهد.[۳۵] همچنین CO۲ از طریق اثر بور از قسمت دیگری از هموگلوبین آزاد می‌شود. حیوانات دیگر از هموسیانین (صدف و برخی از بندپایان) یا هومیرترینین[v] (عنکبوت و شاه‌میگو) استفاده می‌کنند.[۵] یک لیتر خون می‌تواند ۲۰۰ cm۳ O۲ را در خود حل کند.[۵] تا زمان کشف اندامگان بی‌هوازی، تصور می‌شد اکسیژن نیاز اولیه برای تمام زندگی موجودات پیچیده‌است.[۸۴]

گونه‌های فعال اکسیژن مانند سوپرکسید (-O۲) و هیدروژن پراکسید (H۲O۲) محصولات جانبی واکنش‌پذیری هستند که براثر مصرف اکسیژن توسط جانداران تولید می‌شود.[۵] بخش‌هایی از سیستم ایمنی موجودات پیچیده برای تخریب میکروب‌های مهاجم، پراکسید، سوپراکسید، و اکسیژن یک‌تایی تولید می‌کنند. گونه‌های اکسیژن فعال نقش مهمی در فرایندی موسوم به پاسخ فوق‌حساس[w] در گیاهان در زمان حمله عوامل بیماری‌زا دارند.[۸۲][توضیح ۱۰]

اکسیژن که در ابتدای دوران شکل‌گیری حیات بر روی زمین با مقدار بسیار زیادتری در مقایسه با شرایط فعلی وجود داشته‌است، موجب آسیب به موجودات بی‌هوازی اجباری می‌شود. در حدود ۲٫۵ میلیارد سال قبل و طی رخدادی به‌نام رویداد بزرگ اکسیژنی میزان اکسیژن موجود روی زمین شروع به افزایش کرد و این اتفاق در حدود یک میلیارد سال پس از نمایان شدن اولین موجودات زنده بر روی زمین رخ داد.[۸۵][۸۶] یک انسان بالغ، با سرعت ۱٫۸ تا ۲٫۴ گرم اکسیژن در دقیقه تنفس می‌کند.[۸۷] با این احتساب، در هر سال بیش از ۶ میلیارد تن اکسیژن توسط مجموع انسان‌ها مصرف می‌شود.

فشار نسبی اکسیژن در بدن انسان (PO۲)
واحد فشار گاز ریوی گاز خون شریانی گاز خون سیاهرگ منبع
kPa ۱۴٫۲ ۱۱–۱۳ ۴٫۰–۵٫۳ [۸۸]
mmHg ۱۰۷ ۷۵-۱۰۰ ۳۰ -۴۰ [۸۹][۹۰]

فشار نسبی اکسیژن آزاد در بدن موجود مهره‌دار در دستگاه تنفسی دارای بالاترین میزان خود است و در سایر بخش‌ها مانند سرخرگ‌ها، بافت‌های محیطی و سیاهرگ‌ها کاهش می‌یابد. منظور از فشار نسبی، فشاری است که اکسیژن خالص در زمان اشغال حجم مشخصی، از خود نشان می‌دهد.[۹۱]

تشکیل در جو[ویرایش]

نمودار افزایش میزان اکسیژن موجود در روی زمین از فشار صفر اکسیژن تا فشار ۰٬۲
اکسیژن (O۲) تولید شده در اتمسفر زمین:
۱) هیچ اکسیژنی تولید نمی‌شود. ۲) اکسیژن تولید می‌شود، اما در اقیانوس‌ها و سنگ‌ها ذخیره می‌شود. ۳) شروع فرایند خروج اکسیژن از اقیانوس‌ها، اما توسط سنگ‌ها جذب می‌شود و تشکیل لایه ازون. ۵–۴) اتمسفر زمین شروع به انباشته شدن با اکسیژن می‌کند.

اکسیژن آزاد و به شکل گازی در حدود ۳٫۵ میلیارد سال قبل و پیش از این‌که آغازیان و باکتری‌ها فرگشت پیدا کنند، در اتمسفر زمین وجود نداشته‌است. اولین نشانه‌های تولید مقادیر قابل ملاحظه‌ای از اکسیژن آزاد به دوره پیشین‌زیستی دیرینه (بین ۳ تا ۲٫۳ میلیارد سال قبل) بازمی‌گردد.[۹۲] فرایند خروج اکسیژن آزاد از اقیانوس‌ها به ۳ تا ۲٫۷ میلیارد سال قبل بازمی‌گردد که این فرایند موجب شد تا ۱٫۷ میلیارد سال قبل، سطح اکسیژن اتمسفر به ۱۰ درصد افزایش یابد.[۹۲][۹۳]

مقدار زیاد اکسیژن حل شده در آب و اکسیژن آزاد موجود در اتمسفر، ممکن است عامل اصلی انقراض اندامگان بی‌هوازی در طول رویداد بزرگ اکسیژنی در حدود ۲٫۴ میلیارد سال قبل باشد. تنفس سلولی با استفاده از اکسیژن مولکولی، جانداران هوازی را قادر ساخت تا بتوانند آدنوزین تری‌فسفات بیش‌تری در مقایسه با جانداران بی‌هوازی تولید کنند.[۹۴] تنفس سلولی اکسیژن در تمامی موجودات یوکاریوتی از جمله موجودات پرسلولی پیچیده مانند گیاهان و جانوران انجام می‌شود.

از آغاز دوران کامبرین در حدود ۵۴۰ میلیون سال قبل، سطح اکسیژن موجود در اتمسفر دارای نوسان بوده‌است به‌طوری که بین مقادیر ۱۵ تا ۳۰ درصد حجمی در حال تغییر بوده‌است.[۹۵] با نزدیک شدن به پایان دوران کربنیفر، سطح اکسیژن اتمسفر به ۳۵ درصد رسید[۹۵] که این موضوع احتمالاً عاملی بوده‌است که منجر به افزایش اندازه حشرات و دوزیست‌های آن دوره شده‌است.[۹۶] تغییرات در میزان اکسیژن در اتمسفر، بر روی آب و هوای گذشته نیز تأثیر داشته‌است. زمانی که سطح اکسیژن کاهش می‌یابد، چگالی اتمسفر افت می‌کند و درنتیجه تبخیر سطحی افزایش و در نتیجه بارندگی افزایش و دمای هوا افزایش می‌یابد.[۹۷]

با سرعت فتوسنتز در شرایط فعلی، حدود دوهزار سال طول می‌کشد تا به‌اندازه تمام اکسیژن فعلی موجود در اتمسفر، اکسیژن تولید شود.[۹۸]

تولید صنعتی[ویرایش]

ولتامتر هافمن برای الکترولیز آب توسط فون هافمن اختراع شد.

سالانه صد میلیون تن اکسیژن از هوا با استفاده از دو روش اصلی برای مصارف صنعتی استخراج می‌شود.[۵] متداول‌ترین آن، شامل تقسیم هوای مایع با روش تقطیر جزء به جزء به اجزای مختلف آن است که طی آن نیتروژن به‌صورت بخار از نمونه خارج می‌شود و اکسیژن به‌شکل مایع باقی می‌ماند.

روش اصلی دیگر برای به‌دست آوردن اکسیژن، عبور جریانی از هوای تمیز و خشک از طریق بستر غربال‌های مولکولی زئولیت است که نیتروژن را جذب می‌کند و اجازه می‌دهد جریانی از گاز شامل ۹۰ تا ۹۳ درصد اکسیژن از آن عبور کند.[۵] به‌طور همزمان، با کاهش فشار محفظه و وارد کردن بخشی از اکسیژن جدا شده در بستر تولیدکننده در خلاف جهت بستر دیگر زئولیت اشباع شده با نیتروژن این گاز را آزاد می‌کند. پس از هر چرخه کامل، بسترها جابه‌جا می‌شوند، بنابراین امکان تأمین مداوم اکسیژن گازی از طریق خط لوله فراهم می‌شود.. این امر به عنوان جذب نوسان فشار[x] شناخته شده‌است و برای تولید اکسیژن در مقیاس کوچک استفاده می‌شود. گاز اکسیژن به‌طور فزاینده ای توسط این فناوری‌های غیر کریوژن حاصل می‌شود.[۹۹]

کپسول‌های اکسیژن برای مصارف پزشکی

همچنین گاز اکسیژن از طریق الکترولیز آب به اکسیژن مولکولی و هیدروژن تولید می‌شود، برای این کار باید جریان مستقیم (DC) استفاده شود. در صورت استفاده از جریان متناوب (AC)، گازهای موجود در هر شاخه شامل هیدروژن و اکسیژن به نسبت ۲ به ۱ انفجاری تشکیل می‌شوند. یک روش مشابه تکامل الکتروکاتالیستی اکسیژن از اکسیدها به اکسی‌اسیدها است. از کاتالیزورهای شیمیایی نیز می‌توان استفاده کرد، مانند ژنراتورهای شیمیایی اکسیژن یا شمع‌های اکسیژن که به عنوان بخشی از تجهیزات پشتیبانی از زندگی در زیر دریایی‌ها مورد استفاده قرار می‌گیرند و در صورت بروز مواقع اضطراری کاهش فشار، بخشی از تجهیزات استاندارد در هواپیماهای تجاری هستند. یکی دیگر از فناوری جداسازی هوا، وارد کردن نیرو برای انحلال هوا از طریق غشاهای سرامیکی مبتنی بر دی‌اکسید زیرکونیوم است که با فشار زیاد یا با جریان الکتریکی صورت می‌گیرد تا اکسیژن خالص تولید گردد، برای تولید گازهای خنثی اکسیژن خالص است.[۵]

ذخیره‌سازی[ویرایش]

روش‌های ذخیره‌سازی اکسیژن شامل کپسول اکسیژن با فشار بالا، فوق سردسازی و ترکیبات شیمیایی است. به دلایل اقتصادی اکسیژن اغلب به شکل عمده به صورت مایع در تانکرهای عایق مخصوص حمل می‌شود، زیرا یک لیتر اکسیژن مایع معادل ۸۴۰ لیتر اکسیژن گازی در فشار اتمسفر و ۲۰ درجه سلسیوس (۶۸ درجه فارنهایت) است.[۵] چنین تانکرهایی برای پر کردن مجدد مخازن انبوه اکسیژن مایع، که در خارج از بیمارستان‌ها و سایر موسساتی که نیاز به حجم زیادی از گاز اکسیژن خالص دارند، استفاده می‌شود. اکسیژن مایع از طریق مبدل‌های گرمایی منتقل می‌شود، که مایع فوق سرد را قبل از ورود به ساختمان به گاز تبدیل می‌کنند. اکسیژن نیز در سیلندرهای کوچکتر که حاوی گاز فشرده‌است ذخیره می‌شود و حمل می‌شود. شکلی که در کاربردهای پزشکی قابل حمل و برش‌کاری اکسیژنی مفید است.[۵]

کاربردها[ویرایش]

موشک‌های سوخت مایع معمولاً از هیدروژن به عنوان سوخت و از اکسیژن مایع به عنوان اکسیدکننده استفاده می‌شد.

۵۵ درصد از تولید اکسیژن جهان در تولید فولاد مصرف می‌شود. ۲۵٪ دیگر آن به صنایع شیمیایی اختصاص یافته‌است. ۲۰٪ باقیمانده، بیشتر برای کاربردهای دارویی، برش به وسیله شعله، به عنوان اکسیدکننده موجود در سوخت موشک و تصفیه آب استفاده می‌شود.[۵]

پزشکی[ویرایش]

از محفظه کم فشار برای درمان اختلالات مرتبط با غواصی و سایر شرایط پزشکی با اکسیژن درمانی پرفشار (HBOT) استفاده می‌شود.

جذب اکسیژن از هوا هدف اساسی تنفس است، بنابراین از مکمل‌های اکسیژن در پزشکی استفاده می‌شود. این روش درمانی نه تنها سطح اکسیژن خون را افزایش می‌دهد، بلکه اثر جانبی مقاومت در برابر جریان خون در بسیاری از انواع ریه‌های بیمار را کاهش می‌دهد و باعث می‌شود که پمپاژ قلب راحت تر شود. از اکسیژن‌درمانی برای درمان آمفیزم، سینه‌پهلو، برخی از اختلالات قلبی (نارسایی قلب)، برخی از اختلالات ناشی از افزایش فشار سرخرگ ریوی و هر بیماری که بر توانایی بدن در مصرف و استفاده از اکسیژن تأثیر بگذارد استفاده می‌شود.[۳]

به دلیل انعطاف‌پذیری روش‌های درمانی وسایل قابل حمل در بیمارستان‌ها و همچنین خانه بیماران مورد استفاده قرار می‌گیرند. از چادرهای اکسیژن نیز به عنوان مکمل‌های اکسیژن مورد استفاده قرار می‌گرفتند اما امروزه ماسک‌های اکسیژن و کانولای بینی جایگزین آنها شده‌اند.[۱۰۰]

پزشکی پرفشار یک درمان پزشکی است که از اتاق‌های اکسیژن مخصوص برای افزایش فشار نسبی اکسیژن در اطراف بیمار و در صورت نیاز کادر پزشکی استفاده می‌شود. این درمان شامل اکسیژن درمانی با فشار بیش از حد (HBOT)، استفاده از اکسیژن در فشار بالاتر از فشار اتمسفر، و تسریع درمانی برای بیماری کاهش فشار با هدف کاهش اثرات مضر حباب‌های گاز با کاهش اندازه آن‌ها و فراهم کردن شرایط بهبودی بیمار است.[۱۰۱] مسمومیت با مونوکسید کربن، گانگرن گازی و بیماری ناشی از کاهش ناگهانی فشار با این روش درمان می‌شوند.[۱۰۲] افزایش غلظت اکسیژن در ریه‌ها به جابجایی کربن مونوکسید از گروه هموگلوبین کمک می‌کند.[۱۰۳][۱۰۴] گاز اکسیژن برای باکتری‌های بی هوازی گازی سمی است، بنابراین افزایش فشار جزئی آن باعث از بین رفتن آنها می‌شود.[۱۰۵][۱۰۶]

بیماری رفع فشار یا فشارکاهی (DCS) در غواصی رخ می‌دهد که موجب ورود حباب‌های گاز بی‌اثر، اکثر نیتروژن و هلیوم در خون می‌شود که افزایش فشار اکسیژن در اسرع وقت به حل مجدد حباب‌ها در خون کمک می‌کند تا این گازهای اضافی از طریق ریه‌ها خارج گردند.[۳][۱۰۷][۱۰۸]

تجویز اکسیژن نورموباریک[y] با بالاترین غلظت موجود اغلب به عنوان اولین کمک برای هرگونه صدمه غواصی که ممکن است باعث ایجاد حباب گاز بی‌اثر در بافت‌ها شود، استفاده می‌شود.[۱۰۹][۱۱۰][۱۱۱]

حامی زندگی و استفاده تفریحی[ویرایش]

افت فشار ناگهانی کابین، ژنراتورهای شیمیایی اکسیژن را در بالای هر صندلی فعال می‌کند و باعث رها شدن ماسک‌های اکسیژن می‌شود.

کاربرد قابل توجه اکسیژن به‌عنوان گاز تنفس کم فشار در لباس‌های فضانوردی مدرن وجود دارد که بدن سرنشینان را با گاز تنفسی احاطه می‌کند. این دستگاه‌ها تقریباً از یک اکسیژن خالص با فشار تقریبی یک سوم فشار معمولی استفاده می‌کنند که منجر به فشار جزئی طبیعی اکسیژن خون می‌شود. این تبادل اکسیژن با غلظت بالا در فشار کم برای حفظ انعطاف‌پذیری لباس‌های فضایی لازم است.[۱۱۲][۱۱۳]

غواصان و خدمه زیردریایی‌ها نیز از اکسیژن مصنوعی متناسب با فشار استفاده می‌کنند، اما بیشتر آنها از فشار طبیعی یا مخلوطی از اکسیژن و هوا استفاده می‌کنند. استفاده از اکسیژن خالص یا تقریباً خالص در غواصی در فشارهای بالاتر از سطح دریا عموماً محدود به زمان استراحت، رفع فشار و معالجه اضطراری در عمق نسبتاً کم (عمق ۶ متر یا کمتر) در فشارهای حداکثر ۲٫۸ بار می‌باشد، جایی که می‌توان مسمومیت حاد اکسیژن را بدون خطر غرق شدن کنترل کرد. غواصی عمیق‌تر نیاز به مخلوط شدن مقدار قابل توجهی از اکسیژن با سایر گازها، از جمله نیتروژن یا هلیوم دارد تا از اثر مسمومیت با اکسیژن جلوگیری شود.[۱۱۴][۱۱۵]

ارتفاع‌زدگی تأثیر منفی ارتفاع زیاد به دلیل رقیق شدن سریع اکسیژن روی انسان است. علائم این بیماری شامل سردرد، استفراغ، خستگی، مشکل در خواب و سرگیجه است. بیماری حاد کوه می‌تواند به ادم ریه در ارتفاعات بالا (HAPE) همراه با تنگی نفس و ادم مغزی همراه باشد. با کاهش ارتفاع و مصرف مایعات کافی بیماری رو به بهبودی می‌رود و مصرف ایبوپروفن، استازولامید یا دگزامتازون برای موارد خفیف‌تر توصیه شده‌است و در موارد شدید نیاز به اکسیژن‌درمانی دارد.[۱۱۶][۱۱۷] این بیماری در ارتفاع‌های بالاتر از ۲۵۰۰ متر و افزایش سریع ارتفاع رخ می‌دهد.[۱۱۸]

با افزایش ارتفاع هوا رقیق‌تر می‌شود و در ارتفاعات بیش از ۵٫۵۰۰ متر هوای موجود نسبت به هوای سطح دریا ۵۰ درصد رقیق‌تر شده‌است. تولید گلبول‌های قرمز پس از چند هفته زندگی در ارتفاعات افزایش می‌یابد و در نتیجه موجب افزایش غلظت هموگلوبین برای انتقال اکسیژن به بدن می‌شود همه این مکانیسم‌ها علی‌رغم سطح اکسیژن پایین، بدن را قادر می‌سازد تا اکسیژن کافی به هر سلول برسد. در سطح دریا خون ما ۹۸–۹۹٪ اشباع شده از اکسیژن است و در ارتفاع ۳۰۰۰ متری این مقدار به ۸۹–۹۰٪ کاهش می یابد و در قله اورست به ۴۰٪ می‌رسد.[۱۱۹] کوهنوردان و هواپیماهای بدون فشار گاهی اوقات دارای مکمل اکسیژن هستند. هواپیماهای تجاری تحت فشار دارای اکسیژن اورژانسی هستند و در صورت کمبود فشار کابین به‌طور خودکار در اختیار مسافران قرار می‌گیرد. افت فشار ناگهانی کابین، ژنراتورهای شیمیایی اکسیژن را در بالای هر صندلی فعال می‌کند و باعث رها شدن ماسک‌های اکسیژن می‌شود. برای شروع جریان اکسیژن، ابتدا باید آنها را به سمت خود بکشید، این کار باعث آن می‌شود که پین ایمنی سیلندر تولید اکسیژن که توسط یک نخ به ماسک‌ها وصل شده‌است جدا شود که باعث می‌شود واکنش شیمیایی مورد نیاز برای تولید اکسیژن انجام شود، درون سیلندر سدیم کلرات و پودر آهن وجود دارد[۵] که از واکنش گرمازای آنها یک جریان پایدار از گاز اکسیژن تولید می‌شود.

اکسیژن به‌عنوان یک سرخوشی ملایم، سابقه استفاده تفریحی در بارهای اکسیژن و ورزش را دارد. بارهای اکسیژن مؤسساتی هستند که از اواخر دهه ۱۹۹۰ در ژاپن، کالیفرنیا و لاس وگاس ظاهر شدند که افراد، در معرض غلظتی بالاتر از حد طبیعی اکسیژن با هزینه مشخص قرار می‌گرفتند.[۱۲۰]

در جنگ جهانی اول، خلبانان همواره مجبور به پرواز در ارتفاعات بالاتر می‌شدند. از این رو، همیشه با مشکل کمبود اکسیژن هوا دست و پنجه نرم می‌کردند. از همین رو ماسک اکسیژن همراه کلاه محافظ به یکی از ملزومات خلبانان نظامی تبدیل شد. ورزشکاران حرفه ای، به ویژه در فوتبال آمریکایی، گاهی اوقات بین بازیها و در زمان استراحت از ماسک‌های اکسیژن برای تقویت عملکردشان استفاده می‌کنند. اثر دارویی استفاده از ماسک‌های اکسیژن در این روش مشکوک است و احتمالاً تنها اثری دارونما دارد. مطالعات موجود افزایش عملکرد ناشی تنفس هوای غنی شده با اکسیژن را فقط در صورت تنفس حین ورزش هوازی پشتیبانی می‌کند.[۱۲۱]

در کوه‌های مرتفع فشار جو کمتر است و این بدان معنی است که اکسیژن کمتری برای تنفس در دسترس است.[۱۲۲][۱۲۳] و دلیل اصلی بیماری در ارتفاع است. همه کوهنوردان باید با این شرایط سازگار شوند، حتی کوهنوردان حرفه‌ای که قبلاً در ارتفاعات بوده‌اند.[۱۲۴] به‌طور کلی، کوهنوردان با رسیدن به ارتفاع ۷۰۰۰ متر برای ادامه از کپسول اکسیژن استفاده می‌کنند. کوهنوردی و صعود در شرایط ویژه تقریباً همیشه با یک برنامه‌ریزی دقیق و سازگاری کوهنوردان با شرایط از قله‌های ۸۰۰۰ متری صورت گرفته‌است.[۱۱۹]


ذوب سنگ آهن برای تولید فولاد ۵۵٪ از اکسیژن تولید شده تجاری را در دنیا مصرف می‌کند.

صنعتی[ویرایش]

ذوب سنگ آهن برای تولید فولاد، ۵۵٪ از اکسیژن تولید شده تجاری را در دنیا مصرف می‌کند.[۵] در این فرایند، اکسیژن با کمک فشار زیاد به آهن مذاب تزریق می‌شود که موجب می‌شود ناخالصی‌های گوگرد و کربن اضافی را به‌صورت گوگرد دی‌اکسید و کربن دی‌اکسید خارج می‌کند. این واکنش‌ها گرماده هستند، بنابراین درجه حرارت آن به ۱۷۰۰ درجه سانتی‌گراد افزایش می‌یابد.

۲۵ درصد دیگر از اکسیژن تولید شده تجاری، توسط صنایع شیمیایی استفاده می‌شود.[۵] از واکنش اتیلن با اکسیژن برای ایجاد اتیلن اکساید استفاده می‌شود، که آن نیز به نوبه خود، به اتیلن گلیکول تبدیل می‌شود که مواد اولیه مورد استفاده برای تولید انبوهی از محصولات، از جمله پلیمرهای ضدیخ و پلی استر (پیش‌سازهای بسیاری از پلاستیک‌ها و پارچه‌ها) می‌باشد.

بیشتر از ۲۰٪ باقیمانده اکسیژن تولید شده تجاری در کاربردهای پزشکی، برش و جوش فلز، به‌عنوان اکسید کننده در پیشران راکت و در تصفیه آب مورد استفاده قرار می‌گیرد.[۵] در برشکاری اکسیژنی شعله بسیار داغ حاصل سوختن استیلن به همراه اکسیژن است. در این فرایند، فلزی تا ضخامت ۶۰ سانتی‌متر ابتدا با یک شعله کوچک اکسی‌استیلن گرم می‌شود و سپس به سرعت توسط یک جریان بزرگ از اکسیژن بریده می‌شود.[۵]

ایمنی و احتیاط[ویرایش]

براساس استاندارد لوزی آتش، گاز اکسیژن فشرده از نظر سلامتی مضر نیست، غیرقابل اشتعال و غیر واکنش پذیر است، اما یک اکسید کننده است. اکسیژن مایع سردشده[z] دارای درجه خطر سلامتی ۳ (به‌علت افزایش خطر هیپوکسی ناشی از بخارات متراکم شده و همچنین برای خطرات متداول در مایعات فوق سرد مانند سرمازدگی) است و رتبه سایر خطرات آن نیز مانند اکسیژن گازی فشرده شده‌است.[۱۲۵]

مسمومیت با اکسیژن زمانی رخ می‌دهد که ریه‌ها در معرض فشار نسبی اکسیژن بیش از حد طبیعی قرار گیرند، که معمولاً در غواصی رخ می‌دهد.

مسمومیت[ویرایش]

A diagraph showing a man torso and listing symptoms of oxygen toxicity: Eyes – visual field loss, near)sightedness, cataract formation, bleeding, fibrosis; Head – seizures; Muscles – twitching; Respiratory system – jerky breathing, irritation, coughing, pain, shortness of breath, tracheobronchitis, acute respiratory distress syndrome.
علائم اصلی مسمومیت با اکسیژن[۱۲۶]

اکسیژن گازی در فشارهای نسبی می‌تواند سمی باشد و منجر به تشنج و سایر مشکلات سلامتی شود.[۱۱۴][۳] مسمومیت با اکسیژن معمولاً در فشارهای جزئی بیش از ۵۰ کیلو پاسکال یا ۲٫۵ برابر فشار جزئی اکسیژن در سطح دریا (۲۱ کیلو پاسکال؛ برابر با حدود ۵۰٪ از ترکیب اکسیژن در فشار عادی) رخ می‌دهد که می‌تواند برای بیمارانی که از دستگاه تنفس مصنوعی استفاده می‌کنند مشکل ایجاد کند. در ماسک اکسیژن معمولاً فقط شامل ۳۰٪ تا ۵۰٪ حجمشان را اکسیژن تشکیل می‌دهد که حدود ۳۰ کیلوپاسکال در فشار عادی یا استاندارد است.[۵]

زمانی، نوزادان نارس در انکوباتورهای حاوی هوای سرشار و مملو از اکسیژن قرار می‌گرفتند، اما این عمل بعد از اینکه برخی از نوزادان با توجه به میزان اکسیژن زیاد، نابینا شدند، متوقف شد.[۵]

تنفس اکسیژن خالص در برنامه‌های کاربردهای فضایی، از جمله در بعضی از لباس‌های مدرن هوافضا یا در فضاپیماهای پیشگام مانند آپولو، به دلیل فشارهای کم در کل استفاده شده باعث ایجاد خسارت نمی‌شود.[۱۱۲][۱۲۷] در لباس‌ها فضایی، فشار نسبی اکسیژن در گازهای تنفسی عموماً بالاتر از ۳۰ کیلو پاسکال (۱٫۴ برابر نرمال) است و فشار جزئی حاصل از آن در خون شریانی فضانورد فقط در سطح دریا از حد طبیعی بالاتر است.[۱۲۸]

مسمویت با اکسیژن در ریه‌ها و دستگاه عصبی مرکزی نیز می‌تواند در غواصی اسکوبا و غواصی‌های حرفه ای رخ دهد.[۵][۱۱۴] تنفس طولانی مدت یک مخلوط هوا با فشار جزئی اکسیژن بیشتر از ۶۰ کیلو پاسکال می‌تواند منجر به فیبروز دائمی ریوی شود.[۱۲۹] قرار گرفتن در معرض فشارهای جزئی بیشتر از ۱۶۰ کیلو پاسکال (اتمسفر ۱٫۶ ~) می‌تواند باعث تشنج شود و معمولاً برای غواصان کشنده است. مسمومیت حاد اکسیژن (ایجاد تشنج، ترسناکترین اثر آن برای غواصان) با تنفس مخلوط هوای دارای ۲۱ درصد اکسیژن، می‌تواند در عمق ۶۶ متری یا بیشتر رخ دهد. این نوع مسمویت می‌تواند با تنفس هوایی که به‌طور ۱۰۰ درصد از اکسیژن تشکیل شده‌است، تنها در عمق شش متری رخ بدهد.[۱۳۰][۱۳۱][۱۳۲]

آتش‌سوزی و سایر خطرات[ویرایش]

فضای داخلی ماژول فرماندهی آپولو ۱، اشتعال‌زایی مواد داخل سفینه و تحت فشار بیش‌تر از حالت طبیعی اکسیژن خالص علت آتش‌سوزی بود که باعث تغییرات اساسی در طراحی کپسول فضاپیما توسط ناسا شد.

منابع بسیار غلیظ اکسیژن موجب آتش‌سوزی سریع می‌شوند. خطر آتش‌سوزی و انفجار هنگامی وجود دارد که اکسید کننده‌ها و سوخت‌های غلیظ در نزدیکی یکدیگر قرار بگیرند. در هر صورت، برای شروع آتش‌سوزی یک اتفاق، مانند گرما یا جرقه، مورد نیاز است.[۲۹] اکسیژن یک سوخت نیست و اکسیدکننده محسوب می‌شود اما با این وجود، منبع اکثر انرژی شیمیایی آزاد شده در آتش‌سوزی است.[۱۳۳] ترکیبات حاوی اکسیژن و دارای پتانسیل اکسیدکنندگی زیاد مانند پراکسیدها، کلرات‌ها، نیترات‌ها، پرکلرات‌ها و دی‌کرومات‌ها به‌عنوان ترکیبات دارای خطر ایجاد آتش‌سوزی در نظر گرفته می‌شود، زیرا این ترکیبات می‌توانند منبعی مناسب برای تأمین اکسیژن مورد نیاز برای آتش باشند.

اکسیژن با غلظت و تراکم بالا اجازه می‌دهد تا احتراق به سرعت و پرانرژی انجام شود. لوله‌های فولادی و مخازن ذخیره‌سازی مورد استفاده برای ذخیره و انتقال اکسیژن گازی و مایع به‌عنوان یک سوخت رفتار می‌کنند؛ بنابراین، طراحی و ساخت سیستم‌های اکسیژن نیاز به توجه و آموزش ویژه دارد تا از حداقل احتراق منابع قابل اشتعال اطمینان حاصل شود. آتش‌سوزی که باعث کشته شدن خدمه آپولو ۱ در آزمایش سکوی پرتاب شد، خیلی سریع گسترش یافت، زیرا کپسول حاوی اکسیژن تحت فشاری در حدود ۱ اتمسفر بود، در حالی باید فشار آن حدود ۱۳ فشار محیط باشد، فشاری که در چنین ماموریت‌هایی استفاده می‌شود.[۱۳۴]

اگر اکسیژن مایع نشت شده در تماس با مواد آلی مانند چوب، فراورده‌های پتروشیمی و آسفالت قرار بگیرد، می‌تواند با بروز اولین تنش مکانیکی موجب انفجار ناگهانی این مواد شود.[۱۳۵] همچنین اکسیژن مانند سایر مایعات فوق سرد، در صورت تماس با بدن انسان، می‌تواند باعث سرمازدگی در پوست و چشم شود.

توضیحات[ویرایش]

  1. در آن زمان باور عمومی بر وجود فرضیه‌ای بود که براساس آن همهٔ مواد قابل سوختن، از جزئی به نام فلوژیستون (ماده‌ای معدنی، بی‌رنگ، بی‌بو) تشکیل شده بودند که با سوختن آن ماده، فلوژیستون از ماده جدا شده و به شکل یک مادهٔ ساده‌تر کاهش می‌یافت. به‌همین علت، باور پریستلی براین بود که چون اکسیژن خود نمی‌سوزد و تنها عامل سوختن ترکیبات دیگر است، پس هوایی عاری از فلوژیستون است.
  2. کالکس (Calx) عبارتی لاتین به معنای گچ و سنگ آهک است که خود برگرفته از کلمه یونانی khaliks به معنای سنگ است
  3. نتایج تا سال ۱۸۶۰ نادیده گرفته شدند. بخشی از این عدم توجه و رد شدن به این خاطر این باور بود که تصور می‌شد اتم‌های یک عنصر فاقد میل ترکیبی در مقابل اتم‌های دیگری از همان عنصر هستند و بخشی دیگر به این علت بود که استثنایی در قانون آووگادرو وجود داشت که امکان توضیح آن تا سال‌ها بعد و با کمک مولکول‌های تفکیک شونده، وجود نداشت.
  4. این عبارت اصطلاحی کوانتومی است و نشان می‌دهد که اسپین‌های این دو الکترون جفت‌نشده، در مجموع به چند حالت می‌توانند وجود داشته باشند: بالا-بالا، پائین-پائین، بالا، پائین.
  5. برخلاف این پدیده، رنگ آبی آسمان که ناشی از پراکندگی رایلی است.
  6. جرم کل: ۱۰۱۵ تن، این مقدار و اعداد ذکر شده در متن، برای اتمسفر تا ارتفاع ۸۰ کیلومتری از سطح دریا است
  7. همچنین، چون اکسیژن دارای الکترونگاتیوی بالاتری در مقایسه با هیدروژن است، تفاوت بار میان هیدروژن و اکسیژن موجب می‌شود، که یک مولکول آب به یک مولکول قطبی تبدیل شود. برهم‌کنش میان دو ممان دوقطبی متفاوت از هر مولکول موجب ایجاد یک نیروی خالص جاذبه می‌شود.
  8. غشاهای تیلاکوئید بخشی از کلروپلاست‌ها در جلبک‌ها و گیاهان است. در حالی که آنها یکی از ساختارهای غشایی در سیانوباکتری‌ها هستند. یاخته‌های ریزکیسه اجزای متصل به غشاء محفظه در محل واکنش نوری فتوسنتز بوده که مسئول گرفتن و ذخیره‌سازی انرژی از نور خورشید می‌باشند.
  9. اکسایش آب توسط یک مجتمع آنزیمی حاوی منگنز معروف به مجتمع تکامل اکسیژن (OEC) یا مجتمع تقسیم آب که با قسمت لومن غشاهای تیلاکوئید مرتبط است کاتالیز می‌شود. منگنز یک کوفاکتور مهم است، و کلسیم و کلرید نیز برای انجام واکنش لازم هستند.
  10. پاسخ فوق‌حساس سازوکاری در گیاهان است که طی آن با استفاده از گونه‌های فعال اکسیژن، موجب جلوگیری از انتشار عفونت در گیاه می‌شود.

واژه‌نامه[ویرایش]

  1. Spiritus nitroaereus
  2. Tractatus duo
  3. De respiratione
  4. Ole Borch
  5. Pierre Bayen
  6. cibus vitae
  7. Bugaj
  8. Fire air
  9. Treatise on Air and Fire
  10. Dephlogisticated air
  11. An Account of Further Discoveries in Air
  12. Sur la combustion en général
  13. Vital air
  14. Azote
  15. Lifeless
  16. Oxys
  17. -Genēs
  18. The Botanic Garden
  19. Transition metal dioxygen complex
  20. Dioxygenyl hexafluoroplatinate
  21. Photophosphorylation
  22. Hemerythrin
  23. Hypersensitive response
  24. Pressure swing adsorption
  25. Normobaric
  26. Refrigerated liquid oxygen

جستارهای وابسته[ویرایش]

منابع[ویرایش]

  1. Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E110. ISBN 0-8493-0464-4.
  2. Jastrow, Joseph (1936). Story of Human Error. Ayer Publishing. p. 171. ISBN 978-0-8369-0568-7.
  3. ۳٫۰۰ ۳٫۰۱ ۳٫۰۲ ۳٫۰۳ ۳٫۰۴ ۳٫۰۵ ۳٫۰۶ ۳٫۰۷ ۳٫۰۸ ۳٫۰۹ ۳٫۱۰ ۳٫۱۱ ۳٫۱۲ ۳٫۱۳ ۳٫۱۴ ۳٫۱۵ ۳٫۱۶ Gerhard A. Cook; Carol M. Lauer (1968). "John Mayow". The Encyclopedia of the Chemical Elements. New York, Reinhold Book Corp. p. 499–512. ISBN 978-0-278-91643-2. Retrieved August 16, 2020.
  4. ۴٫۰ ۴٫۱ World of Chemistry contributors (2005). "John Mayow". World of Chemistry. Thomson Gale. ISBN 978-0-669-32727-4. Archived from the original on 17 April 2020. Retrieved December 16, 2007.
  5. ۵٫۰۰ ۵٫۰۱ ۵٫۰۲ ۵٫۰۳ ۵٫۰۴ ۵٫۰۵ ۵٫۰۶ ۵٫۰۷ ۵٫۰۸ ۵٫۰۹ ۵٫۱۰ ۵٫۱۱ ۵٫۱۲ ۵٫۱۳ ۵٫۱۴ ۵٫۱۵ ۵٫۱۶ ۵٫۱۷ ۵٫۱۸ ۵٫۱۹ ۵٫۲۰ ۵٫۲۱ ۵٫۲۲ ۵٫۲۳ ۵٫۲۴ ۵٫۲۵ ۵٫۲۶ ۵٫۲۷ Emsley, John (2001). "Oxygen". Nature's Building Blocks: An A-Z Guide to the Elements. Oxford, England: Oxford University Press. pp. 297–304. ISBN 978-0-19-850340-8. Archived from the original on 20 June 2020. Retrieved 19 June 2020.
  6. Best, Nicholas W. (2015). "Lavoisier's 'Reflections on Phlogiston' I: Against Phlogiston Theory". Foundations of Chemistry. 17 (2): 137–151. doi:10.1007/s10698-015-9220-5.
  7. Morris, Richard (2003). The last sorcerers: The path from alchemy to the periodic table. Washington, D.C.: Joseph Henry Press. ISBN 978-0-309-08905-0. Archived from the original on 11 June 2020. Retrieved 22 May 2020.
  8. ۸٫۰ ۸٫۱ Marples, Frater James A. "Michael Sendivogius, Rosicrucian, and Father Of Studies of Oxygen" (PDF). Societas Rosicruciana in Civitatibus Foederatis, Nebraska College. pp. 3–4. Archived (PDF) from the original on 8 May 2020. Retrieved 2018-05-25.
  9. ۹٫۰ ۹٫۱ Bugaj, Roman (1971). "Michał Sędziwój – Traktat o Kamieniu Filozoficznym". Biblioteka Problemów (به لهستانی). 164: 83–84. ISSN 0137-5032. Archived from the original on 18 اكتبر 2020. Retrieved 22 مه 2020. Check date values in: |archive-date= (help)
  10. "Oxygen". RSC.org. Archived from the original on 28 January 2017. Retrieved 2016-12-12.
  11. Priestley, Joseph (1775). "An Account of Further Discoveries in Air". Philosophical Transactions. 65: 384–94. doi:10.1098/rstl.1775.0039.
  12. Antoine Laurent Lavoisier (1799). "Elements of chemistry: in a new systematic order, containing all the modern discoveries : illustrated by fourteen copperplates, 4th ed". Scotland: William Creech. Edinburgh. pp. 85–86. Archived from the original on 6 August 2020. Retrieved 20 August 2020.
  13. Lavoisier, Antoine with Robert Kerr, trans. , Elements of Chemistry, 4th ed. (Edinburgh, Scotland: William Creech, 1799), p. 101:."
  14. Parks, G. D.; Mellor, J. W. (1939). Mellor's Modern Inorganic Chemistry (6th ed.). London: LONGMANS GREEN & CO LTD; New Impession edition. Archived from the original on 9 June 2008. Retrieved 17 August 2020.
  15. DeTurck, Dennis; Gladney, Larry; Pietrovito, Anthony (1997). "Do We Take Atoms for Granted?". The Interactive Textbook of PFP96. University of Pennsylvania. Archived from the original on January 17, 2008. Retrieved January 28, 2008.
  16. Roscoe, Henry Enfield; Schorlemmer, Carl (1883). A Treatise on Chemistry. D. Appleton and Co. p. 38.
  17. Daintith, John (1994). Biographical Encyclopedia of Scientists. CRC Press. p. 707. ISBN 978-0-7503-0287-6.
  18. Papanelopoulou, Faidra (2013). "Louis Paul Cailletet: The liquefaction of oxygen and the emergence of low-temperature research". Notes and Records of the Royal Society of London. 67 (4): 355–73. doi:10.1098/rsnr.2013.0047. PMC 3826198.
  19. Prakash Rao; Michael Muller (2007). "Industrial Oxygen: Its Generation and Use" (PDF). Aceee: 125. Archived from the original (PDF) on 13 October 2017. Retrieved 17 August 2020.
  20. "Papers Past—Evening Post—30 July 1898—A Startling Scientific Prediction". Paperspast.natlib.govt.nz. Archived from the original on 12 June 2020. Retrieved 2013-09-04.
  21. "The Evening News - Google News Archive Search". Archived from the original on 2012-07-12.
  22. "Goddard-1926". NASA. Archived from the original on November 8, 2007. Retrieved November 18, 2007.
  23. Flecker, Oriel Joyce (1924). A school chemistry. MIT Libraries. Oxford, Clarendon press. pp. 30. Archived from the original on June 10, 2020. Retrieved August 17, 2020.
  24. Scripps Institute. "Atmospheric Oxygen Research". Archived from the original on 25 July 2017. Retrieved 22 May 2020.
  25. ۲۵٫۰ ۲۵٫۱ Jack Barrett (2002). "Atomic Structure and Periodicity, (Basic concepts in chemistry, Vol. 9 of Tutorial chemistry texts)". Cambridge, U.K.: Royal Society of Chemistry. p. 153. ISBN 0854046577. Archived from the original on 30 May 2020. Retrieved 31 January 2015.
  26. "Oxygen Facts". Science Kids. February 6, 2015. Archived from the original on 7 May 2020. Retrieved November 14, 2015.
  27. Jakubowski, Henry. "Chapter 8: Oxidation-Phosphorylation, the Chemistry of Di-Oxygen". Biochemistry Online. Saint John's University. Archived from the original on October 5, 2018. Retrieved January 28, 2008.
  28. "Demonstration of a bridge of liquid oxygen supported against its own weight between the poles of a powerful magnet". University of Wisconsin-Madison Chemistry Department Demonstration lab. Archived from the original on December 17, 2007. Retrieved December 15, 2007.
  29. ۲۹٫۰ ۲۹٫۱ Weiss, H. M. (2008). "Appreciating Oxygen". J. Chem. Educ. 85 (9): 1218–1219. Bibcode:2008JChEd..85.1218W. doi:10.1021/ed085p1218. Archived from the original on 18 اكتبر 2020. Retrieved 18 ژوئن 2020. Check date values in: |archive-date= (help)
  30. Krieger-Liszkay, Anja (October 13, 2004). "Singlet oxygen production in photosynthesis". Journal of Experimental Botany. 56 (411): 337–46. doi:10.1093/jxb/erh237. PMID 15310815.
  31. Harrison, Roy M. (1990). Pollution: Causes, Effects & Control (2nd ed.). Cambridge: Royal Society of Chemistry. ISBN 978-0-85186-283-5. Archived from the original on 10 June 2020. Retrieved 18 June 2020.
  32. Wentworth, Paul; McDunn, J. E.; Wentworth, A. D.; Takeuchi, C.; Nieva, J.; Jones, T.; Bautista, C.; Ruedi, J. M.; et al. (December 13, 2002). "Evidence for Antibody-Catalyzed Ozone Formation in Bacterial Killing and Inflammation". Science. 298 (5601): 2195–219. Bibcode:2002Sci...298.2195W. doi:10.1126/science.1077642. PMID 12434011.[پیوند مرده]
  33. Hirayama, Osamu; Nakamura, Kyoko; Hamada, Syoko; Kobayasi, Yoko (1994). "Singlet oxygen quenching ability of naturally occurring carotenoids". Lipids. 29 (2): 149–50. doi:10.1007/BF02537155. PMID 8152349.
  34. Chieh, Chung. "Bond Lengths and Energies". University of Waterloo. Archived from the original on December 14, 2007. Retrieved December 16, 2007.
  35. ۳۵٫۰ ۳۵٫۱ ۳۵٫۲ Stwertka, Albert (1998). Guide to the Elements (Revised ed.). Oxford University Press. pp. 48–49. ISBN 978-0-19-508083-4. Archived from the original on June 10, 2020. Retrieved 18 June 2020.
  36. "Atomic oxygen erosion". Archived from the original on June 13, 2007. Retrieved August 8, 2009.
  37. ۳۷٫۰ ۳۷٫۱ Cacace, Fulvio; de Petris, Giulia; Troiani, Anna (2001). "Experimental Detection of Tetraoxygen". Angewandte Chemie International Edition. 40 (21): 4062–65. doi:10.1002/1521-3773(20011105)40:21<4062::AID-ANIE4062>3.0.CO;2-X. PMID 12404493.
  38. ۳۸٫۰ ۳۸٫۱ Ball, Phillip (September 16, 2001). "New form of oxygen found". Nature News. Archived from the original on October 21, 2013. Retrieved January 9, 2008.
  39. Lundegaard, Lars F.; Weck, Gunnar; McMahon, Malcolm I.; Desgreniers, Serge; et al. (2006). "Observation of an O
    8
    molecular lattice in the phase of solid oxygen". Nature. 443 (7108): 201–04. Bibcode:2006Natur.443..201L. doi:10.1038/nature05174. PMID 16971946.
  40. Desgreniers, S.; Vohra, Y. K.; Ruoff, A. L. (1990). "Optical response of very high density solid oxygen to 132 GPa". J. Phys. Chem. 94 (3): 1117–22. doi:10.1021/j100366a020.
  41. Shimizu, K.; Suhara, K.; Ikumo, M.; Eremets, M. I.; et al. (1998). "Superconductivity in oxygen". Nature. 393 (6687): 767–69. Bibcode:1998Natur.393..767S. doi:10.1038/31656.
  42. ۴۲٫۰ ۴۲٫۱ ۴۲٫۲ ۴۲٫۳ ۴۲٫۴ "Oxygen - Solubility in Fresh Water and Seawater". The Engineering Toolbox. Archived from the original on 6 August 2020. Retrieved August 17, 2020.
  43. Lide, David R. (2003). "Section 4, Properties of the Elements and Inorganic Compounds; Melting, boiling, and critical temperatures of the elements". CRC Handbook of Chemistry and Physics (84th ed.). Boca Raton, Florida: CRC Press. ISBN 978-0-8493-0595-5.
  44. "Overview of Cryogenic Air Separation and Liquefier Systems". Universal Industrial Gases, Inc. Archived from the original on October 21, 2018. Retrieved December 15, 2007.
  45. ۴۵٫۰ ۴۵٫۱ "Liquid Oxygen Material Safety Data Sheet" (PDF). Matheson Tri Gas. Archived from the original (PDF) on February 27, 2008. Retrieved December 15, 2007.
  46. ۴۶٫۰ ۴۶٫۱ ۴۶٫۲ ۴۶٫۳ "Oxygen Nuclides / Isotopes". EnvironmentalChemistry.com. Archived from the original on August 18, 2020. Retrieved December 17, 2007.
  47. ۴۷٫۰ ۴۷٫۱ ۴۷٫۲ Meyer, B. S. (September 19–21, 2005). Nucleosynthesis and Galactic Chemical Evolution of the Isotopes of Oxygen (PDF). Workgroup on Oxygen in the Earliest Solar System. Proceedings of the NASA Cosmochemistry Program and the Lunar and Planetary Institute. Gatlinburg, Tennessee. 9022. Archived (PDF) from the original on 29 December 2010. Retrieved January 22, 2007.
  48. "NUDAT 13O". Archived from the original on 28 July 2012. Retrieved July 6, 2009.
  49. "NUDAT 14O". Archived from the original on 28 July 2012. Retrieved July 6, 2009.
  50. "NUDAT 15O". Archived from the original on 28 July 2012. Retrieved July 6, 2009.
  51. Croswell, Ken (February 1996). Alchemy of the Heavens. Anchor. ISBN 978-0-385-47214-2. Archived from the original on 13 May 2011. Retrieved 18 June 2020.
  52. "Oxygen". Los Alamos National Laboratory. Archived from the original on October 26, 2007. Retrieved December 16, 2007.
  53. Franz, Heather B.; Trainer, Melissa G.; Malespin, Charles A.; Mahaffy, Paul R.; Atreya, Sushil K.; Becker, Richard H.; Benna, Mehdi; Conrad, Pamela G.; Eigenbrode, Jennifer L. (2017-04-01). "Initial SAM calibration gas experiments on Mars: Quadrupole mass spectrometer results and implications". Planetary and Space Science. 138: 44–54. Bibcode:2017P&SS..138...44F. doi:10.1016/j.pss.2017.01.014. ISSN 0032-0633.
  54. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Oxford: Butterworth-Heinemann. p. 602. ISBN 0080379419.
  55. Chip Fletcher (2018). "3". Climate Change: What The Science Tells Us. Wiley. p. 96. ISBN 978-1-118-79306-0.
  56. "Paleoclimatology: The Oxygen Balance". NASA Earth Observatory. 2011-03-11. Archived from the original on 9 August 2020. Retrieved 2020-10-18.
  57. Hand, Eric (March 13, 2008). "The Solar System's first breath". Nature. 452 (7185): 259. Bibcode:2008Natur.452..259H. doi:10.1038/452259a. PMID 18354437.
  58. Miller, J. R.; Berger, M.; Alonso, L.; Cerovic, Z.; et al. Progress on the development of an integrated canopy fluorescence model. Geoscience and Remote Sensing Symposium, 2003. IGARSS '03. Proceedings. 2003 IEEE International. doi:10.1109/IGARSS.2003.1293855.
  59. "Graphic: Measuring carbon dioxide from space – Climate Change: Vital Signs of the Planet". Climate Change: Vital Signs of the Planet. 2014-10-08. Archived from the original on 14 اكتبر 2020. Retrieved 2020-10-18. Check date values in: |archive-date= (help)
  60. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Oxford: Butterworth-Heinemann. ISBN 0080379419., p. 28
  61. "Red Book" (PDF). IUPAC. p. 73 and 320. Archived from the original (PDF) on 19 December 2019. Retrieved 20 August 2020.
  62. Maksyutenko, P.; Rizzo, T. R.; Boyarkin, O. V. (2006). "A direct measurement of the dissociation energy of water". J. Chem. Phys. 125 (18): 181101. Bibcode:2006JChPh.125r1101M. doi:10.1063/1.2387163. PMID 17115729.
  63. Chaplin, Martin (January 4, 2008). "Water Hydrogen Bonding". Archived from the original on October 10, 2007. Retrieved January 6, 2008.
  64. Smart, Lesley E.; Moore, Elaine A. (2005). Solid State Chemistry: An Introduction (3rd ed.). CRC Press. p. 214. ISBN 978-0-7487-7516-3.
  65. "Interview, David Des Marais". NASA. 2003. Archived from the original on 2007-11-13.
  66. ""Green rust", iron solubility and the role of chloride in the corrosion of steel at high pH". Cement and Concrete Research. 1993. Archived from the original on 18 اكتبر 2020. Retrieved 19 August 2020. Check date values in: |archive-date= (help)
  67. R. L. Rudnick; S. Gao (2003). "Composition of the Continental Crust. In The Crust (ed. R. L. Rudnick) volume 3". Oxford: Elsevier-Pergamon. pp. 1–64. ISBN 0-08-043751-6. Missing or empty |url= (help); |access-date= requires |url= (help)
  68. Anderson, Robert S.; Anderson, Suzanne P. (2010). Geomorphology: The Mechanics and Chemistry of Landscapes. Cambridge University Press. p. 187. ISBN 978-1-139-78870-0. Archived from the original on 16 September 2018. Retrieved 19 August 2020.
  69. Murakami, Motohiko; Ohishi, Yasuo; Hirao, Naohisa; Hirose, Kei (May 2012). "A perovskitic lower mantle inferred from high-pressure, high-temperature sound velocity data". Nature. 485 (7396): 90–94. doi:10.1038/nature11004. ISSN 0028-0836. PMID 22552097.
  70. Crabtree, R. (2001). The Organometallic Chemistry of the Transition Metals (3rd ed.). John Wiley & Sons. p. 152. ISBN 978-0-471-18423-2.
  71. ۷۱٫۰ ۷۱٫۱ ۷۱٫۲ McMurry, John (2016). Organic Chemistry (7rd ed.). Brooks Cole. ISBN 978-1-305-08048-5.
  72. "Common Solvents Used in Organic Chemistry: Table of Properties". Organicdivision. Archived from the original on 8 May 2020. Retrieved 19 August 2020.
  73. Acetone بایگانی‌شده در ۲۰۱۱-۱۰-۱۴ توسط Wayback Machine, World Petrochemicals report, January 2010
  74. Manfred Weber; Markus Weber; Michael Kleine‐Boymann (15 October 2004). "Ullmann's Encyclopedia of Industrial Chemistry". Wiley. Archived from the original on 18 اكتبر 2020. Retrieved 20 August 2020. Check date values in: |archive-date= (help)
  75. Niederer, Christian; Behra, Renata; Harder, Angela; Schwarzenbach, René P.; Escher, Beate I. (2004). "Mechanistic approaches for evaluating the toxicity of reactive organochlorines and epoxides in green algae". Environmental Toxicology and Chemistry. 23 (3): 697–704. doi:10.1897/03-83. PMID 15285364.
  76. Julie M. Longo; Maria J. Sanford; Geoffrey W. Coates (2016). "Ring-Opening Copolymerization of Epoxides and Cyclic Anhydrides with Discrete Metal Complexes: Structure–Property Relationships". Chem. Rev. 116 (24): 15167–15197. doi:10.1021/acs.chemrev.6b00553. PMID 27936619.
  77. Sasaki, Hiroshi (February 2007). "Curing properties of cycloaliphatic epoxy derivatives". Progress in Organic Coatings. 58 (2–3): 227–230. doi:10.1016/j.porgcoat.2006.09.030.
  78. H. Spreitzer (September 15, 2008). "Neue Wirkstoffe – Sagobepilon – eine synthetische Variation von Epothilon B als Hoffnungsträger gegen Kreb". Österreichische Apothekerzeitung (به German) (19/2008): 978.
  79. Fenical, William (September 1983). "Marine Plants: A Unique and Unexplored Resource". Plants: the potentials for extracting protein, medicines, and other useful chemicals (workshop proceedings). DIANE Publishing. p. 147. ISBN 978-1-4289-2397-3.
  80. Walker, J. C. G. (1980). The oxygen cycle in the natural environment and the biogeochemical cycles. Berlin: Springer-Verlag.
  81. Brown, Theodore L.; LeMay, Burslen (2003). Chemistry: The Central Science. Prentice Hall/Pearson Education. p. 958. ISBN 978-0-13-048450-5. Archived from the original on June 10, 2020. Retrieved 19 June 2020.
  82. ۸۲٫۰ ۸۲٫۱ Raven, Peter H.; Evert, Ray F.; Eichhorn, Susan E. (2005). Biology of Plants (7th ed.). New York: W. H. Freeman and Company Publishers. pp. 115–27. ISBN 978-0-7167-1007-3.
  83. Schmidt-Rohr, K. (2020). "Oxygen Is the High-Energy Molecule Powering Complex Multicellular Life: Fundamental Corrections to Traditional Bioenergetics” ACS Omega 5: 2221-2233. http://dx.doi.org/10.1021/acsomega.9b03352
  84. Danovaro R; Dell'anno A; Pusceddu A; Gambi C; et al. (April 2010). "The first metazoa living in permanently anoxic conditions". BMC Biology. 8 (1): 30. doi:10.1186/1741-7007-8-30. PMC 2907586. PMID 20370908.
  85. "NASA Research Indicates Oxygen on Earth 2.5 Billion Years ago" (Press release). NASA. September 27, 2007. Archived from the original on March 13, 2008. Retrieved March 13, 2008.
  86. Zimmer, Carl (October 3, 2013). "Earth's Oxygen: A Mystery Easy to Take for Granted". The New York Times. Archived from the original on October 3, 2013. Retrieved October 3, 2013.
  87. "Flow restrictor for measuring respiratory parameters". Archived from the original on May 8, 2020. Retrieved 19 June 2020.
  88. Derived from mmHg values using 0.133322 kPa/mmHg
  89. "Normal Reference Range Table". The University of Texas Southwestern Medical Center at Dallas. Archived from the original on 25 December 2011. Used in Interactive Case Study Companion to Pathologic basis of disease
  90. "The Medical Education Division of the Brookside Associates ABG (Arterial Blood Gas)". Archived from the original on 12 August 2017. Retrieved 6 December 2009.
  91. Charles Henrickson (2005). Chemistry. Cliffs Notes. ISBN 978-0-7645-7419-1. Archived from the original on 10 June 2020. Retrieved 19 June 2020.
  92. ۹۲٫۰ ۹۲٫۱ Crowe, S. A.; Døssing, L. N.; Beukes, N. J.; Bau, M.; Kruger, S. J.; Frei, R.; Canfield, D. E. (2013). "Atmospheric oxygenation three billion years ago". Nature. 501 (7468): 535–538. Bibcode:2013Natur.501..535C. doi:10.1038/nature12426. PMID 24067713.
  93. Campbell, Neil A.; Reece, Jane B. (2005). Biology (7th ed.). San Francisco: Pearson – Benjamin Cummings. pp. 522–23. ISBN 978-0-8053-7171-0.
  94. Freeman, Scott (2005). Biological Science, 2nd. Upper Saddle River, NJ: Pearson – Prentice Hall. pp. 214, 586. ISBN 978-0-13-140941-5.
  95. ۹۵٫۰ ۹۵٫۱ Berner, Robert A. (1999). "Atmospheric oxygen over Phanerozoic time". Proceedings of the National Academy of Sciences of the USA. 96 (20): 10955–57. Bibcode:1999PNAS...9610955B. doi:10.1073/pnas.96.20.10955. PMC 34224. PMID 10500106.
  96. Butterfield, N. J. (2009). "Oxygen, animals and oceanic ventilation: An alternative view". Geobiology. 7 (1): 1–7. doi:10.1111/j.1472-4669.2009.00188.x. PMID 19200141.
  97. Christopher J. Poulsen, Clay Tabor, Joseph D. White (2015). "Long-term climate forcing by atmospheric oxygen concentrations". Science. 348 (6240): 1238–1241. Bibcode:2015Sci...348.1238P. doi:10.1126/science.1260670. PMID 26068848. Archived from the original on 13 July 2017. Retrieved 19 June 2020.
  98. Dole, Malcolm (1965). "The Natural History of Oxygen". The Journal of General Physiology. 49 (1): 5–27. doi:10.1085/jgp.49.1.5. PMC 2195461. PMID 5859927.
  99. "Non-Cryogenic Air Separation Processes". UIG Inc. 2003. Archived from the original on October 3, 2018. Retrieved December 16, 2007.
  100. Sim MA; Dean P; Kinsella J; Black R; et al. (2008). "Performance of oxygen delivery devices when the breathing pattern of respiratory failure is simulated". Anaesthesia. 63 (9): 938–40. doi:10.1111/j.1365-2044.2008.05536.x. PMID 18540928.
  101. Stephenson RN; Mackenzie I; Watt SJ; Ross JA (1996). "Measurement of oxygen concentration in delivery systems used for hyperbaric oxygen therapy". Undersea Hyperb Med. 23 (3): 185–8. PMID 8931286. Archived from the original on 11 August 2011. Retrieved 22 September 2008.
  102. Undersea and Hyperbaric Medical Society. "Indications for hyperbaric oxygen therapy". Archived from the original on 12 September 2008. Retrieved 22 September 2008.
  103. Undersea and Hyperbaric Medical Society. "Carbon Monoxide". Archived from the original on July 25, 2008. Retrieved September 22, 2008.
  104. Piantadosi CA (2004). "Carbon monoxide poisoning". Undersea Hyperb Med. 31 (1): 167–77. PMID 15233173. Archived from the original on 3 February 2011. Retrieved September 22, 2008.
  105. Hart GB; Strauss MB (1990). "Gas Gangrene – Clostridial Myonecrosis: A Review". J. Hyperbaric Med. 5 (2): 125–144. Archived from the original on 3 February 2011. Retrieved September 22, 2008.
  106. Zamboni WA; Riseman JA; Kucan JO (1990). "Management of Fournier's Gangrene and the role of Hyperbaric Oxygen". J. Hyperbaric Med. 5 (3): 177–186. Archived from the original on 3 February 2011. Retrieved September 22, 2008.
  107. Undersea and Hyperbaric Medical Society. "Decompression Sickness or Illness and Arterial Gas Embolism". Archived from the original on July 5, 2008. Retrieved September 22, 2008.
  108. Acott, C. (1999). "A brief history of diving and decompression illness". South Pacific Underwater Medicine Society Journal. 29 (2). Archived from the original on 5 September 2011. Retrieved September 22, 2008.
  109. Longphre, JM; Denoble, PJ; Moon, RE; Vann, RD; Freiberger, JJ (2007). "First aid normobaric oxygen for the treatment of recreational diving injuries" (PDF). Undersea & Hyperbaric Medicine. 34 (1): 43–49. PMID 17393938. Archived (PDF) from the original on 13 March 2020. Retrieved 23 May 2020 – via Rubicon Research Repository.
  110. "Emergency Oxygen for Scuba Diving Injuries". Divers Alert Network. Archived from the original on 20 April 2020. Retrieved October 1, 2018.
  111. "Oxygen First Aid for Scuba Diving Injuries". Divers Alert Network Europe. Archived from the original on 10 June 2020. Retrieved October 1, 2018.
  112. ۱۱۲٫۰ ۱۱۲٫۱ Morgenthaler GW; Fester DA; Cooley CG (1994). "As assessment of habitat pressure, oxygen fraction, and EVA suit design for space operations". Acta Astronautica. 32 (1): 39–49. Bibcode:1994AcAau..32...39M. doi:10.1016/0094-5765(94)90146-5. PMID 11541018.
  113. Webb JT; Olson RM; Krutz RW; Dixon G; Barnicott PT (1989). "Human tolerance to 100% oxygen at 9.5 psia during five daily simulated 8-hour EVA exposures". Aviat Space Environ Med. 60 (5): 415–21. doi:10.4271/881071. PMID 2730484.
  114. ۱۱۴٫۰ ۱۱۴٫۱ ۱۱۴٫۲ Acott, C. (1999). "Oxygen toxicity: A brief history of oxygen in diving". South Pacific Underwater Medicine Society Journal. 29 (3). Archived from the original on 25 December 2010. Retrieved September 21, 2008.
  115. Longphre, J. M.; Denoble, P. J.; Moon, R. E.; Vann, R. D.; et al. (2007). "First aid normobaric oxygen for the treatment of recreational diving injuries". Undersea Hyperb. Med. 34 (1): 43–49. PMID 17393938. Archived from the original on June 13, 2008. Retrieved September 21, 2008.
  116. Ferri, Fred F. (2016). Ferri's Clinical Advisor 2017 E-Book: 5 Books in 1. Elsevier Health Sciences. p. 590. ISBN 978-0-323-44838-3. Archived from the original on 22 December 2019. Retrieved 19 August 2020.
  117. "Altitude Diseases - Injuries; Poisoning". Merck Manuals Professional Edition. May 2018. Archived from the original on 27 June 2018. Retrieved 3 August 2018.
  118. Simancas-Racines, D; Arevalo-Rodriguez, I; Osorio, D; Franco, JV; Xu, Y; Hidalgo, R (30 June 2018). "Interventions for treating acute high altitude illness". The Cochrane Database of Systematic Reviews. 6: CD009567. doi:10.1002/14651858.CD009567.pub2. PMID 29959871.
  119. ۱۱۹٫۰ ۱۱۹٫۱ "EVEREST (AND, INDEED, OTHER 8,000ERS) USING OXYGEN". everestexpedition.co.uk. Archived from the original on 20 August 2020. Retrieved 20 August 2020.
  120. Bren, Linda (November–December 2002). "Oxygen Bars: Is a Breath of Fresh Air Worth It?". FDA Consumer Magazine. U.S. Food and Drug Administration. 36 (6): 9–11. PMID 12523293. Archived from the original on October 18, 2007. Retrieved December 23, 2007.
  121. "Ergogenic Aids". Peak Performance Online. Archived from the original on September 28, 2007. Retrieved January 4, 2008.
  122. Cymerman, A; Rock, PB. "Medical Problems in High Mountain Environments. A Handbook for Medical Officers". USARIEM-TN94-2. US Army Research Inst. of Environmental Medicine Thermal and Mountain Medicine Division Technical Report. Archived from the original on 2009-04-23. Retrieved 2009-03-05.
  123. Roach, Robert; Stepanek, Jan & Hackett, Peter. (2002). "24". Acute Mountain Sickness and High-Altitude Cerebral Edema. In: Medical Aspects of Harsh Environments. 2. Borden Institute, Washington, DC. Archived from the original on 11 January 2009. Retrieved 2009-01-05.
  124. Muza, SR; Fulco, CS; Cymerman, A (2004). "Altitude Acclimatization Guide". US Army Research Inst. Of Environmental Medicine Thermal and Mountain Medicine Division Technical Report (USARIEM–TN–04–05). Archived from the original on 23 April 2009. Retrieved 2009-03-05.
  125. "NFPA 704 ratings and id numbers for common hazardous materials" (PDF). Riverside County Department of Environmental Health. Archived (PDF) from the original on 11 July 2019. Retrieved August 22, 2017.
  126. Dharmeshkumar N Patel; Ashish Goel; SB Agarwal; Praveenkumar Garg; et al. (2003). "Oxygen Toxicity" (PDF). Indian Academy of Clinical Medicine. 4 (3): 234. Archived (PDF) from the original on 22 September 2015. Retrieved 20 June 2020.
  127. Wade, Mark (2007). "Space Suits". Encyclopedia Astronautica. Archived from the original on December 13, 2007. Retrieved December 16, 2007.
  128. Martin, Lawrence. "The Four Most Important Equations In Clinical Practice". GlobalRPh. David McAuley. Archived from the original on 5 September 2018. Retrieved June 19, 2013.
  129. Wilmshurst P (1998). "Diving and oxygen". BMJ. 317 (7164): 996–9. doi:10.1136/bmj.317.7164.996. PMC 1114047. PMID 9765173.
  130. Donald, Kenneth (1992). Oxygen and the Diver. England: SPA in conjunction with K. Donald. ISBN 978-1-85421-176-7.
  131. Donald K. W. (1947). "Oxygen Poisoning in Man: Part I". Br Med J. 1 (4506): 667–72. doi:10.1136/bmj.1.4506.667. PMC 2053251. PMID 20248086.
  132. Donald K. W. (1947). "Oxygen Poisoning in Man: Part II". Br Med J. 1 (4507): 712–7. doi:10.1136/bmj.1.4507.712. PMC 2053400. PMID 20248096.
  133. Schmidt-Rohr, K. (2015). "Why Combustions Are Always Exothermic, Yielding About 418 kJ per Mole of O2". J. Chem. Educ. 92 (12): 2094–2099. Bibcode:2015JChEd..92.2094S. doi:10.1021/acs.jchemed.5b00333.
  134. Chiles, James R. (2001). Inviting Disaster: Lessons from the edge of Technology: An inside look at catastrophes and why they happen. New York: HarperCollins Publishers Inc. ISBN 978-0-06-662082-4. Archived from the original on 10 June 2020. Retrieved 18 June 2020.
  135. Werley, Barry L., ed. (1991). ASTM Technical Professional training. Fire Hazards in Oxygen Systems. Philadelphia: ASTM International Subcommittee G-4.05.

پیوند به بیرون[ویرایش]

Oxygen, 8O
A transparent beaker containing a light blue fluid with gas bubbles
Liquid oxygen boiling
Oxygen
AllotropesO2, O3 (ozone)
Appearancegas: colorless
liquid and solid: pale blue
Standard atomic weight Ar, std(O)[15.9990315.99977] conventional: 15.999
Oxygen in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson


O

S
nitrogenoxygenfluorine
Atomic number (Z)8
Groupgroup 16 (chalcogens)
Periodperiod 2
Blockp-block
Element category  Reactive nonmetal
Electron configuration[He] 2s2 2p4
Electrons per shell2, 6
Physical properties
Phase at STPgas
Melting point(O2) 54.36 K ​(−218.79 °C, ​−361.82 °F)
Boiling point(O2) 90.188 K ​(−182.962 °C, ​−297.332 °F)
Density (at STP)1.429 g/L
when liquid (at b.p.)1.141 g/cm3
Triple point54.361 K, ​0.1463 kPa
Critical point154.581 K, 5.043 MPa
Heat of fusion(O2) 0.444 kJ/mol
Heat of vaporization(O2) 6.82 kJ/mol
Molar heat capacity(O2) 29.378 J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K)       61 73 90
Atomic properties
Oxidation states−2, −1, 0, +1, +2
ElectronegativityPauling scale: 3.44
Ionization energies
  • 1st: 1313.9 kJ/mol
  • 2nd: 3388.3 kJ/mol
  • 3rd: 5300.5 kJ/mol
  • (more)
Covalent radius66±2 pm
Van der Waals radius152 pm
Color lines in a spectral range
Spectral lines of oxygen
Other properties
Natural occurrenceprimordial
Crystal structurecubic
Cubic crystal structure for oxygen
Speed of sound330 m/s (gas, at 27 °C)
Thermal conductivity26.58×10−3  W/(m·K)
Magnetic orderingparamagnetic
Magnetic susceptibility+3449.0·10−6 cm3/mol (293 K)[1]
CAS Number7782-44-7
History
DiscoveryCarl Wilhelm Scheele (1771)
Named byAntoine Lavoisier (1777)
Main isotopes of oxygen
Iso­tope Abun­dance Half-life (t1/2) Decay mode Pro­duct
16O 99.76% stable
17O 0.04% stable
18O 0.20% stable
Category Category: Oxygen
| references

Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as well as with other compounds. After hydrogen and helium, oxygen is the third-most abundant element in the universe by mass. At standard temperature and pressure, two atoms of the element bind to form dioxygen, a colorless and odorless diatomic gas with the formula O
2
. Diatomic oxygen gas constitutes 20.95% of the Earth's atmosphere. Oxygen makes up almost half of the Earth's crust in the form of oxides.[2]

Dioxygen provides the energy released in combustion[3] and aerobic cellular respiration,[4] and many major classes of organic molecules in living organisms contain oxygen atoms, such as proteins, nucleic acids, carbohydrates, and fats, as do the major constituent inorganic compounds of animal shells, teeth, and bone. Most of the mass of living organisms is oxygen as a component of water, the major constituent of lifeforms. Oxygen is continuously replenished in Earth's atmosphere by photosynthesis, which uses the energy of sunlight to produce oxygen from water and carbon dioxide. Oxygen is too chemically reactive to remain a free element in air without being continuously replenished by the photosynthetic action of living organisms. Another form (allotrope) of oxygen, ozone (O
3
), strongly absorbs ultraviolet UVB radiation and the high-altitude ozone layer helps protect the biosphere from ultraviolet radiation. However, ozone present at the surface is a byproduct of smog and thus a pollutant.

Oxygen was isolated by Michael Sendivogius before 1604, but it is commonly believed that the element was discovered independently by Carl Wilhelm Scheele, in Uppsala, in 1773 or earlier, and Joseph Priestley in Wiltshire, in 1774. Priority is often given for Priestley because his work was published first. Priestley, however, called oxygen "dephlogisticated air", and did not recognize it as a chemical element. The name oxygen was coined in 1777 by Antoine Lavoisier, who first recognized oxygen as a chemical element and correctly characterized the role it plays in combustion.

Common uses of oxygen include production of steel, plastics and textiles, brazing, welding and cutting of steels and other metals, rocket propellant, oxygen therapy, and life support systems in aircraft, submarines, spaceflight and diving.

History

Early experiments

One of the first known experiments on the relationship between combustion and air was conducted by the 2nd century BCE Greek writer on mechanics, Philo of Byzantium. In his work Pneumatica, Philo observed that inverting a vessel over a burning candle and surrounding the vessel's neck with water resulted in some water rising into the neck.[5] Philo incorrectly surmised that parts of the air in the vessel were converted into the classical element fire and thus were able to escape through pores in the glass. Many centuries later Leonardo da Vinci built on Philo's work by observing that a portion of air is consumed during combustion and respiration.[6]

In the late 17th century, Robert Boyle proved that air is necessary for combustion. English chemist John Mayow (1641–1679) refined this work by showing that fire requires only a part of air that he called spiritus nitroaereus.[7] In one experiment, he found that placing either a mouse or a lit candle in a closed container over water caused the water to rise and replace one-fourteenth of the air's volume before extinguishing the subjects.[8] From this he surmised that nitroaereus is consumed in both respiration and combustion.

Mayow observed that antimony increased in weight when heated, and inferred that the nitroaereus must have combined with it.[7] He also thought that the lungs separate nitroaereus from air and pass it into the blood and that animal heat and muscle movement result from the reaction of nitroaereus with certain substances in the body.[7] Accounts of these and other experiments and ideas were published in 1668 in his work Tractatus duo in the tract "De respiratione".[8]

Phlogiston theory

Robert Hooke, Ole Borch, Mikhail Lomonosov, and Pierre Bayen all produced oxygen in experiments in the 17th and the 18th century but none of them recognized it as a chemical element.[9] This may have been in part due to the prevalence of the philosophy of combustion and corrosion called the phlogiston theory, which was then the favored explanation of those processes.[10]

Established in 1667 by the German alchemist J. J. Becher, and modified by the chemist Georg Ernst Stahl by 1731,[11] phlogiston theory stated that all combustible materials were made of two parts. One part, called phlogiston, was given off when the substance containing it was burned, while the dephlogisticated part was thought to be its true form, or calx.[6]

Highly combustible materials that leave little residue, such as wood or coal, were thought to be made mostly of phlogiston; non-combustible substances that corrode, such as iron, contained very little. Air did not play a role in phlogiston theory, nor were any initial quantitative experiments conducted to test the idea; instead, it was based on observations of what happens when something burns, that most common objects appear to become lighter and seem to lose something in the process.[6]

Discovery

A drawing of an elderly man sitting by a table and facing parallel to the drawing. His left arm rests on a notebook, legs crossed.
Joseph Priestley is usually given priority in the discovery.

Polish alchemist, philosopher, and physician Michael Sendivogius (Michał Sędziwój) in his work De Lapide Philosophorum Tractatus duodecim e naturae fonte et manuali experientia depromti (1604) described a substance contained in air, referring to it as 'cibus vitae' (food of life[12]), and this substance is identical with oxygen.[13] Sendivogius, during his experiments performed between 1598 and 1604, properly recognized that the substance is equivalent to the gaseous byproduct released by the thermal decomposition of potassium nitrate. In Bugaj's view, the isolation of oxygen and the proper association of the substance to that part of air which is required for life, lends sufficient weight to the discovery of oxygen by Sendivogius.[13] This discovery of Sendivogius was however frequently denied by the generations of scientists and chemists which succeeded him.[12]

It is also commonly claimed that oxygen was first discovered by Swedish pharmacist Carl Wilhelm Scheele. He had produced oxygen gas by heating mercuric oxide and various nitrates in 1771–2.[14][15][6] Scheele called the gas "fire air" because it was then the only known agent to support combustion. He wrote an account of this discovery in a manuscript titled Treatise on Air and Fire, which he sent to his publisher in 1775. That document was published in 1777.[16]

In the meantime, on August 1, 1774, an experiment conducted by the British clergyman Joseph Priestley focused sunlight on mercuric oxide (HgO) contained in a glass tube, which liberated a gas he named "dephlogisticated air".[15] He noted that candles burned brighter in the gas and that a mouse was more active and lived longer while breathing it. After breathing the gas himself, Priestley wrote: "The feeling of it to my lungs was not sensibly different from that of common air, but I fancied that my breast felt peculiarly light and easy for some time afterwards."[9] Priestley published his findings in 1775 in a paper titled "An Account of Further Discoveries in Air", which was included in the second volume of his book titled Experiments and Observations on Different Kinds of Air.[6][17] Because he published his findings first, Priestley is usually given priority in the discovery.

The French chemist Antoine Laurent Lavoisier later claimed to have discovered the new substance independently. Priestley visited Lavoisier in October 1774 and told him about his experiment and how he liberated the new gas. Scheele had also dispatched a letter to Lavoisier on September 30, 1774, which described his discovery of the previously unknown substance, but Lavoisier never acknowledged receiving it. (A copy of the letter was found in Scheele's belongings after his death.)[16]

Lavoisier's contribution

A drawing of a young man facing towards the viewer, but looking on the side. He wear a white curly wig, dark suit and white scarf.
Antoine Lavoisier discredited the phlogiston theory.

Lavoisier conducted the first adequate quantitative experiments on oxidation and gave the first correct explanation of how combustion works.[15] He used these and similar experiments, all started in 1774, to discredit the phlogiston theory and to prove that the substance discovered by Priestley and Scheele was a chemical element.

In one experiment, Lavoisier observed that there was no overall increase in weight when tin and air were heated in a closed container.[15] He noted that air rushed in when he opened the container, which indicated that part of the trapped air had been consumed. He also noted that the tin had increased in weight and that increase was the same as the weight of the air that rushed back in. This and other experiments on combustion were documented in his book Sur la combustion en général, which was published in 1777.[15] In that work, he proved that air is a mixture of two gases; 'vital air', which is essential to combustion and respiration, and azote (Gk. ἄζωτον "lifeless"), which did not support either. Azote later became nitrogen in English, although it has kept the earlier name in French and several other European languages.[15]

Lavoisier renamed 'vital air' to oxygène in 1777 from the Greek roots ὀξύς (oxys) (acid, literally "sharp", from the taste of acids) and -γενής (-genēs) (producer, literally begetter), because he mistakenly believed that oxygen was a constituent of all acids.[18] Chemists (such as Sir Humphry Davy in 1812) eventually determined that Lavoisier was wrong in this regard (hydrogen forms the basis for acid chemistry), but by then the name was too well established.[19]

Oxygen entered the English language despite opposition by English scientists and the fact that the Englishman Priestley had first isolated the gas and written about it. This is partly due to a poem praising the gas titled "Oxygen" in the popular book The Botanic Garden (1791) by Erasmus Darwin, grandfather of Charles Darwin.[16]

Later history

A metal frame structure stands on the snow near a tree. A middle-aged man wearing a coat, boots, leather gloves and a cap stands by the structure and holds it with his right hand.
Robert H. Goddard and a liquid oxygen-gasoline rocket

John Dalton's original atomic hypothesis presumed that all elements were monatomic and that the atoms in compounds would normally have the simplest atomic ratios with respect to one another. For example, Dalton assumed that water's formula was HO, leading to the conclusion that the atomic mass of oxygen was 8 times that of hydrogen, instead of the modern value of about 16.[20] In 1805, Joseph Louis Gay-Lussac and Alexander von Humboldt showed that water is formed of two volumes of hydrogen and one volume of oxygen; and by 1811 Amedeo Avogadro had arrived at the correct interpretation of water's composition, based on what is now called Avogadro's law and the diatomic elemental molecules in those gases.[21][a]

By the late 19th century scientists realized that air could be liquefied and its components isolated by compressing and cooling it. Using a cascade method, Swiss chemist and physicist Raoul Pierre Pictet evaporated liquid sulfur dioxide in order to liquefy carbon dioxide, which in turn was evaporated to cool oxygen gas enough to liquefy it. He sent a telegram on December 22, 1877 to the French Academy of Sciences in Paris announcing his discovery of liquid oxygen.[22] Just two days later, French physicist Louis Paul Cailletet announced his own method of liquefying molecular oxygen.[22] Only a few drops of the liquid were produced in each case and no meaningful analysis could be conducted. Oxygen was liquefied in a stable state for the first time on March 29, 1883 by Polish scientists from Jagiellonian University, Zygmunt Wróblewski and Karol Olszewski.[23]

An experiment setup with test tubes to prepare oxygen
An experiment setup for preparation of oxygen in academic laboratories

In 1891 Scottish chemist James Dewar was able to produce enough liquid oxygen for study.[24] The first commercially viable process for producing liquid oxygen was independently developed in 1895 by German engineer Carl von Linde and British engineer William Hampson. Both men lowered the temperature of air until it liquefied and then distilled the component gases by boiling them off one at a time and capturing them separately.[25] Later, in 1901, oxyacetylene welding was demonstrated for the first time by burning a mixture of acetylene and compressed O
2
. This method of welding and cutting metal later became common.[25]

In 1923, the American scientist Robert H. Goddard became the first person to develop a rocket engine that burned liquid fuel; the engine used gasoline for fuel and liquid oxygen as the oxidizer. Goddard successfully flew a small liquid-fueled rocket 56 m at 97 km/h on March 16, 1926 in Auburn, Massachusetts, US.[25][26]

In academic laboratories, oxygen can be prepared by heating together potassium chlorate mixed with a small proportion of manganese dioxide.[27]

Oxygen levels in the atmosphere are trending slightly downward globally, possibly because of fossil-fuel burning.[28]

Characteristics

Properties and molecular structure

Orbital diagram, after Barrett (2002),[29] showing the participating atomic orbitals from each oxygen atom, the molecular orbitals that result from their overlap, and the aufbau filling of the orbitals with the 12 electrons, 6 from each O atom, beginning from the lowest energy orbitals, and resulting in covalent double bond character from filled orbitals (and cancellation of the contributions of the pairs of σ and σ* and π and π* orbital pairs).

At standard temperature and pressure, oxygen is a colorless, odorless, and tasteless gas with the molecular formula O
2
, referred to as dioxygen.[30]

As dioxygen, two oxygen atoms are chemically bound to each other. The bond can be variously described based on level of theory, but is reasonably and simply described as a covalent double bond that results from the filling of molecular orbitals formed from the atomic orbitals of the individual oxygen atoms, the filling of which results in a bond order of two. More specifically, the double bond is the result of sequential, low-to-high energy, or Aufbau, filling of orbitals, and the resulting cancellation of contributions from the 2s electrons, after sequential filling of the low σ and σ* orbitals; σ overlap of the two atomic 2p orbitals that lie along the O-O molecular axis and π overlap of two pairs of atomic 2p orbitals perpendicular to the O-O molecular axis, and then cancellation of contributions from the remaining two of the six 2p electrons after their partial filling of the lowest π and π* orbitals.[29]

This combination of cancellations and σ and π overlaps results in dioxygen's double bond character and reactivity, and a triplet electronic ground state. An electron configuration with two unpaired electrons, as is found in dioxygen orbitals (see the filled π* orbitals in the diagram) that are of equal energy—i.e., degenerate—is a configuration termed a spin triplet state. Hence, the ground state of the O
2
molecule is referred to as triplet oxygen.[31][b] The highest energy, partially filled orbitals are antibonding, and so their filling weakens the bond order from three to two. Because of its unpaired electrons, triplet oxygen reacts only slowly with most organic molecules, which have paired electron spins; this prevents spontaneous combustion.[3]

Liquid oxygen, temporarily suspended in a magnet owing to its paramagnetism

In the triplet form, O
2
molecules are paramagnetic. That is, they impart magnetic character to oxygen when it is in the presence of a magnetic field, because of the spin magnetic moments of the unpaired electrons in the molecule, and the negative exchange energy between neighboring O
2
molecules.[24] Liquid oxygen is so magnetic that, in laboratory demonstrations, a bridge of liquid oxygen may be supported against its own weight between the poles of a powerful magnet.[32][c]

Singlet oxygen is a name given to several higher-energy species of molecular O
2
in which all the electron spins are paired. It is much more reactive with common organic molecules than is molecular oxygen per se. In nature, singlet oxygen is commonly formed from water during photosynthesis, using the energy of sunlight.[33] It is also produced in the troposphere by the photolysis of ozone by light of short wavelength[34] and by the immune system as a source of active oxygen.[35] Carotenoids in photosynthetic organisms (and possibly animals) play a major role in absorbing energy from singlet oxygen and converting it to the unexcited ground state before it can cause harm to tissues.[36]

Allotropes

Space-filling model representation of dioxygen (O2) molecule

The common allotrope of elemental oxygen on Earth is called dioxygen, O
2
, the major part of the Earth's atmospheric oxygen (see Occurrence). O2 has a bond length of 121 pm and a bond energy of 498 kJ/mol,[37] which is smaller than the energy of other double bonds or pairs of single bonds in the biosphere and responsible for the exothermic reaction of O2 with any organic molecule.[3][38] Due to its energy content, O2 is used by complex forms of life, such as animals, in cellular respiration. Other aspects of O
2
are covered in the remainder of this article.

Trioxygen (O
3
) is usually known as ozone and is a very reactive allotrope of oxygen that is damaging to lung tissue.[39] Ozone is produced in the upper atmosphere when O
2
combines with atomic oxygen made by the splitting of O
2
by ultraviolet (UV) radiation.[18] Since ozone absorbs strongly in the UV region of the spectrum, the ozone layer of the upper atmosphere functions as a protective radiation shield for the planet.[18] Near the Earth's surface, it is a pollutant formed as a by-product of automobile exhaust.[39] At low earth orbit altitudes, sufficient atomic oxygen is present to cause corrosion of spacecraft.[40]

The metastable molecule tetraoxygen (O
4
) was discovered in 2001,[41][42] and was assumed to exist in one of the six phases of solid oxygen. It was proven in 2006 that this phase, created by pressurizing O
2
to 20 GPa, is in fact a rhombohedral O
8
cluster.[43] This cluster has the potential to be a much more powerful oxidizer than either O
2
or O
3
and may therefore be used in rocket fuel.[41][42] A metallic phase was discovered in 1990 when solid oxygen is subjected to a pressure of above 96 GPa[44] and it was shown in 1998 that at very low temperatures, this phase becomes superconducting.[45]

Physical properties

Oxygen discharge (spectrum) tube

Oxygen dissolves more readily in water than nitrogen, and in freshwater more readily than seawater. Water in equilibrium with air contains approximately 1 molecule of dissolved O
2
for every 2 molecules of N
2
(1:2), compared with an atmospheric ratio of approximately 1:4. The solubility of oxygen in water is temperature-dependent, and about twice as much (14.6 mg·L−1) dissolves at 0 °C than at 20 °C (7.6 mg·L−1).[9][46] At 25 °C and 1 standard atmosphere (101.3 kPa) of air, freshwater contains about 6.04 milliliters (mL) of oxygen per liter, and seawater contains about 4.95 mL per liter.[47] At 5 °C the solubility increases to 9.0 mL (50% more than at 25 °C) per liter for water and 7.2 mL (45% more) per liter for sea water.

Oxygen gas dissolved in water at sea-level
(millilitres per litre)
5 °C 25 °C
Freshwater 9.00 6.04
Seawater 7.20 4.95

Oxygen condenses at 90.20 K (−182.95 °C, −297.31 °F), and freezes at 54.36 K (−218.79 °C, −361.82 °F).[48] Both liquid and solid O
2
are clear substances with a light sky-blue color caused by absorption in the red (in contrast with the blue color of the sky, which is due to Rayleigh scattering of blue light). High-purity liquid O
2
is usually obtained by the fractional distillation of liquefied air.[49] Liquid oxygen may also be condensed from air using liquid nitrogen as a coolant.[50]

Oxygen is a highly reactive substance and must be segregated from combustible materials.[50]

The spectroscopy of molecular oxygen is associated with the atmospheric processes of aurora and airglow.[51] The absorption in the Herzberg continuum and Schumann–Runge bands in the ultraviolet produces atomic oxygen that is important in the chemistry of the middle atmosphere.[52] Excited state singlet molecular oxygen is responsible for red chemiluminescence in solution.[53]

Isotopes and stellar origin

A concentric-sphere diagram, showing, from the core to the outer shell, iron, silicon, oxygen, neon, carbon, helium and hydrogen layers.
Late in a massive star's life, 16O concentrates in the O-shell, 17O in the H-shell and 18O in the He-shell.

Naturally occurring oxygen is composed of three stable isotopes, 16O, 17O, and 18O, with 16O being the most abundant (99.762% natural abundance).[54]

Most 16O is synthesized at the end of the helium fusion process in massive stars but some is made in the neon burning process.[55] 17O is primarily made by the burning of hydrogen into helium during the CNO cycle, making it a common isotope in the hydrogen burning zones of stars.[55] Most 18O is produced when 14N (made abundant from CNO burning) captures a 4He nucleus, making 18O common in the helium-rich zones of evolved, massive stars.[55]

Fourteen radioisotopes have been characterized. The most stable are 15O with a half-life of 122.24 seconds and 14O with a half-life of 70.606 seconds.[54] All of the remaining radioactive isotopes have half-lives that are less than 27 s and the majority of these have half-lives that are less than 83 milliseconds.[54] The most common decay mode of the isotopes lighter than 16O is β+ decay[56][57][58] to yield nitrogen, and the most common mode for the isotopes heavier than 18O is beta decay to yield fluorine.[54]

Occurrence

Ten most common elements in the Milky Way Galaxy estimated spectroscopically[59]
Z Element Mass fraction in parts per million
1 Hydrogen 739,000 71 × mass of oxygen (red bar)
2 Helium 240,000 23 × mass of oxygen (red bar)
8 Oxygen 10,400 10400
 
6 Carbon 4,600 4600
 
10 Neon 1,340 1340
 
26 Iron 1,090 1090
 
7 Nitrogen 960 960
 
14 Silicon 650 650
 
12 Magnesium 580 580
 
16 Sulfur 440 440
 

Oxygen is the most abundant chemical element by mass in the Earth's biosphere, air, sea and land. Oxygen is the third most abundant chemical element in the universe, after hydrogen and helium.[60] About 0.9% of the Sun's mass is oxygen.[15] Oxygen constitutes 49.2% of the Earth's crust by mass[61] as part of oxide compounds such as silicon dioxide and is the most abundant element by mass in the Earth's crust. It is also the major component of the world's oceans (88.8% by mass).[15] Oxygen gas is the second most common component of the Earth's atmosphere, taking up 20.8% of its volume and 23.1% of its mass (some 1015 tonnes).[15][62][d] Earth is unusual among the planets of the Solar System in having such a high concentration of oxygen gas in its atmosphere: Mars (with 0.1% O
2
by volume) and Venus have much less. The O
2
surrounding those planets is produced solely by the action of ultraviolet radiation on oxygen-containing molecules such as carbon dioxide.

World map showing that the sea-surface oxygen is depleted around the equator and increases towards the poles.
Cold water holds more dissolved O
2
.

The unusually high concentration of oxygen gas on Earth is the result of the oxygen cycle. This biogeochemical cycle describes the movement of oxygen within and between its three main reservoirs on Earth: the atmosphere, the biosphere, and the lithosphere. The main driving factor of the oxygen cycle is photosynthesis, which is responsible for modern Earth's atmosphere. Photosynthesis releases oxygen into the atmosphere, while respiration, decay, and combustion remove it from the atmosphere. In the present equilibrium, production and consumption occur at the same rate.[63]

Free oxygen also occurs in solution in the world's water bodies. The increased solubility of O
2
at lower temperatures (see Physical properties) has important implications for ocean life, as polar oceans support a much higher density of life due to their higher oxygen content.[64] Water polluted with plant nutrients such as nitrates or phosphates may stimulate growth of algae by a process called eutrophication and the decay of these organisms and other biomaterials may reduce the O
2
content in eutrophic water bodies. Scientists assess this aspect of water quality by measuring the water's biochemical oxygen demand, or the amount of O
2
needed to restore it to a normal concentration.[65]

Analysis

Time evolution of oxygen-18 concentration on the scale of 500 million years showing many local peaks.
500 million years of climate change vs. 18O

Paleoclimatologists measure the ratio of oxygen-18 and oxygen-16 in the shells and skeletons of marine organisms to determine the climate millions of years ago (see oxygen isotope ratio cycle). Seawater molecules that contain the lighter isotope, oxygen-16, evaporate at a slightly faster rate than water molecules containing the 12% heavier oxygen-18, and this disparity increases at lower temperatures.[66] During periods of lower global temperatures, snow and rain from that evaporated water tends to be higher in oxygen-16, and the seawater left behind tends to be higher in oxygen-18. Marine organisms then incorporate more oxygen-18 into their skeletons and shells than they would in a warmer climate.[66] Paleoclimatologists also directly measure this ratio in the water molecules of ice core samples as old as hundreds of thousands of years.

Planetary geologists have measured the relative quantities of oxygen isotopes in samples from the Earth, the Moon, Mars, and meteorites, but were long unable to obtain reference values for the isotope ratios in the Sun, believed to be the same as those of the primordial solar nebula. Analysis of a silicon wafer exposed to the solar wind in space and returned by the crashed Genesis spacecraft has shown that the Sun has a higher proportion of oxygen-16 than does the Earth. The measurement implies that an unknown process depleted oxygen-16 from the Sun's disk of protoplanetary material prior to the coalescence of dust grains that formed the Earth.[67]

Oxygen presents two spectrophotometric absorption bands peaking at the wavelengths 687 and 760 nm. Some remote sensing scientists have proposed using the measurement of the radiance coming from vegetation canopies in those bands to characterize plant health status from a satellite platform.[68] This approach exploits the fact that in those bands it is possible to discriminate the vegetation's reflectance from its fluorescence, which is much weaker. The measurement is technically difficult owing to the low signal-to-noise ratio and the physical structure of vegetation; but it has been proposed as a possible method of monitoring the carbon cycle from satellites on a global scale.

Biological role of O2

Photosynthesis and respiration

A diagram of photosynthesis processes, including income of water and carbon dioxide, illumination and release of oxygen. Reactions produce ATP and NADPH in a Calvin cycle with a sugar as a by product.
Photosynthesis splits water to liberate O
2
and fixes CO
2
into sugar in what is called a Calvin cycle.

In nature, free oxygen is produced by the light-driven splitting of water during oxygenic photosynthesis. According to some estimates, green algae and cyanobacteria in marine environments provide about 70% of the free oxygen produced on Earth, and the rest is produced by terrestrial plants.[69] Other estimates of the oceanic contribution to atmospheric oxygen are higher, while some estimates are lower, suggesting oceans produce ~45% of Earth's atmospheric oxygen each year.[70]

A simplified overall formula for photosynthesis is:[71]

6 CO
2
+ 6 H
2
O
+ photonsC
6
H
12
O
6
+ 6 O
2

or simply

carbon dioxide + water + sunlight → glucose + dioxygen

Photolytic oxygen evolution occurs in the thylakoid membranes of photosynthetic organisms and requires the energy of four photons.[e] Many steps are involved, but the result is the formation of a proton gradient across the thylakoid membrane, which is used to synthesize adenosine triphosphate (ATP) via photophosphorylation.[72] The O
2
remaining (after production of the water molecule) is released into the atmosphere.[f]

The chemical energy of oxygen is released in mitochondria to generate ATP during oxidative phosphorylation.[4] The reaction for aerobic respiration is essentially the reverse of photosynthesis and is simplified as:

C
6
H
12
O
6
+ 6 O
2
→ 6 CO
2
+ 6 H
2
O
+ 2880 kJ/mol

In vertebrates, O
2
diffuses through membranes in the lungs and into red blood cells. Hemoglobin binds O
2
, changing color from bluish red to bright red[39] (CO
2
is released from another part of hemoglobin through the Bohr effect). Other animals use hemocyanin (molluscs and some arthropods) or hemerythrin (spiders and lobsters).[62] A liter of blood can dissolve 200 cm3 of O
2
.[62]

Until the discovery of anaerobic metazoa,[73] oxygen was thought to be a requirement for all complex life.[74]

Reactive oxygen species, such as superoxide ion (O
2
) and hydrogen peroxide (H
2
O
2
), are reactive by-products of oxygen use in organisms.[62] Parts of the immune system of higher organisms create peroxide, superoxide, and singlet oxygen to destroy invading microbes. Reactive oxygen species also play an important role in the hypersensitive response of plants against pathogen attack.[72] Oxygen is damaging to obligately anaerobic organisms, which were the dominant form of early life on Earth until O
2
began to accumulate in the atmosphere about 2.5 billion years ago during the Great Oxygenation Event, about a billion years after the first appearance of these organisms.[75][76]

An adult human at rest inhales 1.8 to 2.4 grams of oxygen per minute.[77] This amounts to more than 6 billion tonnes of oxygen inhaled by humanity per year.[g]

Living organisms

Partial pressures of oxygen in the human body (PO2)
Unit Alveolar pulmonary
gas pressures
Arterial blood oxygen Venous blood gas
kPa 14.2 11[78]-13[78] 4.0[78]-5.3[78]
mmHg 107 75[79]-100[79] 30[80]-40[80]

The free oxygen partial pressure in the body of a living vertebrate organism is highest in the respiratory system, and decreases along any arterial system, peripheral tissues, and venous system, respectively. Partial pressure is the pressure that oxygen would have if it alone occupied the volume.[81]

Build-up in the atmosphere

A graph showing time evolution of oxygen pressure on Earth; the pressure increases from zero to 0.2 atmospheres.
O
2
build-up in Earth's atmosphere: 1) no O
2
produced; 2) O
2
produced, but absorbed in oceans & seabed rock; 3) O
2
starts to gas out of the oceans, but is absorbed by land surfaces and formation of ozone layer; 4–5) O
2
sinks filled and the gas accumulates

Free oxygen gas was almost nonexistent in Earth's atmosphere before photosynthetic archaea and bacteria evolved, probably about 3.5 billion years ago. Free oxygen first appeared in significant quantities during the Paleoproterozoic eon (between 3.0 and 2.3 billion years ago).[82] Even if there was much dissolved iron in the oceans when oxygenic photosynthesis was getting more common, it appears the banded iron formations were created by anoxyenic or micro-aerophilic iron-oxidizing bacteria which dominated the deeper areas of the photic zone, while oxygen-producing cyanobacteria covered the shallows.[83] Free oxygen began to outgas from the oceans 3–2.7 billion years ago, reaching 10% of its present level around 1.7 billion years ago.[82][84]

The presence of large amounts of dissolved and free oxygen in the oceans and atmosphere may have driven most of the extant anaerobic organisms to extinction during the Great Oxygenation Event (oxygen catastrophe) about 2.4 billion years ago. Cellular respiration using O
2
enables aerobic organisms to produce much more ATP than anaerobic organisms.[85] Cellular respiration of O
2
occurs in all eukaryotes, including all complex multicellular organisms such as plants and animals.

Since the beginning of the Cambrian period 540 million years ago, atmospheric O
2
levels have fluctuated between 15% and 30% by volume.[86] Towards the end of the Carboniferous period (about 300 million years ago) atmospheric O
2
levels reached a maximum of 35% by volume,[86] which may have contributed to the large size of insects and amphibians at this time.[87]

Variations in atmospheric oxygen concentration have shaped past climates. When oxygen declined, atmospheric density dropped, which in turn increased surface evaporation, causing precipitation increases and warmer temperatures.[88]

At the current rate of photosynthesis it would take about 2,000 years to regenerate the entire O
2
in the present atmosphere.[89]

Industrial production

A drawing of three vertical pipes connected at the bottom and filled with oxygen (left pipe), water (middle) and hydrogen (right). Anode and cathode electrodes are inserted into the left and right pipes and externally connected to a battery.
Hofmann electrolysis apparatus used in electrolysis of water.

One hundred million tonnes of O
2
are extracted from air for industrial uses annually by two primary methods.[16] The most common method is fractional distillation of liquefied air, with N
2
distilling as a vapor while O
2
is left as a liquid.[16]

The other primary method of producing O
2
is passing a stream of clean, dry air through one bed of a pair of identical zeolite molecular sieves, which absorbs the nitrogen and delivers a gas stream that is 90% to 93% O
2
.[16] Simultaneously, nitrogen gas is released from the other nitrogen-saturated zeolite bed, by reducing the chamber operating pressure and diverting part of the oxygen gas from the producer bed through it, in the reverse direction of flow. After a set cycle time the operation of the two beds is interchanged, thereby allowing for a continuous supply of gaseous oxygen to be pumped through a pipeline. This is known as pressure swing adsorption. Oxygen gas is increasingly obtained by these non-cryogenic technologies (see also the related vacuum swing adsorption).[90]

Oxygen gas can also be produced through electrolysis of water into molecular oxygen and hydrogen. DC electricity must be used: if AC is used, the gases in each limb consist of hydrogen and oxygen in the explosive ratio 2:1. A similar method is the electrocatalytic O
2
evolution from oxides and oxoacids. Chemical catalysts can be used as well, such as in chemical oxygen generators or oxygen candles that are used as part of the life-support equipment on submarines, and are still part of standard equipment on commercial airliners in case of depressurization emergencies. Another air separation method is forcing air to dissolve through ceramic membranes based on zirconium dioxide by either high pressure or an electric current, to produce nearly pure O
2
gas.[65]

Storage

Oxygen and MAPP gas compressed gas cylinders with regulators

Oxygen storage methods include high pressure oxygen tanks, cryogenics and chemical compounds. For reasons of economy, oxygen is often transported in bulk as a liquid in specially insulated tankers, since one liter of liquefied oxygen is equivalent to 840 liters of gaseous oxygen at atmospheric pressure and 20 °C (68 °F).[16] Such tankers are used to refill bulk liquid oxygen storage containers, which stand outside hospitals and other institutions that need large volumes of pure oxygen gas. Liquid oxygen is passed through heat exchangers, which convert the cryogenic liquid into gas before it enters the building. Oxygen is also stored and shipped in smaller cylinders containing the compressed gas; a form that is useful in certain portable medical applications and oxy-fuel welding and cutting.[16]

Applications

Medical

A gray device with a label DeVILBISS LT4000 and some text on the front panel. A green plastic pipe is running from the device.
An oxygen concentrator in an emphysema patient's house

Uptake of O
2
from the air is the essential purpose of respiration, so oxygen supplementation is used in medicine. Treatment not only increases oxygen levels in the patient's blood, but has the secondary effect of decreasing resistance to blood flow in many types of diseased lungs, easing work load on the heart. Oxygen therapy is used to treat emphysema, pneumonia, some heart disorders (congestive heart failure), some disorders that cause increased pulmonary artery pressure, and any disease that impairs the body's ability to take up and use gaseous oxygen.[91]

Treatments are flexible enough to be used in hospitals, the patient's home, or increasingly by portable devices. Oxygen tents were once commonly used in oxygen supplementation, but have since been replaced mostly by the use of oxygen masks or nasal cannulas.[92]

Hyperbaric (high-pressure) medicine uses special oxygen chambers to increase the partial pressure of O
2
around the patient and, when needed, the medical staff.[93] Carbon monoxide poisoning, gas gangrene, and decompression sickness (the 'bends') are sometimes addressed with this therapy.[94] Increased O
2
concentration in the lungs helps to displace carbon monoxide from the heme group of hemoglobin.[95][96] Oxygen gas is poisonous to the anaerobic bacteria that cause gas gangrene, so increasing its partial pressure helps kill them.[97][98] Decompression sickness occurs in divers who decompress too quickly after a dive, resulting in bubbles of inert gas, mostly nitrogen and helium, forming in the blood. Increasing the pressure of O
2
as soon as possible helps to redissolve the bubbles back into the blood so that these excess gasses can be exhaled naturally through the lungs.[91][99][100] Normobaric oxygen administration at the highest available concentration is frequently used as first aid for any diving injury that may involve inert gas bubble formation in the tissues. There is epidemiological support for its use from a statistical study of cases recorded in a long term database.[101][102][103]

Life support and recreational use

Low pressure pure O
2
is used in space suits.

An application of O
2
as a low-pressure breathing gas is in modern space suits, which surround their occupant's body with the breathing gas. These devices use nearly pure oxygen at about one-third normal pressure, resulting in a normal blood partial pressure of O
2
. This trade-off of higher oxygen concentration for lower pressure is needed to maintain suit flexibility.[104][105]

Scuba and surface-supplied underwater divers and submariners also rely on artificially delivered O
2
. Submarines, submersibles and atmospheric diving suits usually operate at normal atmospheric pressure. Breathing air is scrubbed of carbon dioxide by chemical extraction and oxygen is replaced to maintain a constant partial pressure. Ambient pressure divers breathe air or gas mixtures with an oxygen fraction suited to the operating depth. Pure or nearly pure O
2
use in diving at pressures higher than atmospheric is usually limited to rebreathers, or decompression at relatively shallow depths (~6 meters depth, or less),[106][107] or medical treatment in recompression chambers at pressures up to 2.8 bar, where acute oxygen toxicity can be managed without the risk of drowning. Deeper diving requires significant dilution of O
2
with other gases, such as nitrogen or helium, to prevent oxygen toxicity.[106]

People who climb mountains or fly in non-pressurized fixed-wing aircraft sometimes have supplemental O
2
supplies.[h] Pressurized commercial airplanes have an emergency supply of O
2
automatically supplied to the passengers in case of cabin depressurization. Sudden cabin pressure loss activates chemical oxygen generators above each seat, causing oxygen masks to drop. Pulling on the masks "to start the flow of oxygen" as cabin safety instructions dictate, forces iron filings into the sodium chlorate inside the canister.[65] A steady stream of oxygen gas is then produced by the exothermic reaction.

Oxygen, as a mild euphoric, has a history of recreational use in oxygen bars and in sports. Oxygen bars are establishments found in the United States since the late 1990s that offer higher than normal O
2
exposure for a minimal fee.[108] Professional athletes, especially in American football, sometimes go off-field between plays to don oxygen masks to boost performance. The pharmacological effect is doubted; a placebo effect is a more likely explanation.[108] Available studies support a performance boost from oxygen enriched mixtures only if it is breathed during aerobic exercise.[109]

Other recreational uses that do not involve breathing include pyrotechnic applications, such as George Goble's five-second ignition of barbecue grills.[110]

Industrial

An elderly worker in a helmet is facing his side to the viewer in an industrial hall. The hall is dark but is illuminated yellow glowing splashes of a melted substance.
Most commercially produced O
2
is used to smelt and/or decarburize iron.

Smelting of iron ore into steel consumes 55% of commercially produced oxygen.[65] In this process, O
2
is injected through a high-pressure lance into molten iron, which removes sulfur impurities and excess carbon as the respective oxides, SO
2
and CO
2
. The reactions are exothermic, so the temperature increases to 1,700 °C.[65]

Another 25% of commercially produced oxygen is used by the chemical industry.[65] Ethylene is reacted with O
2
to create ethylene oxide, which, in turn, is converted into ethylene glycol; the primary feeder material used to manufacture a host of products, including antifreeze and polyester polymers (the precursors of many plastics and fabrics).[65] Large quantities of oxygen or air is used in oxy-cracking process[111] and for the production of acrylic acid,[112] diformyl-furane,[113] and benzylic acid.[114] On the other hand, the electrochemical synthesis of hydrogen peroxide from oxygen is a promising technology to replace the currently used hydroquinone-process. Last but not least, catalytic oxidation is used in afterburners to get rid of hazardous gases.[115][116]

Most of the remaining 20% of commercially produced oxygen is used in medical applications, metal cutting and welding, as an oxidizer in rocket fuel, and in water treatment.[65] Oxygen is used in oxyacetylene welding, burning acetylene with O
2
to produce a very hot flame. In this process, metal up to 60 cm (24 in) thick is first heated with a small oxy-acetylene flame and then quickly cut by a large stream of O
2
.[117]

Compounds

Water flowing from a bottle into a glass.
Water (H
2
O
) is the most familiar oxygen compound.

The oxidation state of oxygen is −2 in almost all known compounds of oxygen. The oxidation state −1 is found in a few compounds such as peroxides.[118] Compounds containing oxygen in other oxidation states are very uncommon: −1/2 (superoxides), −1/3 (ozonides), 0 (elemental, hypofluorous acid), +1/2 (dioxygenyl), +1 (dioxygen difluoride), and +2 (oxygen difluoride).[119]

Oxides and other inorganic compounds

Water (H
2
O
) is an oxide of hydrogen and the most familiar oxygen compound. Hydrogen atoms are covalently bonded to oxygen in a water molecule but also have an additional attraction (about 23.3 kJ/mol per hydrogen atom) to an adjacent oxygen atom in a separate molecule.[120] These hydrogen bonds between water molecules hold them approximately 15% closer than what would be expected in a simple liquid with just van der Waals forces.[121][i]

A rusty piece of a bolt.
Oxides, such as iron oxide or rust, form when oxygen combines with other elements.

Due to its electronegativity, oxygen forms chemical bonds with almost all other elements to give corresponding oxides. The surface of most metals, such as aluminium and titanium, are oxidized in the presence of air and become coated with a thin film of oxide that passivates the metal and slows further corrosion. Many oxides of the transition metals are non-stoichiometric compounds, with slightly less metal than the chemical formula would show. For example, the mineral FeO (wüstite) is written as , where x is usually around 0.05.[122]

Oxygen is present in the atmosphere in trace quantities in the form of carbon dioxide (CO
2
). The Earth's crustal rock is composed in large part of oxides of silicon (silica SiO
2
, as found in granite and quartz), aluminium (aluminium oxide Al
2
O
3
, in bauxite and corundum), iron (iron(III) oxide Fe
2
O
3
, in hematite and rust), and calcium carbonate (in limestone). The rest of the Earth's crust is also made of oxygen compounds, in particular various complex silicates (in silicate minerals). The Earth's mantle, of much larger mass than the crust, is largely composed of silicates of magnesium and iron.

Water-soluble silicates in the form of Na
4
SiO
4
, Na
2
SiO
3
, and Na
2
Si
2
O
5
are used as detergents and adhesives.[123]

Oxygen also acts as a ligand for transition metals, forming transition metal dioxygen complexes, which feature metal–O
2
. This class of compounds includes the heme proteins hemoglobin and myoglobin.[124] An exotic and unusual reaction occurs with PtF
6
, which oxidizes oxygen to give O2+PtF6, dioxygenyl hexafluoroplatinate.[125]

Organic compounds

A ball structure of a molecule. Its backbone is a zig-zag chain of three carbon atoms connected in the center to an oxygen atom and on the end to 6 hydrogens.
Acetone is an important feeder material in the chemical industry.
  Oxygen
  Carbon
  Hydrogen

Among the most important classes of organic compounds that contain oxygen are (where "R" is an organic group): alcohols (R-OH); ethers (R-O-R); ketones (R-CO-R); aldehydes (R-CO-H); carboxylic acids (R-COOH); esters (R-COO-R); acid anhydrides (R-CO-O-CO-R); and amides (R-C(O)-NR
2
). There are many important organic solvents that contain oxygen, including: acetone, methanol, ethanol, isopropanol, furan, THF, diethyl ether, dioxane, ethyl acetate, DMF, DMSO, acetic acid, and formic acid. Acetone ((CH
3
)
2
CO
) and phenol (C
6
H
5
OH
) are used as feeder materials in the synthesis of many different substances. Other important organic compounds that contain oxygen are: glycerol, formaldehyde, glutaraldehyde, citric acid, acetic anhydride, and acetamide. Epoxides are ethers in which the oxygen atom is part of a ring of three atoms. The element is similarly found in almost all biomolecules that are important to (or generated by) life.

Oxygen reacts spontaneously with many organic compounds at or below room temperature in a process called autoxidation.[126] Most of the organic compounds that contain oxygen are not made by direct action of O
2
. Organic compounds important in industry and commerce that are made by direct oxidation of a precursor include ethylene oxide and peracetic acid.[123]

Safety and precautions

The NFPA 704 standard rates compressed oxygen gas as nonhazardous to health, nonflammable and nonreactive, but an oxidizer. Refrigerated liquid oxygen (LOX) is given a health hazard rating of 3 (for increased risk of hyperoxia from condensed vapors, and for hazards common to cryogenic liquids such as frostbite), and all other ratings are the same as the compressed gas form.[127]

Toxicity

A diagraph showing a man torso and listing symptoms of oxygen toxicity: Eyes – visual field loss, nearsightedness, cataract formation, bleeding, fibrosis; Head – seizures; Muscles – twitching; Respiratory system – jerky breathing, irritation, coughing, pain, shortness of breath, tracheobronchitis, acute respiratory distress syndrome.
Main symptoms of oxygen toxicity[128]

Oxygen gas (O
2
) can be toxic at elevated partial pressures, leading to convulsions and other health problems.[106][j][129] Oxygen toxicity usually begins to occur at partial pressures more than 50 kilopascals (kPa), equal to about 50% oxygen composition at standard pressure or 2.5 times the normal sea-level O
2
partial pressure of about 21 kPa. This is not a problem except for patients on mechanical ventilators, since gas supplied through oxygen masks in medical applications is typically composed of only 30%–50% O
2
by volume (about 30 kPa at standard pressure).[9]

At one time, premature babies were placed in incubators containing O
2
-rich air, but this practice was discontinued after some babies were blinded by the oxygen content being too high.[9]

Breathing pure O
2
in space applications, such as in some modern space suits, or in early spacecraft such as Apollo, causes no damage due to the low total pressures used.[104][130] In the case of spacesuits, the O
2
partial pressure in the breathing gas is, in general, about 30 kPa (1.4 times normal), and the resulting O
2
partial pressure in the astronaut's arterial blood is only marginally more than normal sea-level O
2
partial pressure.[131]

Oxygen toxicity to the lungs and central nervous system can also occur in deep scuba diving and surface supplied diving.[9][106] Prolonged breathing of an air mixture with an O
2
partial pressure more than 60 kPa can eventually lead to permanent pulmonary fibrosis.[132] Exposure to an O
2
partial pressures greater than 160 kPa (about 1.6 atm) may lead to convulsions (normally fatal for divers). Acute oxygen toxicity (causing seizures, its most feared effect for divers) can occur by breathing an air mixture with 21% O
2
at 66 m (217 ft) or more of depth; the same thing can occur by breathing 100% O
2
at only 6 m (20 ft).[132][133][134][135]

Combustion and other hazards

The inside of a small spaceship, charred and apparently destroyed.
The interior of the Apollo 1 Command Module. Pure O
2
at higher than normal pressure and a spark led to a fire and the loss of the Apollo 1 crew.

Highly concentrated sources of oxygen promote rapid combustion. Fire and explosion hazards exist when concentrated oxidants and fuels are brought into close proximity; an ignition event, such as heat or a spark, is needed to trigger combustion.[3][136] Oxygen is the oxidant, not the fuel, but nevertheless the source of most of the chemical energy released in combustion.[3][38]

Concentrated O
2
will allow combustion to proceed rapidly and energetically.[136] Steel pipes and storage vessels used to store and transmit both gaseous and liquid oxygen will act as a fuel; and therefore the design and manufacture of O
2
systems requires special training to ensure that ignition sources are minimized.[136] The fire that killed the Apollo 1 crew in a launch pad test spread so rapidly because the capsule was pressurized with pure O
2
but at slightly more than atmospheric pressure, instead of the ​13 normal pressure that would be used in a mission.[k][138]

Liquid oxygen spills, if allowed to soak into organic matter, such as wood, petrochemicals, and asphalt can cause these materials to detonate unpredictably on subsequent mechanical impact.[136]

See also

Notes

  1. ^ These results were mostly ignored until 1860. Part of this rejection was due to the belief that atoms of one element would have no chemical affinity towards atoms of the same element, and part was due to apparent exceptions to Avogadro's law that were not explained until later in terms of dissociating molecules.
  2. ^ An orbital is a concept from quantum mechanics that models an electron as a wave-like particle that has a spatial distribution about an atom or molecule.
  3. ^ Oxygen's paramagnetism can be used analytically in paramagnetic oxygen gas analysers that determine the purity of gaseous oxygen. ("Company literature of Oxygen analyzers (triplet)". Servomex. Archived from the original on March 8, 2008. Retrieved December 15, 2007.)
  4. ^ Figures given are for values up to 80 km (50 mi) above the surface
  5. ^ Thylakoid membranes are part of chloroplasts in algae and plants while they simply are one of many membrane structures in cyanobacteria. In fact, chloroplasts are thought to have evolved from cyanobacteria that were once symbiotic partners with the progenitors of plants and algae.
  6. ^ Water oxidation is catalyzed by a manganese-containing enzyme complex known as the oxygen evolving complex (OEC) or water-splitting complex found associated with the lumenal side of thylakoid membranes. Manganese is an important cofactor, and calcium and chloride are also required for the reaction to occur. (Raven 2005)
  7. ^ (1.8 grams/min/person)×(60 min/h)×(24 h/day)×(365 days/year)×(6.6 billion people)/1,000,000 g/t=6.24 billion tonnes
  8. ^ The reason is that increasing the proportion of oxygen in the breathing gas at low pressure acts to augment the inspired O
    2
    partial pressure nearer to that found at sea-level.
  9. ^ Also, since oxygen has a higher electronegativity than hydrogen, the charge difference makes it a polar molecule. The interactions between the different dipoles of each molecule cause a net attraction force.
  10. ^ Since O
    2
    's partial pressure is the fraction of O
    2
    times the total pressure, elevated partial pressures can occur either from high O
    2
    fraction in breathing gas or from high breathing gas pressure, or a combination of both.
  11. ^ No single ignition source of the fire was conclusively identified, although some evidence points to an arc from an electrical spark.[137]

References

  1. ^ Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E110. ISBN 0-8493-0464-4.
  2. ^ Atkins, P.; Jones, L.; Laverman, L. (2016).Chemical Principles, 7th edition. Freeman. ISBN 978-1-4641-8395-9
  3. ^ a b c d e Weiss, H. M. (2008). "Appreciating Oxygen". J. Chem. Educ. 85 (9): 1218–1219. Bibcode:2008JChEd..85.1218W. doi:10.1021/ed085p1218.
  4. ^ a b Schmidt-Rohr, K. (2020). "Oxygen Is the High-Energy Molecule Powering Complex Multicellular Life: Fundamental Corrections to Traditional Bioenergetics” ACS Omega 5: 2221-2233. http://dx.doi.org/10.1021/acsomega.9b03352
  5. ^ Jastrow, Joseph (1936). Story of Human Error. Ayer Publishing. p. 171. ISBN 978-0-8369-0568-7.
  6. ^ a b c d e Cook & Lauer 1968, p.499.
  7. ^ a b c Chisholm, Hugh, ed. (1911). "Mayow, John" . Encyclopædia Britannica. 17 (11th ed.). Cambridge University Press. pp. 938–939.
  8. ^ a b World of Chemistry contributors (2005). "John Mayow". World of Chemistry. Thomson Gale. ISBN 978-0-669-32727-4. Retrieved December 16, 2007.
  9. ^ a b c d e f Emsley 2001, p.299
  10. ^ Best, Nicholas W. (2015). "Lavoisier's 'Reflections on Phlogiston' I: Against Phlogiston Theory". Foundations of Chemistry. 17 (2): 137–151. doi:10.1007/s10698-015-9220-5. S2CID 170422925.
  11. ^ Morris, Richard (2003). The last sorcerers: The path from alchemy to the periodic table. Washington, D.C.: Joseph Henry Press. ISBN 978-0-309-08905-0.
  12. ^ a