فهرست انتگرال توابع مثلثاتی

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو

در ادامه فهرستی از انتگرال تابع‌های مثلثاتی نوشته شده‌است. برای آگاهی از انتگرال تابع‌های نمایی و مثلثاتی فهرست انتگرال تابع‌های نمایی را نگاه کنید، همچنین برای داشتن یک فهرست کامل صفحهٔ فهرست انتگرال‌ها را نگاه کنید.

اگر تابع \sin(x) را شکل کلی تابع مثلثاتی در نظر بگیریم و \cos(x) را به عنوان مشتق آن، آنگاه:

\int a\cos nx\;dx = \frac{a}{n}\sin nx+c

در تمامی رابطه‌ها فرض می‌شود که a ناصفر است و C ثابت انتگرال‌گیری است.

انتگرال‌هایی که تنها تابع سینوس دارند[ویرایش]

\int\sin ax\;dx = -\frac{1}{a}\cos ax+C\,\!


\int\sin^2 {ax}\;dx = \frac{x}{2} - \frac{1}{4a} \sin 2ax +C= \frac{x}{2} - \frac{1}{2a} \sin ax\cos ax +C\!


\int x\sin^2 {ax}\;dx = \frac{x^2}{4} - \frac{x}{4a} \sin 2ax - \frac{1}{8a^2} \cos 2ax +C\!


\int x^2\sin^2 {ax}\;dx = \frac{x^3}{6} - \left( \frac {x^2}{4a} - \frac{1}{8a^3} \right) \sin 2ax - \frac{x}{4a^2} \cos 2ax +C\!


\int\sin b_1x\sin b_2x\;dx = \frac{\sin((b_1-b_2)x)}{2(b_1-b_2)}-\frac{\sin((b_1+b_2)x)}{2(b_1+b_2)}+C \qquad\mbox{(for }|b_1|\neq|b_2|\mbox{)}\,\!


\int\sin^n {ax}\;dx = -\frac{\sin^{n-1} ax\cos ax}{na} + \frac{n-1}{n}\int\sin^{n-2} ax\;dx \qquad\mbox{(for }n>0\mbox{)}\,\!


\int\frac{dx}{\sin ax} = \frac{1}{a}\ln \left|\tan\frac{ax}{2}\right|+C


\int\frac{dx}{\sin^n ax} = \frac{\cos ax}{a(1-n) \sin^{n-1} ax}+\frac{n-2}{n-1}\int\frac{dx}{\sin^{n-2}ax} \qquad\mbox{(for }n>1\mbox{)}\,\!


\int x\sin ax\;dx = \frac{\sin ax}{a^2}-\frac{x\cos ax}{a}+C\,\!


\int x^n\sin ax\;dx = -\frac{x^n}{a}\cos ax+\frac{n}{a}\int x^{n-1}\cos ax\;dx = \sum_{k=0}^{2k\leq n} (-1)^{k+1} \frac{x^{n-2k}}{a^{1+2k}}\frac{n!}{(n-2k)!} \cos ax +\sum_{k=0}^{2k+1\leq n}(-1)^k \frac{x^{n-1-2k}}{a^{2+2k}}\frac{n!}{(n-2k-1)!} \sin ax  \qquad\mbox{(for }n>0\mbox{)}\,\!


\int_{\frac{-a}{2}}^{\frac{a}{2}} x^2\sin^2 {\frac{n\pi x}{a}}\;dx = \frac{a^3(n^2\pi^2-6)}{24n^2\pi^2}   \qquad\mbox{(for }n=2,4,6...\mbox{)}\,\!


\int\frac{\sin ax}{x} dx = \sum_{n=0}^\infty (-1)^n\frac{(ax)^{2n+1}}{(2n+1)\cdot (2n+1)!} +C\,\!


\int\frac{\sin ax}{x^n} dx = -\frac{\sin ax}{(n-1)x^{n-1}} + \frac{a}{n-1}\int\frac{\cos ax}{x^{n-1}} dx\,\!


\int\frac{dx}{1\pm\sin ax} = \frac{1}{a}\tan\left(\frac{ax}{2}\mp\frac{\pi}{4}\right)+C


\int\frac{x\;dx}{1+\sin ax} = \frac{x}{a}\tan\left(\frac{ax}{2} - \frac{\pi}{4}\right)+\frac{2}{a^2}\ln\left|\cos\left(\frac{ax}{2}-\frac{\pi}{4}\right)\right|+C


\int\frac{x\;dx}{1-\sin ax} = \frac{x}{a}\cot\left(\frac{\pi}{4} - \frac{ax}{2}\right)+\frac{2}{a^2}\ln\left|\sin\left(\frac{\pi}{4}-\frac{ax}{2}\right)\right|+C


\int\frac{\sin ax\;dx}{1\pm\sin ax} = \pm x+\frac{1}{a}\tan\left(\frac{\pi}{4}\mp\frac{ax}{2}\right)+C

انتگرال‌هایی که تنها تابع کسینوس دارند[ویرایش]

\int\cos ax\;dx = \frac{1}{a}\sin ax+C\,\!
\int\cos^2 {ax}\;dx = \frac{x}{2} + \frac{1}{4a} \sin 2ax +C = \frac{x}{2} + \frac{1}{2a} \sin ax\cos ax +C\!
\int\cos^n ax\;dx = \frac{\cos^{n-1} ax\sin ax}{na} + \frac{n-1}{n}\int\cos^{n-2} ax\;dx \qquad\mbox{(for }n>0\mbox{)}\,\!
\int x\cos ax\;dx = \frac{\cos ax}{a^2} + \frac{x\sin ax}{a}+C\,\!
\int x^2\cos^2 {ax}\;dx = \frac{x^3}{6} + \left( \frac {x^2}{4a} - \frac{1}{8a^3} \right) \sin 2ax + \frac{x}{4a^2} \cos 2ax +C\!
\int x^n\cos ax\;dx = \frac{x^n\sin ax}{a} - \frac{n}{a}\int x^{n-1}\sin ax\;dx\,= \sum_{k=0}^{2k+1\leq n} (-1)^{k} \frac{x^{n-2k-1}}{a^{2+2k}}\frac{n!}{(n-2k-1)!} \cos ax +\sum_{k=0}^{2k\leq n}(-1)^{k} \frac{x^{n-2k}}{a^{1+2k}}\frac{n!}{(n-2k)!} \sin ax  \!
\int\frac{\cos ax}{x} dx = \ln|ax|+\sum_{k=1}^\infty (-1)^k\frac{(ax)^{2k}}{2k\cdot(2k)!}+C\,\!
\int\frac{\cos ax}{x^n} dx = -\frac{\cos ax}{(n-1)x^{n-1}}-\frac{a}{n-1}\int\frac{\sin ax}{x^{n-1}} dx \qquad\mbox{(for }n\neq 1\mbox{)}\,\!
\int\frac{dx}{\cos ax} = \frac{1}{a}\ln\left|\tan\left(\frac{ax}{2}+\frac{\pi}{4}\right)\right|+C
\int\frac{dx}{\cos^n ax} = \frac{\sin ax}{a(n-1) \cos^{n-1} ax} + \frac{n-2}{n-1}\int\frac{dx}{\cos^{n-2} ax} \qquad\mbox{(for }n>1\mbox{)}\,\!
\int\frac{dx}{1+\cos ax} = \frac{1}{a}\tan\frac{ax}{2}+C\,\!
\int\frac{dx}{1-\cos ax} = -\frac{1}{a}\cot\frac{ax}{2}+C\,\!
\int\frac{x\;dx}{1+\cos ax} = \frac{x}{a}\tan\frac{ax}{2} + \frac{2}{a^2}\ln\left|\cos\frac{ax}{2}\right|+C
\int\frac{x\;dx}{1-\cos ax} = -\frac{x}{a}\cot\frac{ax}{2}+\frac{2}{a^2}\ln\left|\sin\frac{ax}{2}\right|+C
\int\frac{\cos ax\;dx}{1+\cos ax} = x - \frac{1}{a}\tan\frac{ax}{2}+C\,\!
\int\frac{\cos ax\;dx}{1-\cos ax} = -x-\frac{1}{a}\cot\frac{ax}{2}+C\,\!
\int\cos a_1x\cos a_2x\;dx = \frac{\sin(a_1-a_2)x}{2(a_1-a_2)}+\frac{\sin(a_1+a_2)x}{2(a_1+a_2)}+C \qquad\mbox{(for }|a_1|\neq|a_2|\mbox{)}\,\!

انتگرال‌هایی که تنها تابع تانژانت دارند[ویرایش]

\int\tan ax\;dx = -\frac{1}{a}\ln|\cos ax|+C = \frac{1}{a}\ln|\sec ax|+C\,\!
\int\tan^n ax\;dx = \frac{1}{a(n-1)}\tan^{n-1} ax-\int\tan^{n-2} ax\;dx \qquad\mbox{(for }n\neq 1\mbox{)}\,\!
\int\frac{dx}{q \tan ax + p} = \frac{1}{p^2 + q^2}(px + \frac{q}{a}\ln|q\sin ax + p\cos ax|)+C \qquad\mbox{(for }p^2 + q^2\neq 0\mbox{)}\,\!
\int\frac{dx}{\tan ax} = \frac{1}{a}\ln|\sin ax|+C\,\!
\int\frac{dx}{\tan ax + 1} = \frac{x}{2} + \frac{1}{2a}\ln|\sin ax + \cos ax|+C\,\!
\int\frac{dx}{\tan ax - 1} = -\frac{x}{2} + \frac{1}{2a}\ln|\sin ax - \cos ax|+C\,\!
\int\frac{\tan ax\;dx}{\tan ax + 1} = \frac{x}{2} - \frac{1}{2a}\ln|\sin ax + \cos ax|+C\,\!
\int\frac{\tan ax\;dx}{\tan ax - 1} = \frac{x}{2} + \frac{1}{2a}\ln|\sin ax - \cos ax|+C\,\!

انتگرال‌هایی که تنها تابع سکانت دارند[ویرایش]

انتگرال‌هایی که تنها تابع کسکانت دارند[ویرایش]

\int \csc{ax} \, dx = -\frac{1}{a}\ln{\left| \csc{ax}+\cot{ax}\right|}+C
\int \csc^2{x} \, dx = -\cot{x}+C
\int \csc^n{ax} \, dx = -\frac{\csc^{n-1}{ax} \cos{ax}}{a(n-1)} \,+\, \frac{n-2}{n-1}\int \csc^{n-2}{ax} \, dx \qquad \mbox{ (for }n \ne 1\mbox{)}\,\!
\int \frac{dx}{\csc{x} + 1} = x - \frac{2\sin{\frac{x}{2}}}{\cos{\frac{x}{2}}+\sin{\frac{x}{2}}}+C
\int \frac{dx}{\csc{x} - 1} = \frac{2\sin{\frac{x}{2}}}{\cos{\frac{x}{2}}-\sin{\frac{x}{2}}}-x+C

انتگرال‌هایی که تنها تابع کتانژانت دارند[ویرایش]

\int\cot ax\;dx = \frac{1}{a}\ln|\sin ax|+C\,\!
\int\cot^n ax\;dx = -\frac{1}{a(n-1)}\cot^{n-1} ax - \int\cot^{n-2} ax\;dx \qquad\mbox{(for }n\neq 1\mbox{)}\,\!
\int\frac{dx}{1 + \cot ax} = \int\frac{\tan ax\;dx}{\tan ax+1}\,\!
\int\frac{dx}{1 - \cot ax} = \int\frac{\tan ax\;dx}{\tan ax-1}\,\!

انتگرال‌هایی که سینوس و کسینوس دارند[ویرایش]

\int\frac{dx}{\cos ax\pm\sin ax} = \frac{1}{a\sqrt{2}}\ln\left|\tan\left(\frac{ax}{2}\pm\frac{\pi}{8}\right)\right|+C
\int\frac{dx}{(\cos ax\pm\sin ax)^2} = \frac{1}{2a}\tan\left(ax\mp\frac{\pi}{4}\right)+C
\int\frac{dx}{(\cos x + \sin x)^n} = \frac{1}{n-1}\left(\frac{\sin x - \cos x}{(\cos x + \sin x)^{n - 1}} - 2(n - 2)\int\frac{dx}{(\cos x + \sin x)^{n-2}} \right)
\int\frac{\cos ax\;dx}{\cos ax + \sin ax} = \frac{x}{2} + \frac{1}{2a}\ln\left|\sin ax + \cos ax\right|+C
\int\frac{\cos ax\;dx}{\cos ax - \sin ax} = \frac{x}{2} - \frac{1}{2a}\ln\left|\sin ax - \cos ax\right|+C
\int\frac{\sin ax\;dx}{\cos ax + \sin ax} = \frac{x}{2} - \frac{1}{2a}\ln\left|\sin ax + \cos ax\right|+C
\int\frac{\sin ax\;dx}{\cos ax - \sin ax} = -\frac{x}{2} - \frac{1}{2a}\ln\left|\sin ax - \cos ax\right|+C
\int\frac{\cos ax\;dx}{\sin ax(1+\cos ax)} = -\frac{1}{4a}\tan^2\frac{ax}{2}+\frac{1}{2a}\ln\left|\tan\frac{ax}{2}\right|+C
\int\frac{\cos ax\;dx}{\sin ax(1-\cos ax)} = -\frac{1}{4a}\cot^2\frac{ax}{2}-\frac{1}{2a}\ln\left|\tan\frac{ax}{2}\right|+C
\int\frac{\sin ax\;dx}{\cos ax(1+\sin ax)} = \frac{1}{4a}\cot^2\left(\frac{ax}{2}+\frac{\pi}{4}\right)+\frac{1}{2a}\ln\left|\tan\left(\frac{ax}{2}+\frac{\pi}{4}\right)\right|+C
\int\frac{\sin ax\;dx}{\cos ax(1-\sin ax)} = \frac{1}{4a}\tan^2\left(\frac{ax}{2}+\frac{\pi}{4}\right)-\frac{1}{2a}\ln\left|\tan\left(\frac{ax}{2}+\frac{\pi}{4}\right)\right|+C
\int\sin ax\cos ax\;dx = -\frac{1}{2a}\cos^2 ax +C\,\!
\int\sin a_1x\cos a_2x\;dx = -\frac{\cos((a_1-a_2)x)}{2(a_1-a_2)} -\frac{\cos((a_1+a_2)x)}{2(a_1+a_2)} +C\qquad\mbox{(for }|a_1|\neq|a_2|\mbox{)}\,\!
\int\sin^n ax\cos ax\;dx = \frac{1}{a(n+1)}\sin^{n+1} ax +C\qquad\mbox{(for }n\neq -1\mbox{)}\,\!
\int\sin ax\cos^n ax\;dx = -\frac{1}{a(n+1)}\cos^{n+1} ax +C\qquad\mbox{(for }n\neq -1\mbox{)}\,\!
\int\sin^n ax\cos^m ax\;dx = -\frac{\sin^{n-1} ax\cos^{m+1} ax}{a(n+m)}+\frac{n-1}{n+m}\int\sin^{n-2} ax\cos^m ax\;dx  \qquad\mbox{(for }m,n>0\mbox{)}\,\!
\int\sin^n ax\cos^m ax\;dx = \frac{\sin^{n+1} ax\cos^{m-1} ax}{a(n+m)} + \frac{m-1}{n+m}\int\sin^n ax\cos^{m-2} ax\;dx \qquad\mbox{(for }m,n>0\mbox{)}\,\!
\int\frac{dx}{\sin ax\cos ax} = \frac{1}{a}\ln\left|\tan ax\right|+C
\int\frac{dx}{\sin ax\cos^n ax} = \frac{1}{a(n-1)\cos^{n-1} ax}+\int\frac{dx}{\sin ax\cos^{n-2} ax} \qquad\mbox{(for }n\neq 1\mbox{)}\,\!
\int\frac{dx}{\sin^n ax\cos ax} = -\frac{1}{a(n-1)\sin^{n-1} ax}+\int\frac{dx}{\sin^{n-2} ax\cos ax} \qquad\mbox{(for }n\neq 1\mbox{)}\,\!
\int\frac{\sin ax\;dx}{\cos^n ax} = \frac{1}{a(n-1)\cos^{n-1} ax} +C\qquad\mbox{(for }n\neq 1\mbox{)}\,\!
\int\frac{\sin^2 ax\;dx}{\cos ax} = -\frac{1}{a}\sin ax+\frac{1}{a}\ln\left|\tan\left(\frac{\pi}{4}+\frac{ax}{2}\right)\right|+C
\int\frac{\sin^2 ax\;dx}{\cos^n ax} = \frac{\sin ax}{a(n-1)\cos^{n-1}ax}-\frac{1}{n-1}\int\frac{dx}{\cos^{n-2}ax} \qquad\mbox{(for }n\neq 1\mbox{)}\,\!
\int\frac{\sin^n ax\;dx}{\cos ax} = -\frac{\sin^{n-1} ax}{a(n-1)} + \int\frac{\sin^{n-2} ax\;dx}{\cos ax} \qquad\mbox{(for }n\neq 1\mbox{)}\,\!
\int\frac{\sin^n ax\;dx}{\cos^m ax} = \frac{\sin^{n+1} ax}{a(m-1)\cos^{m-1} ax}-\frac{n-m+2}{m-1}\int\frac{\sin^n ax\;dx}{\cos^{m-2} ax} \qquad\mbox{(for }m\neq 1\mbox{)}\,\!
\int\frac{\sin^n ax\;dx}{\cos^m ax} = -\frac{\sin^{n-1} ax}{a(n-m)\cos^{m-1} ax}+\frac{n-1}{n-m}\int\frac{\sin^{n-2} ax\;dx}{\cos^m ax} \qquad\mbox{(for }m\neq n\mbox{)}\,\!
\int\frac{\sin^n ax\;dx}{\cos^m ax} = \frac{\sin^{n-1} ax}{a(m-1)\cos^{m-1} ax}-\frac{n-1}{m-1}\int\frac{\sin^{n-2} ax\;dx}{\cos^{m-2} ax} \qquad\mbox{(for }m\neq 1\mbox{)}\,\!
\int\frac{\cos ax\;dx}{\sin^n ax} = -\frac{1}{a(n-1)\sin^{n-1} ax} +C\qquad\mbox{(for }n\neq 1\mbox{)}\,\!
\int\frac{\cos^2 ax\;dx}{\sin ax} = \frac{1}{a}\left(\cos ax+\ln\left|\tan\frac{ax}{2}\right|\right) +C
\int\frac{\cos^2 ax\;dx}{\sin^n ax} = -\frac{1}{n-1}\left(\frac{\cos ax}{a\sin^{n-1} ax)}+\int\frac{dx}{\sin^{n-2} ax}\right) \qquad\mbox{(for }n\neq 1\mbox{)}
\int\frac{\cos^n ax\;dx}{\sin^m ax} = -\frac{\cos^{n+1} ax}{a(m-1)\sin^{m-1} ax} - \frac{n-m-2}{m-1}\int\frac{\cos^n ax\;dx}{\sin^{m-2} ax} \qquad\mbox{(for }m\neq 1\mbox{)}\,\!
\int\frac{\cos^n ax\;dx}{\sin^m ax} = \frac{\cos^{n-1} ax}{a(n-m)\sin^{m-1} ax} + \frac{n-1}{n-m}\int\frac{\cos^{n-2} ax\;dx}{\sin^m ax} \qquad\mbox{(for }m\neq n\mbox{)}\,\!
\int\frac{\cos^n ax\;dx}{\sin^m ax} = -\frac{\cos^{n-1} ax}{a(m-1)\sin^{m-1} ax} - \frac{n-1}{m-1}\int\frac{\cos^{n-2} ax\;dx}{\sin^{m-2} ax} \qquad\mbox{(for }m\neq 1\mbox{)}\,\!

انتگرال‌هایی که سینوس و تانژانت دارند[ویرایش]

\int \sin ax \tan ax\;dx = \frac{1}{a}(\ln|\sec ax + \tan ax| - \sin ax)+C\,\!
\int\frac{\tan^n ax\;dx}{\sin^2 ax} = \frac{1}{a(n-1)}\tan^{n-1} (ax) +C\qquad\mbox{(for }n\neq 1\mbox{)}\,\!

انتگرال‌هایی که کسینوس و تانژانت دارند[ویرایش]

\int\frac{\tan^n ax\;dx}{\cos^2 ax} = \frac{1}{a(n+1)}\tan^{n+1} ax +C\qquad\mbox{(for }n\neq -1\mbox{)}\,\!

انتگرال‌هایی که سینوس و کتانژانت دارند[ویرایش]

\int\frac{\cot^n ax\;dx}{\sin^2 ax} = \frac{1}{a(n+1)}\cot^{n+1} ax  +C\qquad\mbox{(for }n\neq -1\mbox{)}\,\!

انتگرال‌هایی که کسینوس و کتانژانت دارند[ویرایش]

\int\frac{\cot^n ax\;dx}{\cos^2 ax} = \frac{1}{a(1-n)}\tan^{1-n} ax +C\qquad\mbox{(for }n\neq 1\mbox{)}\,\!

انتگرال‌های با بازه‌های متقارن[ویرایش]

\int_{{-c}}^{{c}}\sin {x}\;dx = 0 \!
\int_{{-c}}^{{c}}\cos {x}\;dx = 2\int_{{0}}^{{c}}\cos {x}\;dx = 2\int_{{-c}}^{{0}}\cos {x}\;dx = 2\sin {c} \!
\int_{{-c}}^{{c}}\tan {x}\;dx = 0 \!
\int_{-\frac{a}{2}}^{\frac{a}{2}} x^2\cos^2 {\frac{n\pi x}{a}}\;dx = \frac{a^3(n^2\pi^2-6)}{24n^2\pi^2}   \qquad\mbox{(for }n=1,3,5...\mbox{)}\,\!

منابع[ویرایش]

  1. Stewart, James. Calculus: Early Transcendentals, 6th Edition. Thomson: 2008