استقرا

از ویکی‌پدیا، دانشنامهٔ آزاد
(تغییرمسیر از استقراء)
پرش به ناوبری پرش به جستجو

استقرا (به انگلیسی: Induction) یا استدلال استقرائی (به انگلیسی: Inductive reasoning) نوعی استدلال است که مقدمات آن از نتیجه به صورت محتمل پشتیبانی می‌کنند. در مقابل استدلال قیاسی است که مقدمات به صورت قطعی از نتیجه حمایت می‌کنند. در منطق کلاسیک استدلال استقرایی را استدلال از جزء به کل تعریف می‌کردند که در منطق جدید این تعریف پذیرفته نیست. بعضی انواع استقرا تعمیم، استدلال علی، استدلال بر مبنای تمثیل و پیش‌بینی نام دارند. فرایند استقراء از مشاهدات جزئی شروع شده واستنتاج نتایج تعمیم داده می‌شود.

هر استدلال مدعی است که مقدمات آن زمینهٔ درستی نتیجهٔ آن استدلال را فراهم می سازند و در واقع حضور همین ادعا هست که نشان دهندهٔ وجود یک استدلال است. یک استدلال استنتاجی مدعی است که مقدمات آن نتیجه را به‌طور قطعی پشتیبانی می‌کند. به عکس یک استدلال استقرایی چنین ادعایی ندارد. اگر قضاوت ما از تفسیر یک متن استدلالی اینگونه باشد که چنین ادعایی به قطع وجود دارد، آنگاه برداشت ما از آن متن یک استدلال استنتاجی است. اگر چنین قضاوتی نداشته باشیم، برداشت ما از آن متن یک استدلال استقرایی است. از آنجا که در هر استدلال چنین قطعیتی (به‌طور ضمنی یا صریح) ادعا می‌شود و یا نمی‌شود، بنابراین هر استدلال استنتاجی یا استقرایی خواهد بود.

استقرا تام[ویرایش]

استقرا تام در جایی است که افراد مورد نظر، یعنی نمونه‌های جزئی که می خواهیم از آن‌ها نتیجه گیری کنیم، به تعدادی باشند که بتوانیم همهٔ آن‌ها را بررسی کنیم، یعنی افراد و نمونه ها، محدود و معدود باشند و هر یک جداجدا مورد بررسی قرار گرفته باشند و پس از بررسی همهٔ آن ها، حکم کلی صادر شود. این حکم کلی در مورد همهٔ آن‌ها صادق است، زیرا تک تک آن‌ها مورد بررسی قرار گرفته و مشمول این حکم بوده‌اند.

استقرا ناقص[ویرایش]

این استقرا در صورتی است که همهٔ افراد مورد نظر بررسی نشده باشند. به این صورت که ما در تعدادی از آن‌ها صفتی معین بیابیم و سپس حکم کنیم که همهٔ افراد آن موضوع دارای آن صفت هستند.

یک مثال ساده[ویرایش]

مثال زیر، ویژگی این روش را نشان می‌دهد:

- همه انسان‌هایی که تاکنون دیده‌ام می‌میرند.
- سقراط انسان است.
- بنابراین: سقراط خواهد مرد.

پیش فرض نخست بیان می‌کند که همه موجودات قرار گرفته زیر نام و عنوان «انسان» که تاکنون مورد مشاهده‌ی فرد مدعی قرار گرفته‌اند می‌میرند. عبارت دوم بیان می‌کند: سقراط هم زیر عنوان یک «انسان» قرار دارد. در نتیجه سقراط بالاخره می میرد، زیرا او نیز به عنوان یک انسان خواهد مرد،چون که عنوان «انسان» به او نسبت داده شده و این ویژگی او را نیز شامل می‌شود.

جستارهای وابسته[ویرایش]

استدلال قیاسی

منابع[ویرایش]

ویکی‌پدیای انگلیسی

پیوند به بیرون[ویرایش]

https://en.wikipedia.org/wiki/Inductive_reasoning