فهرست انتگرال توابع وارون مثلثاتی

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو

در ادامه فهرستی از انتگرال نامعین توابع وارون مثلثاتی نوشته شده‌است، برای دیدن فهرست کامل صفحهٔ فهرست انتگرال‌ها را نگاه کنید.

هشدار:

  • C همان ثابت انتگرال‌گیری است که تنها زمانی مقدار دقیق آن معلوم می‌شود که داده‌ای از مقدار نهایی انتگرال در دسترس باشد؛ در غیر این صورت ثابت انتگرال‌گیری هر عددی می‌تواند باشد.
  • برای هر رابطهٔ نوشته شده برای توابع وارون مثلثاتی، می‌توان رابطهٔ مشابهی در میان انتگرال توابع وارون هذلولی پیدا کرد.

تابع وارون سینوس یا Arcsine[ویرایش]

\int\arcsin(a\,x)\,dx=
  x\arcsin(a\,x)+
  \frac{\sqrt{1-a^2\,x^2}}{a}+C
\int x\arcsin(a\,x)\,dx=
  \frac{x^2\arcsin(a\,x)}{2}-
  \frac{\arcsin(a\,x)}{4\,a^2}+
  \frac{x\sqrt{1-a^2\,x^2}}{4\,a}+C
\int x^2\arcsin(a\,x)\,dx=
  \frac{x^3\arcsin(a\,x)}{3}+
  \frac{\left(a^2\,x^2+2\right)\sqrt{1-a^2\,x^2}}{9\,a^3}+C
\int x^m\arcsin(a\,x)\,dx=
  \frac{x^{m+1}\arcsin(a\,x)}{m+1}\,-\,
  \frac{a}{m+1}\int \frac{x^{m+1}}{\sqrt{1-a^2\,x^2}}\,dx\quad(m\ne-1)
\int\arcsin(a\,x)^2\,dx=
  -2\,x+x\arcsin(a\,x)^2+
  \frac{2\sqrt{1-a^2\,x^2}\arcsin(a\,x)}{a}+C
\int\arcsin(a\,x)^n\,dx=
  x\arcsin(a\,x)^n\,+\,
  \frac{n\sqrt{1-a^2\,x^2}\arcsin(a\,x)^{n-1}}{a}\,-\,
  n\,(n-1)\int\arcsin(a\,x)^{n-2}\,dx
\int\arcsin(a\,x)^n\,dx=
  \frac{x\arcsin(a\,x)^{n+2}}{(n+1)\,(n+2)}\,+\,
  \frac{\sqrt{1-a^2\,x^2}\arcsin(a\,x)^{n+1}}{a\,(n+1)}\,-\,
  \frac{1}{(n+1)\,(n+2)}\int\arcsin(a\,x)^{n+2}\,dx\quad(n\ne-1,-2)

تابع وارون کسینوس یا Arccosine[ویرایش]

\int\arccos(a\,x)\,dx=
  x\arccos(a\,x)-
  \frac{\sqrt{1-a^2\,x^2}}{a}+C
\int x\arccos(a\,x)\,dx=
  \frac{x^2\arccos(a\,x)}{2}-
  \frac{\arccos(a\,x)}{4\,a^2}-
  \frac{x\sqrt{1-a^2\,x^2}}{4\,a}+C
\int x^2\arccos(a\,x)\,dx=
  \frac{x^3\arccos(a\,x)}{3}-
  \frac{\left(a^2\,x^2+2\right)\sqrt{1-a^2\,x^2}}{9\,a^3}+C
\int x^m\arccos(a\,x)\,dx=
  \frac{x^{m+1}\arccos(a\,x)}{m+1}\,+\,
  \frac{a}{m+1}\int \frac{x^{m+1}}{\sqrt{1-a^2\,x^2}}\,dx\quad(m\ne-1)
\int\arccos(a\,x)^2\,dx=
  -2\,x+x\arccos(a\,x)^2-
  \frac{2\sqrt{1-a^2\,x^2}\arccos(a\,x)}{a}+C
\int\arccos(a\,x)^n\,dx=
  x\arccos(a\,x)^n\,-\,
  \frac{n\sqrt{1-a^2\,x^2}\arccos(a\,x)^{n-1}}{a}\,-\,
  n\,(n-1)\int\arccos(a\,x)^{n-2}\,dx
\int\arccos(a\,x)^n\,dx=
  \frac{x\arccos(a\,x)^{n+2}}{(n+1)\,(n+2)}\,-\,
  \frac{\sqrt{1-a^2\,x^2}\arccos(a\,x)^{n+1}}{a\,(n+1)}\,-\,
  \frac{1}{(n+1)\,(n+2)}\int\arccos(a\,x)^{n+2}\,dx\quad(n\ne-1,-2)

تابع وارون تانژانت یا Arctangent[ویرایش]

\int\arctan(a\,x)\,dx=
  x\arctan(a\,x)-
  \frac{\ln\left(a^2\,x^2+1\right)}{2\,a}+C
\int x\arctan(a\,x)\,dx=
  \frac{x^2\arctan(a\,x)}{2}+
  \frac{\arctan(a\,x)}{2\,a^2}-\frac{x}{2\,a}+C
\int x^2\arctan(a\,x)\,dx=
  \frac{x^3\arctan(a\,x)}{3}+
  \frac{\ln\left(a^2\,x^2+1\right)}{6\,a^3}-\frac{x^2}{6\,a}+C
\int x^m\arctan(a\,x)\,dx=
  \frac{x^{m+1}\arctan(a\,x)}{m+1}-
  \frac{a}{m+1}\int \frac{x^{m+1}}{a^2\,x^2+1}\,dx\quad(m\ne-1)

تابع وارون کتانژانت یا Arccotangent[ویرایش]

\int\arccot(a\,x)\,dx=
  x\arccot(a\,x)+
  \frac{\ln\left(a^2\,x^2+1\right)}{2\,a}+C
\int x\arccot(a\,x)\,dx=
  \frac{x^2\arccot(a\,x)}{2}+
  \frac{\arccot(a\,x)}{2\,a^2}+\frac{x}{2\,a}+C
\int x^2\arccot(a\,x)\,dx=
  \frac{x^3\arccot(a\,x)}{3}-
  \frac{\ln\left(a^2\,x^2+1\right)}{6\,a^3}+\frac{x^2}{6\,a}+C
\int x^m\arccot(a\,x)\,dx=
  \frac{x^{m+1}\arccot(a\,x)}{m+1}+
  \frac{a}{m+1}\int \frac{x^{m+1}}{a^2\,x^2+1}\,dx\quad(m\ne-1)

تابع وارون سکانت یا Arcsecant[ویرایش]

\int\arcsec(a\,x)\,dx=
  x\arcsec(a\,x)-
  \frac{1}{a}\,\operatorname{arctanh}\,\sqrt{1-\frac{1}{a^2\,x^2}}+C
\int x\arcsec(a\,x)\,dx=
  \frac{x^2\arcsec(a\,x)}{2}-
  \frac{x}{2\,a}\sqrt{1-\frac{1}{a^2\,x^2}}+C
\int x^2\arcsec(a\,x)\,dx=
  \frac{x^3\arcsec(a\,x)}{3}\,-\,
  \frac{1}{6\,a^3}\,\operatorname{arctanh}\,\sqrt{1-\frac{1}{a^2\,x^2}}\,-\,
  \frac{x^2}{6\,a}\sqrt{1-\frac{1}{a^2\,x^2}}\,+\,C
\int x^m\arcsec(a\,x)\,dx=
  \frac{x^{m+1}\arcsec(a\,x)}{m+1}\,-\,
  \frac{1}{a\,(m+1)}\int \frac{x^{m-1}}{\sqrt{1-\frac{1}{a^2\,x^2}}}\,dx\quad(m\ne-1)

تابع وارون کسکانت یا Arccosecant[ویرایش]

\int\arccsc(a\,x)\,dx=
  x\arccsc(a\,x)+
  \frac{1}{a}\,\operatorname{arctanh}\,\sqrt{1-\frac{1}{a^2\,x^2}}+C
\int x\arccsc(a\,x)\,dx=
  \frac{x^2\arccsc(a\,x)}{2}+
  \frac{x}{2\,a}\sqrt{1-\frac{1}{a^2\,x^2}}+C
\int x^2\arccsc(a\,x)\,dx=
  \frac{x^3\arccsc(a\,x)}{3}\,+\,
  \frac{1}{6\,a^3}\,\operatorname{arctanh}\,\sqrt{1-\frac{1}{a^2\,x^2}}\,+\,
  \frac{x^2}{6\,a}\sqrt{1-\frac{1}{a^2\,x^2}}\,+\,C
\int x^m\arccsc(a\,x)\,dx=
  \frac{x^{m+1}\arccsc(a\,x)}{m+1}\,+\,
  \frac{1}{a\,(m+1)}\int \frac{x^{m-1}}{\sqrt{1-\frac{1}{a^2\,x^2}}}\,dx\quad(m\ne-1)

منابع[ویرایش]

مشارکت‌کنندگان ویکی‌پدیا، «List of integrals of inverse trigonometric functions»، ویکی‌پدیای انگلیسی، دانشنامهٔ آزاد (بازیابی در ۱ سپتامبر ۲۰۱۱).