سیاه‌چاله

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو
نمایش شبیه سازی شده از یک سیاه چاله در برابر ابر ماژلانی بزرگ.

سیاه‌چاله ناحیه‌ای از فضا-زمان است که جرم در آن فشرده شده است.[۱] وجود سیاه‌چاله‌ها در نظریه نسبیت عام آلبرت اینشتین پیش بینی می‌شود. این نظریه پیش بینی می‌کند که یک جرم به اندازه کافی فشرده می‌تواند سبب تغییر شکل و خمیدگی فضا-زمان وتشکیل سیاهچاله شود. پیرامون سیاهچاله رویه‌ای ریاضی به نام افق رویداد تعریف می‌شود که هیچ چیزی پس از عبور از آن نمی‌تواند به بیرون برگردد و نقطه بدون بازگشت است. صفت «سیاه» در نام سیاه‌چاله به این دلیل است که همه نوری که به افق رویداد آن راه می‌یابد را به دام می‌اندازد که این دقیقاً مانند مفهوم جسم سیاه در ترمودینامیک می‌باشد.[۲] مکانیک کوانتوم پیش‌بینی می‌کند که آفاق رویداد مانند یک جسم سیاه با دمای متناهی از خود تابش‌های گرمایی گسیل می‌کنند. این دما با جرم سیاهچاله نسبت وارونه دارد و از این روی مشاهده این تابش برای سیاهچاله‌های ستاره‌ای و بزرگتر دشوار است.

اجسامی که به دلیل میدان گرانشی بسیار قوی اجازه گریز به نور نمی‌دهند برای اولین بار در سده ۱۸ (میلادی) توسط جان میشل و پیر سیمون لاپلاس مورد توجه قرار گرفتند. اولین راه حل نوین نسبیت عام که در واقع ویژگیهای یک سیاهچاله را توصیف می‌نمود در سال ۱۹۱۶ میلادی توسط کارل شوارتزشیلد کشف شد.[۳][۴] هر چند که تعبیر آن به صورت ناحیه‌ای از فضا که هیچ چیز نمی‌تواند از آن بگریزد، تا چهار دهه بعد به خوبی درک نشد. برای دوره‌ای طولانی این چالش مورد کنجکاوی ریاضیدانان بود تا اینکه در میانه دهه ۱۹۶۰، پژوهش‌های نظری نشان داد که سیاهچاله‌ها به راستی یکی از پیش بینی‌های ژنریک نسبیت عام هستند. یافتن ستارگان نوترونی باعث شد تا وجوداجرام فشرده شده بر اثر رمبش گرانشی به عنوان یک واقعیت امکانپذیر فیزیکی مورد علاقه دانشمندان قرار گیرد.[۵] اینگونه پنداشته می‌شود که سیاهچاله‌های ستاره‌ای در جریان فروپاشی ستاره‌های بزرگ در یک انفجار ابرنواختری درپایان چرخه زندگیشان بوجود می‌آیند. جرم یک سیاهچاله پس از شکل گیری می‌تواند با دریافت جرم از پیرامونش افزایش یابد. با جذب ستارگان پیرامون و بهم پیوستن سیاهچاله‌های گوناگون، سیاهچاله‌های کلان جرم با جرمی میلیونها برابر خورشید تشکیل می‌شوند.[۶]

یک سیاهچاله به دلیل اینکه نوری از آن خارج نمی‌گردد نادیدنی است، اما می‌تواند بودن خود را از راه کنش و واکنش با ماده از پیرامون خود نشان دهد. از راه بررسی برهمکنش میان ستاره‌های دوتایی با همدم نامرئیشان، اخترشناسان نامزدهای احتمالی بسیاری برای سیاهچاله بودن در این منظومه‌ها شناسایی کرده‌اند. این باور جمعی در میان دانشمندان رو به گسترش است که در مرکز بیشتر کهکشان‌ها یک سیاه‌چاله کلان‌جرم وجود دارد. برای نمونه، دستاوردهای ارزشمندی بازگوی این واقعیت است که در مرکز کهکشان راه شیری ما نیز یک سیاهچاله کلان جرم با جرمی بیش از چهار میلیون برابر جرم خورشید وجود دارد.[۷]

تاریخچه[ویرایش]

نگاره‌ای تخیلی از صفحه تجمع پلاسمای داغ بر گِرد یک سیاهچاله (برگرفته از ناسا).

ابداع واژه «کرم‌چاله»[۸] و «سیاه‌چاله فضایی»[۹] به جان ویلر نسبت داده شده‌است. با این‌حال، این مفهوم از مدت‌ها قبل به صورت‌های متفاوتی مطرح بوده‌است.

مفهوم جسمی که آن قدر پرجرم است که حتی نور هم نمی‌تواند از آن بگریزد، نخستین باراز سوی زمین‌شناسی به نام جان میشل درسال ۱۷۸۳ در نامه‌ای که برای هنری کاوندیش از انجمن سلطنتی نوشته بود، مطرح شد. در آن زمان مفهوم نظریه گرانش نیوتن و مفهوم سرعت گریز شناخته شده بودند. طبق محاسبات میشل جسمی با شعاع خورشید و چگالی ۵۰۰ برابر در سطح خود سرعت گریزی بیش از سرعت نور خواهد داشت و بنابر این غیر قابل مشاهده خواهد بود. به بیان او:

اگر شعاع کره‌ای مشابه خورشید قرار باشد که با چگالی ۵۰۰ بار از آن بزرگ تر باشد، جسمی که از ارتفاع بینهایت به سمت آن سقوط می‌کند در سطح آن سرعتی بیش ازسرعت نور به دست می‌آورد، و اگر فرض کنیم نور با نیروی مشابهی به سمت ستاره کشیده شود، آنگاه همه نوری که از چنین جسمی ساطع می‌شود به ناچار به وسیله گرانش آن به سمت خود ستاره بازمی گردد.
— جان میشل

[۱۰]

در سال ۱۷۹۶ پیر سیمون لاپلاس، ریاضی‌دان فرانسوی همان ایده را در ویرایش اول و دوم کتاب خود به نام آشکارسازی نظام جهان مطرح کرد. این مطالب در ویرایش‌های بعدی کتاب حذف شد.[۱۱][۱۲] مفهوم این ستاره‌های تاریک در سده ۱۹ (میلادی) توجه چندانی را به خود جلب نکرد زیرا فیزیک دانان نمی‌توانستند درک کنند که نور که یک موج و بدون جرم است چگونه ممکن است تحت تاثیر نیروی گرانش قرار گیرد.

نسبیت عام[ویرایش]

درسال ۱۹۱۵ آلبرت اینشتین که پیش تر نشان داده بود که گرانش، نور را تحت تاثیر قرار می‌دهد، نظریه گرانش خود به نام نسبیت عام را مطرح کرد. چند ماه بعد کارل شوارتزشیلد پاسخی برای معادلات میدان اینشتین ارائه نمود که میدان گرانشی ذرات نقطه‌ای و کروی را توصیف می‌کرد.[۱۳] چند ماه پس از شوارتزشیلد، ژوهانس دروست - که از شاگردان هندریک لورنتز بود - به صورت جداگانه همان پاسخ را برای ذرات نقطه‌ای به دست آورد و بحث مفصل تری در مورد ویژگیهای آن نمود.[۱۴] این پاسخ در شعاعی که امروزه شعاع شوارتزشیلد نامیده می‌شود رفتاری غیر عادی نمایش می‌داد. زیرا در این شعاع، معادله تکینه می‌شود و برخی از اجزای آن مقدار بی نهایت خواهند داشت. در آن زمان ماهیت این سطح به درستی فهمیده نشده بود. در سال ۱۹۲۴ آرتور استنلی ادینگتون نشان داد که با تغییر مختصات می‌توان تکینگی را بر طرف نمود. هر چند که تا سال ۱۹۳۳ طول کشید تا ژرژ لومتر متوجه شد که مقدار بی نهایت این معادله در شعاع شوارتزشیلد در واقع یک تکینگی ریاضی است و جنبه فیزیکی ندارد.[۱۵] این شعاع امروزه به عنوان شعاع افق رویداد یک سیاهچاله غیرچرخشی شناخته می‌شود.

در سال ۱۹۳۰ سابراهمانین چاندراسکار، اختر فیزیک دان هندی محاسبه نمود که یک جسم الکترون تباهیده غیر چرخنده که جرم آن از حدی که بعدها به نام حد چاندراسخار نامیده شد و ۱٫۴ برابر جرم خورشید است، بیشتر باشد هیچ جواب پایداری ندارد.[۱۶] ادعای وی از سوی هم دوره‌ای‌های وی همچون ادینگتون و لو لاندائو مورد مخالفت قرار گرفت. آنها ادعا می‌کردند که مکانیزمی ناشناخته وجود دارد که از فروپاشی این اجرام جلوگیری می‌کند.[۱۷] ادعای آنها تا حدودی درست بود زیرا یک کوتوله سفید که جرم آن اندکی از حد چاندراسخار بزرگتر باشد پس از فروپاشی به یک ستاره نوترونی تبدیل می‌شود[۱۸] که بنا بر اصل طرد پاولی، وضعیتی پایدار دارد، اما در سال ۱۹۳۹ روبرت اوپنهایمر و دیگران پیش بینی کردند که ستاره‌های نوترونی که جرمی بیشتر از سه برابر جرم خورشید دارند به دلایلی که توسط چاندراسکار ارائه شد، به سیاهچاله فروپاشی می‌شوند و نتیجه گیری کردند که هیچ ساز و کار فیزیکی نمی‌تواند از فروپاشی برخی ستارگان به سیاهچاله جلوگیری نماید. [۱۹]

عصر طلایی[ویرایش]

نوشتار(های) وابسته: عصر طلایی نسبیت عام

در سال ۱۹۵۸، دیوید فینکلشتین سطح شوارتز شیلد را به عنوان یک افق رویداد معرفی نمود، «یک غشای کاملاً یک جهته که تاثیرات سببی تنها از یک سو از آن عبور می‌کنند.»[۲۰] این مطلب تناقض صریحی با نتایج اوپنهایمر ندارد بلکه آن را گسترش می‌دهد تا ناظرین در حال سقوط به سیاهچاله را نیز شامل شود.[۲۱]

این نتایج مقارن بود با آغاز عصر طلایی نسبیت عام که در آن تحقیقات درباره نسبیت عام و سیاهچاله‌ها رونق فراوان یافت. کشف تپ اخترها در سال ۱۹۶۷ که درسال ۱۹۶۹ نشان داده شد که ستاره‌های نوترونی چرخنده با سرعت چرخش بالا هستند،[۲۲] به این فرایند کمک کرد.[۲۳][۲۴] تا آن زمان ستارگان نوترونی مانند سیاهچاله‌ها تنها در حوزه تئوری مطرح بودند، اما کشف تپ اخترها نشان داد که واقعیت فیزیکی نیز دارند و باعث شد تا علاقه شدیدی به انواع اجسام فشرده‌ای که ممکن است بر اثر رمبش گرانشی تشکیل شوند برانگیخته شود. کشف اختروش (کوازار)ها که انرژی خروجی بسیار بزرگی آنها این احتمال را مطرح نمود که ممکن است مکانیزم بوجود آورنده این انرژی، رمبش گرانشی باشد.[۲۵]

در این دوره جوابهای کلی تری نیز برای معادله سیاهچاله پیدا شد. روی کِر جواب دقیقی برای یک سیاه چاله چرخان به دست آورد. دو سال بعد ازرا نیومن یک جواب متقارن محوری برای سیاهچاله‌ای که هم چرخان باشد و هم دارای بار الکتریکی باشد کشف نمود.[۲۶] در نتیجه کارهای ورنر اسرائیل،[۲۷] براندون کارتر[۲۸][۲۹] و دیوید رابینسون[۳۰] نظریه بدون مو ظهور کرد که با استفاده از پارامترهای متریک کر-نیومن، جرم، تکانه زاویه‌ای و بار الکتریکی یک سیاهچاله ثابت را توصیف نمود.[۳۱]

ویژگی‌ها و ساختار[ویرایش]

نظریه «بدون مو»ی جان ویلر بیان می‌کند که هرگاه سیاهچاله تشکیل شود و به وضعیت پایدار برسد، تنها سه خاصیت فیزیکی مستقل در سیاهچاله‌ها قابل تشخیص هستند که عبارتند از: جرم، بار الکتریکی، و اندازه حرکت زاویه‌ای. در مکانیک کلاسیک (غیر کوانتومی)[۳۱] دوسیاهچاله که دارای مقادیر یکسانی برای سه ویژگی ذکر شده باشند، نامتمایز اند. این سه ویژگی، ویژگی‌های خاصی هستند زیرا از بیرون سیاهچاله قابل مشاهده‌اند. مثلاً یک سیاهچاله باردار همچون هر جسم باردار دیگری بارهای همنام را دفع می‌کند. به طریق مشابهی مجموع جرم درون کره‌ای که یک سیاهچاله را دربرمی گیرد از طریق همتای قانون گاوس در مورد نیروهای گرانشی یعنی جرم ای. دی. ام نسبیت عام از فواصل بسیار دور اندازه گیری نمود.[۳۲] به همین ترتیب تکانه زاویه‌ای یک سیاهچاله را نیز می‌توان از راه کشش چارچوب توسط میدان مغناطیس گرانشی به دست آورد.

وقتی جسمی به درون سیاهچاله‌ای سقوط می‌کند تمام اطلاعات فیزیکی مربوط به شکل جرم یا توزیع بار سطحی آن به طور یکنواخت در امتداد افق رویداد توزیع می‌شود و از دید ناظر خارجی گم می‌شود. این رفتار افق رویداد به عنوان سیستم پراکنده ساز نامیده می‌شود و به آنچه در یک غشای کشی رسانا با اصطکاک و مقاومت الکتریکی رخ می‌دهد شباهت بسیار دارد.[۳۳] این تفاوت از آن دسته نظریه‌های میدانی مانند الکترو مغناطیس است که به دلیلی معکوس پذیری در زمان هیچ اصطکاک یا مقاومتی در سطح میکروسکوپیک ندارند. زیرا یک سیاهچاله در نهایت با سه پارامتر به حالت پایدار می‌رسد و هیچ راهی وجود ندارد که از گم شدن اطلاعات مربوط به شرایط اولیه اجتناب نمود: میدان‌های گرانشی و الکتریکی سیاهچاله اطلاعات بسیار اندکی در بارهٔ آنچه وارد سیاهچاله شده‌است می‌دهند. اطلاعات گم شده شامل هر کمیتی است که از فاصله دور از افق رویداد یک سیاهچاله قابل اندازه گیری نیستند. از جمله می‌توان از عدد باریونی و عدد لپتونی کل نام برد. این موضوع تا اندازه‌ای گیج کننده‌است که از آن به پارادوکس گم شدن اطلاعات سیاهچاله یاد می‌شود.[۳۴][۳۵]

خواص فیزیکی[ویرایش]

ساده ترین نوع سیاهچاله‌ها آنهایی هستند که تنها جرم دارند و بار الکتریکی و تکانه زاویه‌ای ندارند. این سیاهچاله‌ها را اغلب با نام سیاهچاله‌های شوارتزشیلد می‌نامند که بر گرفته از نام کارل شوارتزشیلد است که جوابی برای معادلات میدانی انیشتین در سال ۱۹۱۶ ارائه نمود.[۱۳] بنا بر قضیه بیرخوف در نسبیت عام، تنها جواب خلا است که متقارن کروی است. این بدان معنی است که تفاوتی میان میدان گرانشی یک سیاهچاله و یک جسم کروی با همان جرم وجود ندارد. بنابراین سیاهچاله تنها در محدوده نزدیک به افق آن است که همه چیز حتی نور را به درون می‌کشد و در فواصل دورتر کاملاً مانند هر جسم دیگری با همان میزان جرم رفتار می‌کند.[۳۶]

راه حل‌هایی برای معادلات انیشتین که سیاهچاله‌های کلی تری را توصیف می‌کنند نیز وجود دارند. مثلاً متریک رایسنر-نوردشتروم سیاهچاله‌های باردار و متریک کر سیاهچاله‌های چرخان را توصیف می‌کنند. کلی ترین جواب موجود برای سیاهچاله‌های ثابت متریک کر-نیومن است که سیاهچاله‌هایی را توصیف می‌کند که هم بار الکتریکی وهم تکانه زاویه‌ای دارند.[۳۷]

در حالیکه جرم سیاهچاله می‌تواند هر مقداری داشته باشد، بار و تکانه زاویه‌ای آن توسط جرم محدود می‌شوند. چنانچه واحدهای پلانک را بکار بریم، کل بار الکتریکی Q و مجموع تکانه زاویه‌ای J در این رابطه صدق می‌کنند(M جرم سیاهچاله‌است): Q^2+\left (\tfrac{J}{M} \right)^2\le M^2\, . سیاهچاله‌هایی که نابرابری فوق را اشباع می‌کنند، سیاهچاله‌های اکسترمال نامیده می‌شوند. جواب‌هایی نیز برای معادلات انیشتین موجودند که این نابرابری را نقض می‌کنند اما این جواب‌ها افق رویداد ندارند. این جوابها را تکینگی‌های برهنه می‌نامند که از بیرون قابل مشاهده‌اند و در نتیجه نمی‌توانند فیزیکی باشند. فرضیه سانسور کیهانی شکل گیری چنین تکینگی‌هایی را در جریان رمبش نامحتمل می‌شمرد.[۳۸]

به دلیل قدرت نسبی الکترومغناطیس سیاهچاله‌هایی که از رمبش ستارگان تشکیل می‌شوند تمایل دارند که بار تقریباً خنثی ستاره را حفظ کنند. اما انتظار می‌رود که چرخش یک ویژگی مشترک در اجسام فشرده باشد. نامزد سیاهچاله قرار گرفته در دوتایی پرتو ایکس جی‌آراس ۱۹۱۵+۱۰۵ [۳۹] به نظر می‌رسد که تکانه زاویه‌ای نزدیک به حداکثر مقدار مجاز داشته باشد.

افق رویداد[ویرایش]

نوشتار اصلی: افق رویداد
BH-no-escape-1.svg
در نواحی دور از یک سیاهچاله یک ذره می‌تواند در هرجهتی حرکت کند و تنها محدود به سرعت نور است.
BH-no-escape-2.svg
در فواصل نزدیکتر به سیاهچاله فضا-زمان شروع به خمش می‌کند. مسیرهایی که به سیاهچاله ختم می‌شوند از مسیرهایی که از آن دور می‌شوند بیشترند. [Note ۱]
BH-no-escape-3.svg
در داخل افق رویداد تمام مسیرها ذره را به سمت مرکز سیاهچاله سوق می‌دهند. ذره دیگر امکان گریز نخواهد داشت.

مهمترین ویژگی که یک سیاهچاله را تعریف می‌کند پیدایش افق رویداد است. افق رویداد به شکل کروی یا تقریباً کروی با شعاع شوارتزشیلد حول نقطه مرکزی سیاهچاله‌است. این کره ناحیه‌ای از فضا زمان است که عبور نور و ماده از آن تنها در یک جهت و به طرف درون آن ممکن است. درون این کره سرعت گریز از سرعت نور بیشتر خواهد بود، و از آنجاییکه هیچ جسمی توانایی حرکت با سرعت بیشتر از سرعت نور را ندارد، هیچ جسمی توانایی گریز از این منطقه را ندارد. هر جرم یا انرژی که به یک سیاه چاله نزدیک شود، در داخل فاصله معینی که افق رویداد آن خوانده می‌شود، به طور مقاومت ناپذیری به درون سیاه چاله کشیده می‌شود. نوری که از اطراف یک سیاه چاله عبور می‌کند، اگر به افق رویداد نرسد، روی مسیری منحنی شکل از کنار آن می‌گذردو اگر به افق رویداد برسد، در سیاه چاله سقوط می‌کند. افق رویداد را از این رو به این نام می‌خوانند که از درون آن اطلاعات راجع به آن رخداد به مشاهده کننده نمی‌رسد ومشاهده کننده نمی‌تواند یقین حاصل کند که این اتفاق رخ داده‌است. [۴۱]

آنگونه که در نسبیت عام پیش بینی می‌شود، حضور یک جسم باعث خمش فضا-زمان می‌شود به گونه‌ای که مسیرهایی که ذرات طی می‌کنند به سمت جرم خمیده می‌شوند.[۴۲] در افق رویداد یک سیاهچاله این تغییر شکل به اندازه‌ای قوی می‌شود که هیچ مسیری که از سیاهچاله دور شود وجود نخواهد داشت.

از دید یک ناظر دور زمان در نزدیکی سیاهچاله کندتر از نقاط دورتر خواهد گذشت.[۴۳] این پدیده به نام اتساع زمان نامیده می‌شود. شیئی که به افق رویداد نزدیک شود به نظر خواهد رسید که هرچه نزدیکتر می‌گردد از سرعت آن کاسته می‌شود و زمانی بی نهایت طول خواهد کشید تا به آن برسد.[۴۴] و چون تمام فرایندهای این ذره کندتر می‌شود، نوری که منتشر می‌کند تاریکتر و قرمزتر خواهد شد که این اثر به نام انتقال به سرخ گرانشی نامیده می‌شود.[۴۵] سرانجام در نقطه‌ای که به افق رویداد می‌رسد این جسم کاملاً تاریک و غیر قابل مشاهده می‌شود.

ازسوی دیگر ناظری که به درون سیاهچاله سقوط می‌کند، در زمانی که افق رویداد را رد می‌کند، متوجه هیچکدام از این تاثیرات نخواهد شد. طبق ساعت خودش افق رویداد را در زمانی متناهی رد می‌کند. اگرچه هرگز نمی‌تواند بفهمد که دقیقاً در چه زمانی از افق رویداد رد شده‌است. زیرا غیر ممکن است که بتوان با مشاهدات محلی، موقعیت افق رویداد را تعیین کرد.[۴۶]

افق رویداد یک سطح جامد نیست و مانع ورود ماده یا تابشی که به سمت ناحیه داخل آن در حرکت است نمی‌شود. در واقع افق رویداد یک ویژگی تعریف شده سیاهچاله‌است که حدود سیاهچاله را مشخص می‌کند. علت سیاه بودن افق رویداد هم این است که هیچ پرتوی نور یا تابش دیگری نمی‌تواند از آن بگریزد. از این رو افق رویداد هر آنچه را که درون آن اتفاق می‌افتد از دید دیگران پنهان نگه می‌دارد.

شکل افق رویداد یک سیاهچاله همیشه تقریباً کروی است..[Note ۲][۴۹] برای سیاهچاله‌های ایستای غیرچرخان این شکل کاملاً کروی است و برای سیاهچاله‌های چرخان کمی بیضوی است.

تکینگی[ویرایش]

نوشتار اصلی: تکینگی گرانشی

براساس نسبیت عام، مرکز یک سیاهچاله یک نقطه تکینگی گرانشی است، ناحیه‌ای که درآن خمیدگی فضا زمان بی نهایت می‌شود.[۵۰] برای یک سیاهچاله غیر چرخان این ناحیه به شکل یک نقطه منفرد و برای یک سیاهچاله چرخان به شکل یک تکینگی حلقوی روی صفحه چرخش خواهد بود.[۵۱] در هردوی موارد حجم ناحیه تکینگی صفر است.[۵۲] به همین دلیل چگالی ناحیه تکینگی، بی نهایت خواهد بود.

ناظری که به درون یک سیاهچاله شوارتزشیلد سقوط می‌کند(یعنی بدون بار و تکانه زاویه‌ای) به محض اینکه از افق رویداد بگذرد دیگر نمی‌تواند در مقابل سرازیر شدن به سوی نقطه تکینگی جلوگیری کند. این ناظر می‌تواند تنها تا میزان محدودی زمان سقوطش را با سرعت گرفتن در جهت مخالف طولانی تر کند اما سرانجام به نقطه تکینگی سقوط خواهد کرد.[۵۳] زمانی که به این نقطه برسد به چگالی بی نهایت برخورد می‌کند و جرم آن به جرم سیاهچاله افزوده می‌شود. البته پیش از این اتفاق در طی فرایندی که به اسپاگتی سازی و یا اثر نودلی معروف است، اجزای وی بر اثر نیروهای جزر و مدی در حال گسترش از هم گسیخته می‌شود.[۵۴]

در مورد یک سیاهچاله باردار(راه حل رایسنر-نوردستروم) و یا چرخان(راه حل کر) می‌توان از تکینگی اجتناب نمود. چنانچه این جواب‌ها را تا حد امکان گسترش دهیم امکان فرضی خروج از سیاه چاله به یک فضا-زمان متفاوت خود را نمایان می‌سازد. در این صورت سیاهچاله به صورت یک کرم‌چاله عمل می‌کند.[۵۵] اما فرضیه سفر به دنیاهای دیگر تنها به صورت فرضیه می‌ماند زیرا آشفتگی امکان آن را ازبین می‌برد.[۵۶] همچنین این فرضیه مطرح می‌شود که منحنی‌های زمان گونه بسته را در اطراف تکینگی دنبال کرد و به گذشته خود فرد سفر کرد که در نهایت به طرح مشکلاتی در قانون علیت مانند پارادوکس پدربزرگ می‌انجامد.[۵۷]

پیدایش تکینگی هاگی در نسبیت عام را عموماً نشانه‌ای از شکست این نظریه می‌پندارند؛[۵۸] اما این شکست بر خلاف انتظار نیست. این شکست در مواردی رخ می‌دهد که بخواهیم این کنش‌ها را با استفاده از تاثیرات مکانیک کوانتومی، ناشی از چگالی بسیار بالا و سرانجام تعامل ذرات توصیف کنیم. تا کنون این امر میسر نشده‌است که بتوانیم تاثیرات گرانشی و کوانتومی را در یک تئوری با هم ترکیب نمود. مورد انتظار عموم این است که یک تئوری گرانش کوانتومی خواهد توانست ویژگی سیاهچاله‌ها را بدون تکینگی بیان کند. [۵۹][۶۰]

کره فوتونی[ویرایش]

ارگوسفر ناحیه‌ای به شکل کره بیضوی خارج از افق رویداد است که اجسام نمی‌توانند در آن ثابت بمانند.

کره فوتونی، محدوده‌ای کروی با ضخامت صفراست. فوتون‌هایی که در طول مسیر مماس (در امتداد تانژانت‌ها) بر این کره حرکت می‌کنند در مداری دایره‌ای گرد آن به دام می‌افتند. در سیاهچاله‌های غیرچرخشی شعاع فوتون کره یک و نیم برابر شعاع افق رویداد (شوارتزشیلد) است. این مدارها از نظر دینامیکی ناپایدار اند و به همین جهت هر آشفتگی کوچکی (مثل سقوط یک ذره مادی) در طول زمان گسترش می‌یابد و به صورت حرکت پرتابی به خارج سیاهچاله و یا به شکل حلزونی در نهایت از افق رویداد می‌گذرد.[۶۱]

در حالیکه نور هنوز می‌تواند از داخل کره فوتونی بگریزد، هر نوری که از کره فوتونی عبور کند در یک حرکت پرتابی به داخل سیاهچاله کشیده می‌شود. بنابراین نوری که از درون کره فوتونی به ما می‌رسد باید از اجسامی تابیده شده باشد که درون کره فوتونی هستند اما هنوز به افق رویداد نرسیده‌اند.[۶۱]

سایر اجرام فشرده همچون ستاره‌های نوترونی نیز می‌توانند کره‌های فوتونی داشته باشند.[۶۲] این امر ناشی از این حقیقت است که میدان گرانشی یک شی به اندازه واقعی آن بستگی ندارد، از این رو هر جسم که کوچکتر از ۱٫۵ برابر شعاع شوارتزشیلد متناظر با جرمش باشد می‌تواند کره فوتونی داشته باشد.[نیازمند منبع]

ارگوسفر[ویرایش]

سیاهچاله‌های چرخان در درون ناحیه‌ای از فضا و زمان محصورند که در آن ثابت ماندن غیر ممکن است. این ناحیه را ارگوسفر می‌نامند. این پدیده ناشی از فرایندی به نام کشش چارچوب است. تئوری نسبیت عام پیش بینی می‌کند که هر جسم در حال چرخش تمایل دارد که فضا-زمان اطراف نزدیک خود را بکشد. هر جسم نزدیک به جسم چرخان تمایل خواهد داشت که در جهت چرخش حرکت کند. برای یک سیاهچاله چرخان در نزدیکی افق رویدادش این اثر به اندازه‌ای قدرتمند می‌شود که جسم مجبور است که با سرعتی بالاتر از سرعت نور در جهت مخالف بچرخد تا تنها بتواند ثابت بماند.[۶۳]

ارگوسفر یک سیاهچاله از درون به افق رویداد می‌رسد و از بیرون به یک کره بیضوی که در قطبش با کره افق رویداد مماس می‌شود و قسمت استوایی آن بسیار پهن تر از سایر قسمت‌ها است پایان می‌یابد. این مرز خارجی ارگوسفر را گاهی سطح ارگو می‌نامد.

اجسام و تابش می‌توانند به طور عادی از ارگوسفر بگریزند. بنا بر فرایند پنروز اجسامی که از ارگوسفر خارج می‌شوند ممکن است انرژی بیشتر از انرژی ورودشان داشته باشند. این انرژی از انرژی چرخشی سیاهچاله گرفته می‌شود و باعث کندتر شدن سرعت آن می‌شود.[۶۴]

شکل گیری و تکامل[ویرایش]

با در نظر گرفتن ماهیت عجیب سیاهچاله‌ها شاید طبیعی باشد، که این سوال به ذهن خطور کند که آیا چنین اجسام عجیبی می‌توانند در طبیعت وجود داشته باشند، یا اینکه این اجسام تنها جواب‌های پاتولوژیکی برای معادلات انیشتین هستند. خود انیشتین به اشتباه گمان می‌کرد که سیاهچاله‌ها نمی‌توانند تشکیل شوند زیرا او بر این باور بود که تکانه زاویه‌ای ذرات در حال سقوط حرکت آنها را در شعاع خاصی پایدار می‌نمود.[۶۵] این باعث شد که جامعه نسبیت عام تا مدت‌ها نتایج مخالف را از دست بدهد. هر چند که گروه کمتری از نسبیت پردازان همچنان بر این باور بودند که سیاهچاله‌ها اجسام فیزیکی واقعی هستند [۶۶] و این گروه تا پایان دهه ۱۹۶۰ اکثر پژوهشگران این زمینه را متقاعد کرده بودند که هیچ مانعی برای بوجود آمدن افق رویداد وجود ندارد.

زمانی که یک افق رویداد تشکیل می‌شود، پنروز ثابت نمود که یک تکینگی در نقطه‌ای درون آن بوجود می‌آید.[۶۷]مدت کوتاهی پس از وی هاوکینگ نشان داد که بسیاری از راه حل‌های کیهان شناسی که مهبانگ را توصیف می‌کنند نقاط تکینه‌ای بدون میدان‌های اسکالر یا مواد عجیب دیگر دارند. راه حل کر، قضیه بدون مو و قوانین ترمودینامیک سیاهچاله‌ها نشان دادند که خواص فیزیکی سیاهچاله‌ها ساده و قابل فهم هستند و این اجسام موضوعات مناسبی برای پژوهش هستند. ابتدایی ترین فرایندی که انتظار می‌رود به تشکیل سیاهچاله‌ها بینجامد، رمبش گرانشی اجسام بسیار سنگین همچون ستاره هاست. البته فرایندهای عجیب تری نیز هستند که ممکن است به تولید سیاهچاله‌ها بینجامد.[۶۷]

رمبش گرانشی[ویرایش]

رمبش گرانشی زمانی رخ می‌دهد که فشار داخلی یک جسم برای مقاومت در برابر نیروی گرانشی خود جسم کافی نباشد. برای ستارگان این حادثه زمانی اتفاق می‌افتد که یا به دلیل کم شدن سوخت ستاره برای تولید انرژی از طریق سنتزهای هسته‌ای قادر به حفظ دمای خود نباشد و یا اینکه یک ستاره پایدار ماده اضافه‌ای دریافت کند به گونه‌ای که دمای هسته آن بالاتر نرود. در هردوی این موارد دمای ستاره به اندازه کافی زیاد نخواهد بود که از فروپاشی آن زیر وزن خودش جلوگیری کند (قانون گازهای ایده‌آل ارتباط بین فشار، دما و حجم را توضیح می‌دهد).[۶۸]

این رمبش ممکن است بر اثر فشار تباهیدگی اجزای تشکیل دهنده ستاره متوقف گردد و باعث فشرده شدن ماده به ماده‌ای که به اندازه شگفت انگیزی چگال تر است بشود. حاصل این اتفاق یکی از انواع ستارگان فشرده است که نوع ستاره فشرده به وجود آمده به جرم ماده باقی‌مانده بستگی دارد. ستاره در هنگام تغییرات سرنشات گرفته از رمبش گرانشی (مانند یک ابرنواختر و یا سحابی سیاره‌نما) بخش قابل توجهی از جرم خود را از لایه‌های خارجی به فضای اطراف پرتاب می‌کند. اگر جرم مواد باقی‌مانده ۵ جرم خورشیدی باشد جرم ستاره اولیه پیش از فروپاشی احتمالاً بیش از ۲۰ جرم خورشیدی بوده‌است.[۶۸]

اگر جرم مواد باقی‌مانده بیش از ۳ الی ۴ برابر جرم خورشید باشد (حد تولمن-اوپنهایمر-وولکوف) - چه به دلیل سنگین بودن ستاره اصلی چه به دلیل اینکه ماده باقی‌مانده جرم اضافه‌ای را از طریق تجمع ماده گردآوری کرده باشد - حتی فشار تباهیدگی نوترونها برای متوقف سازی فروپاشی کافی نخواهد بود. پس از این هیچ مکانیزم شناخته شده‌ای (شاید به جز تباهیدگی کوارکها در ستاره‌های کوارکی) قدرت کافی برای متوقف سازی فروپاشی را ندارد و جسم ناگریز به یک سیاهچاله فروپاشیده می‌شود.[۶۸]

گمان می‌رود که این رمبش گرانشی ستارگان سنگین عامل پیدایش سیاهچاله‌های ستاره وار است. زایش ستارگان در جهان جوان احتمالاً به ایجاد ستارگانی بسیار سنگین انجامیده‌است که در هنگام رمبش سیاهچاله‌هایی تا هزار برابر جرم خورشید بوجود آورده‌اند. این سیاهچاله می‌توانند بذرهایی برای سیاهچاله‌های کلان جرمی بوده باشند که امروزه در مرکز بسیاری از کهکشان‌ها یافت می‌شوند.[۶۹]

درحالیکه بیشتر انرژی آزاد شده در خلال یک رمبش گرانشی به سرعت پخش می‌شود یک ناظر خارجی در واقع پایان این فرایند را نمی‌بیند. اگرچه این رمبش در چارچوب مرجع ماده در حال فروپاشی در زمان محدودی صورت می‌گیرد اما برای یک ناظر دور ماده در حال فروپاشی کند تر می‌شود و در بالای افق رویداد متوفق می‌شود. دلیل این پدیده اتساع زمان گرانشی است. برای نور بیشتر و بیشتر طول می‌کشد تا از ناده در حال رمبش به ناظر برسد. و نوری که درست قبل از تشکیل افق رویداد منتشر می‌شود با تاخیر بی نهایت به ناظر می‌رسد. از این رو ناظر خارجی هرگز تشکیل افق رویداد را نخواهد دید؛ در عوض ماده در حال رمبش تاریک تر. تاریک تر می‌شود و انتقال به سرخ رو به افزایشی خواند داشت و سرانجام کاملاً محو می‌شود. [۷۰]

سیاهچاله‌های نخستین در مهبانگ[ویرایش]

رمبش گرانشی نیاز به چگالی بالا دارد. در دوره کنونی جهان، چگالی‌های بالا تنها در ستارگان یافت می‌شود. اما در جهان نخستین اندکی پس از مهبانگ چگالی‌ها بسیار بیشتر بودند، که احتمال تشکیل سیاهچاله را فراهم می‌نمود. چگالی بالا به تنهایی برای بوجود آمدن سیاهچاله کافی نیست زیرا یک توزیع جرم یکنواخت اجازه تجمع جرم را نمی‌دهد برای اینکه سیاهچاله‌های نخستین در چنین رسانه چگالی امکان پیدایش داشته باشند باید آشفتگی‌های اولیه‌ای در چگالی بوجود آمده باشند که بتوانند پس از آن تحت گرانش خودشان رشد کنند. مدل‌های مختلف از جهان اولیه، از لحاظ اندازه‌ای که برای این آشفتگی‌ها پیش بینی کرده‌اند با هم بسیار متفاوتند. این مدل‌های متفاوت جرم سیاهچاله‌های نخستین را از یک واحد پلانک تا صدها هزار جرم خورشیدی پیش بینی کرده‌اند.[۷۱] سیاهچاله‌های نخستین عامل پیدایش همه سیاهچاله‌های دیگر شمرده می‌شوند.

برخوردهای پرانرژی[ویرایش]

رمبش گرانشی تنها فرایندی نیست که سیاهچاله را بوجود می‌آورد. در اصل سیاهچاله‌ها می‌توانند از برخوردهای پرانرژی که چگالی کافی ایجاد می‌کنند نیز بوجود آیند؛ اما تا به امروز ردی از چنین رویدادی چه به صورت مستقیم و چه به صورت غیر مستقیم از روی کسری در موازنه جرم در آزمایش‌های شتاب دهنده ذرات، کشف نشده‌است.[۷۲] این واقعیت پیشنهاد می‌کند که باید حد پایینی برای جرم سیاهچاله‌ها وجود داشته باشد. از لحاظ نظری این حد باید پیرامون جرم پلانک باشد که در آن انتظار می‌رود که تاثیرات کوانتومی باعث شکست تئوری نسبیت عام بشوند.[۷۳] این امر سبب می‌شود که ایجاد سیاهچاله‌ها از دسترس هر برخورد پر انرژی که در روی زمین یا نزدیک به آن رخ می‌دهد، دور باشد. اما برخی از توسعه‌ها اخیر در گرانش کوانتومی پیشنهاد می‌دهند که جرم پلانک ممکن است بسیار کمتر از این باشد. مثلاً برخی از سناریوهای جهان غشایی مقداری بسیار کمتر برای این ثابت در نظر می‌گیرند.[۷۴] این امر امکان ایجاد ریزسیاهچاله‌ها را در برخوردهای پر انرژی مانند برخورد اشعه‌های کیهانی با جو زمین و یا احتمالاً در برخورددهنده هادرونی بزرگ در سرن را امکان پذیر می‌سازد. هر چند که این نظریه‌ها بسیار گمانی هستند و به نظر بسیاری از متخصصین تشکیل ریزسیاهچاله‌ها در چنین برخوردهای نامحتمل می‌آید.[۷۵] حتی اگر ریز سیاهچاله‌ها در اثر این برخوردها تشکیل شوند انتظار می‌رود که در۱۰۲۵− ثانیه تبخیر شوند و تهدیدی برای زمین به شمار نمی‌آیند.[۷۶]

رشد[ویرایش]

وقتی که یک سیاهچاله تشکیل شد می‌تواند با جذب ماده اضافی به رشد خود ادامه دهد. هر سیاهچاله‌ای به طور پیوسته گاز و غبار میان ستاره‌ای را از محیط مستقیم اطرافش و تابش زمینه کیهانی که در همه جا حضور دارد، جذب می‌کند. این فرایند اولیه‌ای است که به نظر می‌رسد سیاهچاله‌های کلان جرم طی آن شکل می‌گیرند.[۶۹] فرایندی مشابه نیز برای تشکیل سیاهچاله‌های جرم متوسط در خوشه‌های ستاره‌ای کروی پیشنهاد شده‌است.[۷۷]

امکان دیگر برای رشد یک سیاهچاله آمیختن با اجرام دیگر مانند ستارگان یا سایر سیاهچاله هاست. این نظریه به خصوص برای سیاهچاله‌های کلان جرم نخستین که منشا پیدایش بسیاری از اجسام کوچکتر بوده‌اند اهمیت پیدا می‌کند.[۶۹] این فرایند همچنین به عنوان مبدا پیدایش برخی از سیاهچاله‌های با جرم متوسط پیشنهاد شده‌است.[۷۸][۷۹]

تبخیر[ویرایش]

نوشتار اصلی: تابش هاوکینگ

در سال ۱۹۷۴ هاوکینگ نشان داد که سیاهچاله‌ها کاملاً سیاه نیستند بلکه مقادیر اندکی تابش گرمایی دارند [۸۰] او این نتیجه را از بکارگیری نظریه میدان‌های کوانتومی در یک زمینه سیاهچاله‌ای ایستا به دست آورد. نتیجه این محاسبات این بود که سیاهچاله‌ها باید ذراتی را در جسم سیاه کامل منتشر کند. این اثر به نام تابش هاوکینگ نامیده شده‌است. از زمانی که هاوکینگ این نتایج را منتشر نمود بسیاری درستی این نظریه را از روشهای مختلف سنجیده‌اند.[۸۱] چنانچه این نظریه تابش سیاهچاله‌ها درست باشد انتظار می‌رود که سیاهچاله‌ها یک طیف گرمایی ساطع کنند که منجر به کاهش جرم آنها می‌شود. این کاهش جرم مربوط به جرم فوتون‌ها و ذراتی است که تابیده می‌شوند. سیاهچاله‌ها در طول زمان تبخیر می‌شوند و کوچکتر می‌گردند. دمای این طیف (دمای هاوکینگ) با گرانش سطحی یک سیاهچاله مرتبط است که در مورد سیاهچاله‌های شوارتزشیلد نسبت معکوسی با جرم دارند و در نتیجه سیاهچاله‌های بزرگتر تابش کمتری از سیاهچاله‌های کوچکتر دارند.[۸۲]

یک سیاهچاله ستاره وار با جرمی برابر یک جرم خورشیدی، دمای هاوکینگی در حدود ۱۰۰ نانو کلوین دارد. این دما بسیار کمتر از دمای ۲٫۷ کلوینی تابش زمینه کیهانی است. سیاهچاله‌های ستاره‌ای و سیاهچاله‌های بزرگتر از آنها بیش از آنکه از طریق تابش هاوکینگ جرم از دست بدهند، از تابش زمینه کیهانی جرم به دست می‌آورند. در نتیجه به جای کوچکتر شدن رشد می‌کنند. برای اینکه یک سیاهچاله بتواند تبخیر شود باید دمای تابش هاوکینگ آن بیشتر از ۲٫۷ کلوین باشد واین بدان معنی است که می‌بایست از ماه سبکتر باشد و نتیجتاً قطری کمتر از یک دهم میلیمتر داشته باشد.[۸۳]

از سوی دیگر اگر سیاهچاله‌ای کوچک باشد انتظار می‌رود که تابش آن بسیار قویتر باشد. حتی سیاهچاله‌ای که نسبت به انسان سنگین محسوب شود باید در یک دم تبخیر شود. یک سیاهچاله با وزن یک ماشین باید در مدت چند نانوثانیه تبخیر شود و طی این مدت اندک درخششی به اندازه ۲۰۰ برابر خورشید خواهد داشت. سیاهچاله‌های کوچکتر حتی با سرعت بیشتری تبخیر می‌شوند. البته برای چنین سیاهچاله کوچکی اثرات گرانش کوانتومی نقش مهمی ایفا می‌کنند وممکن است (هرچند که از دانسته‌های فعلی در مورد گرانش کوانتومی چنین امری محتمل به نظر نمی‌رسد[۸۴]) به صورت فرضی چنین سیاهچاله کوچکی را پایدار سازند.[۸۵]

طبقه بندی بر اساس جرم[ویرایش]

سیاهچاله‌ها را عموماً بر مبنای جرمشان و مستقل از بار و تکانه زاویه‌ای دسته بندی کی کنند. براین اساس سیاهچاله‌ها را می‌توان به چهار دسته تقسیم نمود. اندازه یک سیاهچاله که با شعاع افق رویداد (شعاع شوارتزشیلد) آن سنجیده می‌شود با جرم آن برپایه رابطه زیر به طور تقریبی متناسب است:[۸۶]

r_\mathrm{sh} =\frac{2GM}{c^2} \approx 2.95\, \frac{M}{M_\mathrm{Sun}}~\mathrm{km,}

این رابطه تنها در مورد سیاهچاله‌هایی با تکانه زاویه‌ای و بار الکتریکی صفر دقیق خواهد بود و در مورد سیاهچاله‌های کلی تر به صورت تقریبی و با اختلافی تا حتی دو برابر در برخی موارد، صادق است

دسته بندی سیاهچاله‌ها
دسته جرم اندازه
سیاهچاله‌های کلان جرم ~۱۰۵–۱۰۹ MSun ~۰٫۰۰۱–۱۰ AU
سیاهچاله‌های جرم متوسط ~۱۰۳ MSun ~۱۰۳ km = REarth
سیاهچاله‌های ستاره وار ~۱۰ MSun ~۳۰ km
ریزسیاهچاله‌ها تا~Mماه تا ~۰٫۱ mm

سیاه چاله‌های کلان جرم[ویرایش]

جرمی بین چندمیلیون تا چند میلیارد برابر جرم خورشید دارند و پیش بینی می‌شود که در مرکز همه کهکشان‌ها از جمله کهکشان راه شیری وجود داشته باشند.[۸۷][۸۸]

کهکشان نزدیک زن برزنجیر در فاصله ۲٫۵ میلیون سال نوری سیاهچاله مرکزی به جرم ۱۰۸×(۲٫۳-۱٫۱) جرم خورشیدی دارد که از سیاهچاله کهکشان راه شیری بزرگتر است.[۸۹] به نظر می‌رسد که بزرگترین سیاهچاله کلان جرم در نزدیکی راه شیری سیاهچاله مرکزی کهکشان مسیه ۸۷ است که جرمی برابر با ۱۰۹×(۰٫۵±۶٫۴) جرم خورشیدی دارد که به فاصله ۵۳٫۵ میلیون سال نوری از ما قرار گرفته‌است.[۹۰][۹۱] بزرگ‌ترین سیاهچاله شناخته شده تا تاریخ نوامبر ۲۰۰۸، سیاه چاله OJ 287 در صورت فلکی خرچنگ است که در فاصله ۳٫۵ میلیارد سال نوری واقع شده‌است و جرم آن ۱۸ میلیارد برابر جرم خورشید است.[۹۲]

سیاهچاله‌های جرم متوسط[ویرایش]

شکاف بین جرم سیاهچاله‌های معمولی و سیاهچاله‌های کلان جرم، اخترشناسان را بر آن داشت که به جستجوی سیاهچاله‌هایی با جرم صد تا صد هزار برابر جرم خورشید برایند. یکی از روش‌های مشاهدهٔ این گونه سیاهچاله‌ها یافتن منابع اشعه با شدت زیاد است. منابع فوق درخشان پرتو ایکس در کهکشان‌های نزدیک ممکن است سیاهچاله جرم متوسط باشند.[۹۳][۹۴]. این منابع فوق درخشان پرتو ایکس در نواحی شکل گیری ستاره‌ها (مانند مسیه ۸۲) مشاهده شده‌است و به نظر می‌رسد که با خوشه‌های ستاره‌ای جوانی که در آن نواحی یافت می‌شوند مرتبط اند. روش دیگر تشخیص آنها ممکن است مشاهده تابش گرانشی منتشر شده از جسم فشرده باقی‌مانده‌ای است که به دور سیاهچاله جرم متوسط می‌گردد.[۹۵] رابطه ام-سیگما نیز وجود سیاهچاله‌هایی به اندازه ۱۰۴ تا ۱۰۶ جرم خورشیدی را در کهکشان‌های کم نور پیش بینی می‌کند. هیچ راه مستقیمی برای شکل گیری آنان شناخته نشده‌است اما گمان می‌رود این نوع از برخورد سیاهچاله‌های با جرم کمتر شکل می‌گیرد. نطریه دیگری نیز آنها را سیاهچاله‌های نخستینی می‌داند که در مه بانگ شکل گرفته‌اند. نطریه سومی نیز آنها را حاصل از برخورد ستارگان بزرگ در خوشه‌های ستاره‌ای متراکم می‌دانند که حاصل این برخورد به یک سیاهچاله میان جرم رمبش می‌کند

سیاهچاله‌های ستاره‌وار[ویرایش]

این سیاهچاله‌ها از رمبش گرانشی ستاره‌های بزرگ بوجود می‌آیند.[۹۶]. این سیاهچاله‌ها جرمی بین سه تا چند ده برابر جرم خورشید دارند.[۹۷] بهترین نامزدهای احتمالی برای این دسته از سیاهچاله‌ها، منظومه‌های دوتایی گسیل کننده اشعه X هستند که در اوایل دهه هفتاد مورد توجه قرار گرفتند. یکی از دو جسم در این منظومه‌ها قابل مشاهده نیست که نامزد سیاهچاله بودن است. ماده از ستاره ندیم به سیاهچاله می‌ریزد و پرتو ایکس تابش می‌کند.[۹۸][۹۹][۱۰۰]

نمونه‌ای از این منظومه‌های دو تایی، ماکیان ایکس یک(Cygnus X-1) است که از یک ستاره ابرغول آبی با جرمی در حدود بیست برابر جرم خورشید و یک ندیم نامرئی با جرم تقریبی چهل برابر جرم خورشید است. در این سیستم دوتایی، جرم از ستاره قابل رویت دوتایی به درون سیاهچاله وارد می‌شود ولی به دلیل سرعت زاویه‌ای، این جرم به صورت شعاعی وارد سیاهچاله نشده بلکه گازها تشکیل یک دیسک داده که قرص برافزایشی نامیده می‌شود.

ریزسیاهچاله‌ها[ویرایش]

این سیاهچاله‌ها سیاهچاله‌های بسیار کوچکی هستند. جرم این سیاهچاله‌ها به اندازه‌ای کوچک است است که در آنها اثرات مکانیک کوانتومی اهمیت زیادی پیدا می‌کند و از این رو به نام سیاهچاله‌های مکانیم کوانتومی نیز شناخته می‌شوند.[۱۰۱] محاسبات هاوکینگ نشان می‌دهد که هرچه سیاهچاله کوچکتر باشد سرعت تبخیر آن بیشتر است و در نتیجه ریزسیاهچاله‌ها در صورت بوجود آمدن احتمالاً در لحطه‌ای تبخیر شده و منفجر می‌گردند.[۱۰۲]

شواهد تجربی[ویرایش]

سیاهچاله‌ها به خودی خود هیچ سیگنالی به جز تابش فرضی هاوکینگ از خود منتشر نمی‌کنند و از آنجاییکه این تابش در مورد یک سیاهچاله اختر فیزیکی بسیاز ضعیف است هیچ راهی وجود ندارد که بتوان مستقیماً از روی زمین سیاهچاله‌های اختر فیزیکی را ردیابی نمود. تنها استثنایی که ممکن است تابش هاوکینگ ضعیفی نداشته باشد، آخرین مرحله تبخیر سیاهچاله‌های کم جرم نخستین است. جستجو برای یافتن چنین تابش‌هایی در گذشته ناموفق بوده‌است و این موضوع محدودیت‌هایی بر امکان وجود سیاهچاله‌های نخستین با جرم کم وارد می‌کند.[۱۰۳] تلسکوپ فضایی پرتوی گامای فرمی ناسا که در سال ۲۰۰۸ به فضا فرستاده شد به جستجو برای وجود این نشانه‌ها ادامه خواهد داد.[۱۰۴]

از این رو اختر فیزیکدانان برای جستجوی سیاهچاله‌ها باید به مشاهدات غیر مستقیم روی آورند. وجود یک سیاهچاله را گاهی می‌توان از برهمکنش‌های گرانشی آن با محیط اطرافش استنباط نمود.

بر افزایش ماده[ویرایش]

نوشتار اصلی: قرص برافزایشی
شکل گیری جتهای برون کهکشانی درقرص برافزایشی یک سیاهچاله

قرص برافزایشی بسیار داغ و چرخان پیرامون سیاهچاله که متشکل از مواد در حال سقوط به درون آشکارترین نشانه برای شناسایی سیاهچاله‌ها است. به خاطر حفظ تکانه زاویه‌ای گازهایی که به چاه گرانشی یک جسم پرجرم سقوط می‌کنند ساختاری قرص مانند در اطراف جسم ایجاد می‌کنند. اصطکاک درون قرص سبب می‌شود تا تکانه زاویه‌ای به سوی بیرون منتقل شود و ماده بیشتر به سمت داخل سقوط می‌کند و انرژی پتانسیلی آزاد می‌کند که دمای گاز را افزایش می‌دهد.[۱۰۵] در مورد اجرام فشرده همچون کوتوله‌های سفید، ستاره‌های نوترونی و سیاهچاله‌ها، گاز در نواحی داخلی به اندازه‌ای داغ می‌شود که تابش بسیاری (عمدتاً پرتو ایکس) از خود گسیل می‌کند که توسط تلسکوپ‌ها قابل ردیابی است. این فرایند برافزایش یکی از کارا ترین فرایندهای تولید انرژی است که تاکنون شناخته شده‌است. تا ۴۰٪ باقی‌مانده ماده برافزوده ممکن است از طریق تابش منتشر شود[۱۰۵](در یک شکافت هسته‌ای تنها ۰٬۷٪ از باقی جرم به صورت انرژی منتشر می‌شود). در بسیاری از موارد این قرص با فواره‌های نسبیتی همراه است که در امتداد قطب‌ها منتشر می‌شوند و انرژی بسیاری در خود دارند. مکانیزم تشکیل این فواره‌ها هنوز به درستی فهمیده نشده‌است.

بسیاری از پدیده‌های پرانرژی تر در جهان به برافزایش ماده در سیاهچاله‌ها نسبت داده می‌شود. به طور خاص، هسته کهکشانی فعال و اختروش‌ها گمان می‌شود که قرص‌های بر افزایشی سیاهچاله‌های کلان جرم باشند. به همین ترتیب گمان می‌رود که دوتایی‌های پرتو ایکس منظومه‌های دوتایی هستند که یکی از این دو ستاره جسمی فشرده‌است که ماده را از ستاره ندیم برافزایش می‌کند. همچنین پیشنهاد شده‌است که برخی از منابع فوق درخشان پرتو ایکس ممکن است قرص‌های برافزایشی سیاهچاله‌های جرم متوسط باشند.[۱۰۶]

دوتایی‌های پرتو ایکس[ویرایش]

نوشتار اصلی: دوتایی پرتو ایکس

دوتایی‌های پرتو ایکس یا ستاره‌های دوتایی که در قسمت پرتو ایکس طیف، روشن هستند. این تابش‌های پرتو ایکس گمان می‌رود که توسط یکی از ستاره‌ها ایجاد می‌شود که جسمی فشرده‌است و ماده را از ستاره معمولی همراهش برافزایش می‌کند. حضور یک ستاره معمولی در این منظومه‌های دوتایی موقعیتی منحصربه‌فرد برای مطالعه جسم دیگر و بررسی سیاهچاله بودن آن در اختیار می‌گذارد.

برداشتی هنری از یک منظومه دوتایی با یک قرص برافزایشی که از ماده ستاره ندیم تغذیه می‌شود.

اگر چنین منظومه‌ای سیگنال‌هایی منتشر کند که رد آن مستقیماً به جسم فشرده برسد، این جسم نمی‌تواند سیاهچاله باشد؛ هرچند که نبودن این سیگنال نیز احتمال ستاره نوترونی بودن جسم فشرده را ازبین نمی‌برد. با مطالعه ستاره ندیم (همراه) اغلب می‌توان پارمترهای مداری منظومه را بدست آورده و تخمینی برای جرم جسم فشرده ارائه کرد. اگر این جرم به میزان قابل توجهی از حد تولمن-اوپنهایمر-وولکوف (که در واقع بیشینه جرم ممکن برای یک ستاره نوترونی پیش از رمبش است) بیشتر باشد، دیگر این جسم نمی‌تواند ستاره نوترونی باشد و پندار عمومی بر سیاهچاله بودن آن است.[۹۶]

ماکیان ایکس-یک، اولین نامزد قوی برای سیاهچاله بودن، در سال ۱۹۷۲ به همین روش توسط چارلز توماس بولتون، لوییس وبستر و پل مردین کشف شد.[۱۰۷][۱۰۸][۱۰۹][۱۱۰] هرچند که تردیدهایی در مورد سیاهچاله بودن آن وجود دارد زیرا ستاره ندیم از ستاره‌ای که نامزد سیاهچاله بودن است بسیار سنگین تر است.[۹۶] اکنون نامزدهای بهتری برای سیاهچاله بودن در رده دوتایی‌های پرتو ایکس شناخته شده‌اند که متغیرهای پرتو ایکس نرم نامیده می‌شوند.[۹۶] در این منظومه‌ها ستاره ندیم نسبتاً کم جرم است و اجازه تخمین دقیقتری برای جرم سیاهچاله می‌دهد. افزون بر این، این منظومه‌ها تنها چند ماه در هر ۱۰ تا ۵۰ سال منبع فعال پرتو ایکس هستند. در طول دوره تابش کم پرتو ایکس (دوره خاموشی)، قرص برافزایشی کم نور است و امکان مشاهده جزئیات ستاره ندیم در این دوره را فراهم می‌سازد. یکی از بهترین این دسته از نامزدهاسیگنی وی-۴۰۴ (V404 Cygni) است.

نوسان‌های نیمه متناوب[ویرایش]

انتشار پرتو ایکس از قرص‌های برافزایشی در بسامدهای مشخصی دچار سوسو زدن می‌شود. این سیگنال‌ها را نوسان‌های نیمه متناوب می‌نامند. گمان می‌رود که این سیگنال‌ها ناشی از حرکت ماده در لبه داخلی قرص برافزایشی باشند(درونی ترین مدار دایره‌ای پایدار) و به همین دلیل با جرم جسم فشرده مرتبط اند. از این رو گاهی به عنوان راه جایگزینی برای تعیین جرم سیاهچاله‌های احتمالی به کار می‌روند.[۱۱۱]

هسته کهکشانی[ویرایش]

نوشتار(های) وابسته: هسته کهکشانی فعال
فواره‌های برآمده از مرکز مسیه ۸۷ در این تصویر نشات گرفته از یک هسته کهکشانی فعال است که ممکن است در بر گیرندهٔ یک سیاه‌چاله کلان‌جرم باشد. منبع: تلسکوپ فضایی هابل/ناسا/سازمان فضایی اروپا.

اخترشناسان برای توصیف کهکشان‌هایی که ویژگی‌های غیرمعمولی مانند خط طیفی غیرمعمولی و یا تابش‌های رادیوی بسیار قوی دارند، از واژه کهکشان فعال استفاده می‌کنند. مطالعات نظری و تجربی نشان داده‌اند که فعالیت این هسته‌های کهکشانی فعال(AGN) را می‌توان با استفاده از سیاهچاله‌های کلان جرم توضیح داد. این گونه مدل‌های هسته‌های کهکشانی فعال از یک سیاه‌چاله کلان‌جرم، یک قرص برافزایشی و دو فواره عمود بر قرص برافزایشی تشکیل می‌شوند.[۱۱۲][۱۱۳]

اگرچه انتظار می‌رود که سیاهچاله‌های کلان جرم در مرکز همه هسته‌های کهکشانی فعال حضور داشته باشند؛ اما تنها برخی از هسته‌های کهکشانی مورد مطالعه دقیق برای شناسایی و اندازه گیری جرم واقعی این نامزدهای سیاهچاله کلان جرم، قرار گرفته‌اند. برخی از مهمترین کهکشان‌ها با نامزدهایی برای سیاهچاله کلان جرم عبارتند از: کهکشان زن برزنجیر، مسیه ۳۲، مسیه ۸۷، ان‌جی‌سی ۳۱۱۵، ان‌جی‌سی ۳۳۷۷، ن‌جی‌سی ۴۲۵۸ و کهکشان کلاه‌مکزیکی.[۱۱۴]

امروزه به گستردگی پذیرفته شده‌است که در مرکز همه(تفریبا) کهکشان‌ها (نه تنها کهکشان‌های فعال) یک سیاهچاله کلان جرم قرار گرفته‌است.[۸۷] همبستگی تجربی نزدیک بین جرم این چاله و پراکندگی سرعت در بخش برآمده خود کهکشان که به رابطه ام-سیگما (M-Sigma)معروف است، قویا پیشنهاد می‌کند که ارتباطی بین شکل گیری سیاهچاله و شکل گیری خود کهکشان وجود دارد.[۱۱۵]

در حال حاضر بهترین گواه برای یک سیاهچاله کلان جرم از مطالعه حرکات خاص ستارگان در نزدیکی مرکز کهکشان راه شیری خودمان به دست می‌آید.[۱۱۶] از سال ۱۹۹۵ اختر شناسان حرکت ۹۰ ستاره را در ناحیه‌ای به نام کمان ای* ردیابی نموده‌اند. با تطبیق حرکت این ستارگان بر مدارهای کپلری در سال ۱۹۹۸ به این نتیجه رسیدند که باید جرمی برابر ۲٫۶ میلیون جرم خورشیدی در حجمی به شعاع ۰٫۲ سال نوری قرار گرفته باشند.[۱۱۷] از آن زمان تا کنون یکی از این ستارگان - به نام اس-۲ - یک مدار کامل را پیموده‌است. آنها موفق شدند از روی داده‌های مداری، محدودیت‌های مناسبتری برای جرم و اندازه این شی- که باعث حرکت مداری ستارگان ناحیه کمان ای* می‌شود- وضع کنند. آنها دریافتند که یک جرم کروی برابر ۴٫۳ میلیون جرم خورشیدی در ناحیه‌ای به شعاع ۰٫۰۰۲ سال نوری قرار گرفته‌است.[۱۱۶] اگرچه این شعاع تقریباً ۳۰۰۰ بربار شعاع شوارتزشیلد متناظر با این جرم است، اما دست کم با این حقیقت که جسم مرکزی یک سیاهچاله کلان جرم باشد سازگار است.[۱۱۷]

همگرایی گرانشی[ویرایش]

نوشتار اصلی: همگرایی گرانشی
Schwarzschild black hole
شبیه سازی همگرایی گرانشی توسط یک سیاهچاله که سبب کجنمایی (اعوجاج) تصویر کهکشان پس زمینه شده‌است.

تغییر شکل فضا زمان در اطراف یک جسم سنگین سبب می‌شود که پرتوهای نور شبیه به آنچه که در یک عدسی نوری رخ می‌دهد، همگرا شوند. این پدیده به نام همگرایی گرانشی خوانده می‌شود. مشاهداتی از یک همگرایی گرانشی بسیار ضعیف صورت گرفته‌است که فوتونها را تنها به اندازه چند ثانیه قوسی خم می‌کند. هرچند که این پدیده هرگز مستقیماً برای یک سیاهچاله مشاهده نشده‌است.[۱۱۸] یک راه ممکن برای مشاهده همگرایی گرانشی توسط یک سیاهچاله می‌تواند مشاهده ستاره‌ها در مدار پیرامون سیاهچاله باشد. چندین نامزد مختلف برای چنین مشاهداتی در ناحیه کمان-ای وجود دارند.[۱۱۸]

امواج گرانشی[ویرایش]

یکی از راه‌های کشف سیاهچاله‌ها استفاده از امواج گرانشی است که هنگام فروپاشی گسیل می‌دارند. هر جرم اختری از دید شکل نامتقارن تشعشع ممکن است یک منبع قابل اکتشاف مشخص به وجود آورد. جوزف وبر از دانشگاه مریلند، پیشکسوت رشته تشعشع گرانشی، رویدادهای زیادی را کشف کرده‌است که نمایان‌گر ویرانی وسیع ماده در جهان، از راه فروپاشی گرانشی است. کارافزار او عبارت است از آنتن‌های آلومینیومی، ابزاری که به‌وسیله سیم‌هایی در داخل اتاق‌های حفاظداری آویزانند. این کارافزار او قادر به کشف سیاهچاله‌است، اما این کار را نمی‌تواند به دقت انجام دهد.[۱۱۹]

امکان‌های دیگر[ویرایش]

شاهد تجربی سیاهچاله‌های ستاره‌ای بر این قانون استوار است که حد بالایی برای جرم یک ستاره نوترونی وجود دارد. اندازه این حد نیز به میزان زیادی به فرضیاتی که در مورد خواص یک ماده چگال در نظر گرفته شده‌اند بستگی دارد. فازهای جدید و عجیب ماده ممکن است این حد را بالاتر ببرند.[۹۶] فازی از ماده که دارای کوارکهای آزاد با چگالی بالا ممکن است اجازه وجود ستاره‌های کوارکی چگال را بدهد[۱۲۰] و برخی مدل‌های ابرتقارنی نیز وجود ستارگان کیو را پیش بینی می‌کنند.[۱۲۱] برخی از گسترش‌های مدل استاندارد ادعای وجود ذراتی به نام پرئون را دارند که از اجزای بنیادی سازنده کوارکها و لپتونها هستند که به طور فرضی ممکن است تشکیل ستاره‌های پرئونی را بدهند.[۱۲۲] این مدل‌های فرضی پتانسیل آن را دارند که گروهی از مشاهدات مربوط به نامزدهای سیاهچاله‌های ستاره‌ای را توضیح دهند، هرچند که گفتگوهای همگانی نسبیت عام نشان می‌دهد که هر گونه‌ای از این ستاره‌های فرضی نیز جرم بیشینه‌ای خواهند داشت.[۹۶]

ازآنجا که چگالی متوسط یک سیاهچاله در درون شعاع شوارتزشیلدش با مربع جرم آن نسبت معکوس دارد. چگالی سیاهچاله‌های کلان جرم بسیار کمتر از چگالی سیاهچاله‌های ستاره‌ای است (چگالی متوسط سیاهچاله‌ای به جرم ۱۰۸ جرم خورشیدی با چگالی آب قابل مقایسه‌است). پس از این فیزیک ماده تشکیل دهنده یک سیاهچاله کلان جرم بسیار بهتر فهمیده شده‌است و گاهی از مدل‌های جایگزینی برای توضیح مشاهدات مربوط به سیاهچاله‌های کلان جرم استفاده می‌شود که دنیوی تر هستند. برای نمونه می‌توان یک سیاهچاله کلان جرم را به عنوان دسته‌ای از اجسام بسیار تاریک در نظر گرفت هرچند که این گونه مدل‌های توضیحی جایگزینی به اندازه کافی استوار نیستند که بتوانند نامزدهای سیاهچاله‌های کلان جرم را توضیح دهند.[۹۶]

شواهد موجود در مورد سیاهچاله‌های ستاره‌ای و کلان جرم نشان‌گر آن هستند که برای اینکه سیاهچاله‌ها تشکیل نشوند، باید تئوری نسبیت عام به عنوان یک تئوری گرانش شکست بخورد. شاید این شکست در مقابل هجوم اصلاحات مکانیک کوانتومی باشد. یکی از ویژگی‌های پیش بینی شده در مورد یک تئوری گرانش کوانتومی این است که نقطه تکینگی نخواهد داشت (و در نتیجه سیاهچاله‌ای وجود نخواهد داشت).[۱۲۳] در سال‌های اخیر مدل فازبال در نظریه ریسمان بیشترین توجه را به خود جلب نموده‌است. برپایه محاسبات انجام شده در شرایط بخصوص در نظریه ریسمان این گونه پیشنهاد می‌شود که وضعیت‌های منفرد یک سیاهچاله، افق رویداد یا تکینگی ندارند اما برای یک ناظر کلاسیک/نیمه کلاسیک، میانگین آماری این وضعیت‌های منفرد همچون سیاهچاله‌ای معمولی در نسبیت عام به نظر می‌رسد.[۱۲۴]

پرسش‌های باز[ویرایش]

انتروپی و ترمودینامیک[ویرایش]

نوشتار اصلی: انتروپی سیاهچاله
S=1/4 c۳ k A ħ-۱G-۱.
فرمول انتروپی(S) هاوکینگ-بکنشتین برای سیاهچاله, که به مساحت(A) سیاهچاله بستگی دارد. ثابت‌ها عبارتند از سرعت نور (c), the ثابت بولتزمان (k), ثابت نیوتن (G), و ثابت پلانک (h).

در سال ۱۹۷۱ هاوکینگ نشان داد که در شرایط عمومی[Note ۳] مساحت کل افق‌های رویداد هر مجموعه‌ای از سیاهچاله‌ها هرگز نمی‌تواند کاهش یابد حتی اگر با یکدیگر برخورد و در هم ادغام شوند.[۱۲۵] این نتیجه که امروزه به عنوان قانون دوم مکانیک سیاهچاله‌ها شناخته می‌شود شباهت قابل توجهی با قانون دوم ترمودینامیک دارد که بیان می‌کند که انتروپی کل سیستم هرگز کاهش نمی‌یابد. تصور می‌شد که سیاهچاله‌ها هم همچون اجسام کلاسیکی که در دمای صفر مطلق هستند، انتروپی صفر دارند. پذیرش این تصور سبب نقض قانون دوم ترمودینامیک می‌شود زیرا با ورود ماده دارای انتروپی به سیاهچاله بدون انتروپی، انتروپی کل در جهان به اندازه انتروپی ماده‌ای که جذب سیاهچاله شده کاهش می‌یابد. از این رو بکنشتین پیشنهاد داد که یک سیاهچاله باید انتروپی داشته باشد و انتروپی آن با مساحت افق رویدادش متناسب است.[۱۲۶]

پیوند با قوانین ترمودینامیک وقتی قویتر شد که هاوکینگ کشف کرد که طبق نظریه میدان‌های کوانتومی یک سیاهچاله باید تابش جسم سیاه در دمای ثابت را گسیل کند. به نظر می‌رسد که این به معنای نقض قانون دوم مکانیک سیاهچاله‌ها باشد زیرا این تابش انرژی را از سیاهچاله می‌گیرد و باعث انقباض آن می‌شود. هرچند که این تابش مقداری از انتروپی را نیز به بیرون منتقل می‌کند و زیر شرایط کلی می‌توان اثبات نمود که مجموع انتروپی ماده‌ای که سیاهچاله و یک چارم افق رویداد آن را فراگرفته‌است دائماً رو به افزایش است. این موضوع اجازه فرمولبندی قانون اول مکانیک سیاهچاله‌ها را می‌دهد که همسنگ قانون اول ترمودینامیک است با این تفاوت که به جای انرژی، جرم؛ به جای دما، گرانش سطحی و به جای انتروپی، مساحت قرار می‌گیرد.[۱۲۶]

یکی از ویژگیهای گیج کننده این است که انتروپی یک سیاهچاله با مساحت آن تغییر می‌کند تا حجم آن، حال آنکه انتروپی کمیتی وابسته به حجم است که به صورت خطی با تغییر حجم تغییر می‌کند. این ویژگی عجیب، جرارد توفت و لئونارد ساسکیند را بر آن داشت تا اصل هولوگرافیک را ارائه دهند که پیشنهاد می‌کند که هر چیزی که درون حجمی از فضا-زمان رخ می‌دهد را می‌توان با داده‌های روی مرز آن حجم توصیف نمود.[۱۲۷]

اگرچه می‌توان از نسبیت عام برای محاسباتی نیمه کلاسیک انتروپی سیاهچاله‌ها استفاده نمود، اما این شرایط از لحاظ نظری رضایت بخش نیست. در مکانیک آماری انتروپی عبارت است از شمار پیکربندهای میکروسکوپیک یک سیستم که خواص میکروسکوپیک یکسانی (مانند جرم، بار، دما و...) دارند. بدون یک نظریه قابل قبول برای گرانش کوانتومی انجام چنین محاسباتی برای سیاهچاله‌ها امکانپذیر نیست. پیشرفت‌هایی در برخی دیدگاه‌ها نسبت به گرانش کوانتومی صورت گرفته‌است. در سال ۱۹۹۵ اندرو اشترومینگر و کامران وفا نشان دادند که با شمارش تعداد حالات کوانتومی یک سیاهچاله ابرمتقارن در نظریه ریسمان می‌توان فرمول انتروپی هاوکینگ-بکنشتین را دوباره به دست آورد.[۱۲۸] از آن زمان تاکنون نتایج مشابهی برای سیاهچاله‌های متفاوت هم در نظریه ریسمان و هم در سایر دیدگاه‌ها به گرانش کوانتومی (مانند گرانش کوانتومی حلقه) گزارش شده‌اند.[۱۲۹]

یگانگی سیاهچاله‌ها[ویرایش]

یکی از پرسش‌های باز در فیزیک پایه، پارادوکس اطلاعات گمشده و یا پارادوکس یگانگی سیاهچاله‌است. به طور کلاسیک قوانین فیزیک در هر دو جهت مستقیم و معکوس یکسان عمل می‌کنند. نظریه لیوویل (هامیلتونی) نگهداری حجم فضای فاز را - که می‌توان از آن به نگهداری اطلاعات تعبیر نمود - ضروری می‌داند، در نتیجه حتی در فیزیک کلاسیک هم مشکلاتی وجود دارد. در مکانیک کوانتومی این مسئله متناظر با با یکی از خواص اساسی به نام یگانگی است که با نگهداری احتمالات مرتبط است. آن را می‌توان به عنوان نگهداری حجم فضای فاز کوانتومی، همانگونه که در ماتریس چگالی توصیف می‌شوند نیز در نظر گرفت.[۱۳۰]

شمار سیاهچاله‌ها در جهان[ویرایش]

شمار سیاهچاله‌ها در جهان به قدری زیاد است که شمردن آنها امکانپذیر نیست. کهکشان راه شیری به تنهایی در حدود صد میلیارد ستاره دارد که از هر هزار ستاره تقریباً یکی به اندازه‌ای بزرگ هست که به سیاهچاله تبدیل شود. پس کهکشان ما باید در حدود صد میلیون سیاهچاله ستاره‌ای داشته باشد. اما تاکنون تنها یک دوجین از آنها شناسایی شده‌اند. از آنجا که در محدوده‌ای از جهان که از زمین قابل مشاهده‌است در حدود صد میلیارد کهکشان وجود دارد و سیاهچاله‌های کلان جرم نیز در مرکز این کهکشان‌ها قرار دارند پس باید در حدود صد میلیارد سیاهچاله کلان جرم در این ناحیه از جهان وجود داشته باشد.[۱۳۱]

نظریه جهان‌های درون سیاهچالگان[ویرایش]

نیکدوم پاپلاوسکی، فیزیک دان نظری از دانشگاه ایندیانا پیشنهاد کرده‌است که ممکن است جهان ما درون سیاهچاله‌ای قرار گرفته باشد که خود آن در جهانی بزرگتر واقع شده‌است.[۱۳۲][۱۳۳][۱۳۴][۱۳۵][۱۳۶][۱۳۷][۱۳۸] نظریه پاپلاوسکی جایگزینی برای نظریه وجود تکینگی گرانشی در سیاهچاله هاست. او توضیحی نظری بر مبنای پیچش فضا زمان ارائه می‌دهد.[۱۳۹] پاپلاوسکی پیشنهاد می‌کند که اگر چگالی ماده در یک سیاهچاله به ۱۰۵۰ کیلوگرم بر متر مکعب برسد، پیچش به عنوان نیرویی به مقابله با گرانش تبدیل می‌شود و به جای تشکیل تکینگی برود همچون فنر فشرده‌ای که به آن فشار وارد شده‌است باز می‌شود.[۱۴۰][۱۴۱] او عنوان نموده‌است که میزان بسیار بالای پیچش ممکن است دلیل انبساط کیهانی باشد.[۱۴۲]

علاوه بر این این نظریه پیشنهاد می‌دهد که هر سیاهچاله‌ای یک کرم‌چاله می‌شود که دربرگیرنده جهان در حال انبساط جدیدی است که از یک جهش بزرگ در سیاهچاله بوجود آمده‌است. بنابراین سیاهچاله‌های مرکز کهکشان‌ها ممکن است پل‌هایی به جهان‌های دیگر باشند.[۱۴۳][۱۴۴][۱۴۵] بنابراین جهان خود ما نیز ممکن است درون سیاهچاله‌ای باشد که خود در جهانی بزرگتر قرار گرفته‌است که پیش تر از این توسط راج پاتیرا مطرح شده بود.[۱۴۶]

پانویس[ویرایش]

  1. [۴۰] مجموعه مسیرهای ممکن یا به عبارت دقیقتر قیف نور آینده که شامل همه خط‌های جهانی ممکن(در این نمودار با شبکه‌های زرد-آبی نمایش داده شده‌اند.), بدین شکل در مختصات ادینگتون-فینکلشتین خم می‌شوند (نموداریک نسخه کارتونی از نمودار مختصات فینکلشتین-ادینگتون است.), اما در سایر مختصات‌ها قیف‌های نوری بدین شکل خم نمی‌شوند. مثلاً درمختصات شوارتزشیلد چنانچه به افق رویداد نزدیک شویم، نازک می‌شوند اما خم نمی‌گردند، و در مختصات کروسکال-سزکرس قیف‌های نوری شکل یا جهت گیریشان را تغییر نمی‌دهند.
  2. این تنها در مورد فضاهای چهار بعدی صادق است. در ابعاد بالاتر امکان توپولوژیهای پیچیده تری مانند حلقه سیاه پدید می‌آید.[۴۷][۴۸]
  3. به طور خاص او در نظر گرفت که شرط انرژی ضعیف برای تمام مواد صادق است

تصورات اشتباه[ویرایش]

  • سیاه‌چاله‌ها برخلاف تصور نادرست ایجادشده از آنها، هر آنچه در اطراف آنهاست را به درون خود نمی‌مکند..[۱۴۷] برای مثال اگر خورشید با یک سیاه‌چاله با همین جرم جایگزین می‌شد، شعاع مدارهای سیارات تغییری نمی‌کرد.[۱۴۸]

منابع[ویرایش]

  1. Robert M., Wald. “Black Holes”. In General Relativity. The University of Chicago Press, 1984. ISBN ‎0226870332. Retrieved 09 Nov 2011. 
  2. Davies, P. C. W.. “Thermodynamics of Black Holes”. Reports on Progress in Physics (IOP Publishing) 41, no. 8 (1978): 1355–1313. Bibcode1978RPPh...41.1313D. 
  3. Eisenstaedt, “The Early Interpretation of the Schwarzschild Solution,” in D. Howard and J. Stachel (eds), Einstein and the History of General Relativity: Einstein Studies, Vol. 1, pp. 213-234. Boston: Birkhauser, 1989.
  4. Letter from K Schwarzschild to A Einstein dated 22 December 1915, in "The Collected Papers of Albert Einstein", vol.8a, doc. #169, (Transcript of Schwarzschild's letter to Einstein of 22 Dec. 1915).
  5. «What is a black hole?». بازبینی‌شده در ۰۹-۱۱-۲۰۱۱. 
  6. «supermassive black holes»(انگلیسی)‎. www.nasa.gov. بازبینی‌شده در ۱۶ نوامبر ۲۰۱۱. }
  7. «How Big Are Black Holes?». بازبینی‌شده در ۰۹-۱۱-۲۰۱۱. 
  8. Paul Sukys. Rowman & Littlefield. Lifting the scientific veil: science appreciation for the nonscientist. 1999. 227. ISBN 0-8476-9600-6. 
  9. “John Wheeler: 1911-2008 - physicsworld.com”. Apr 14, 2008. Retrieved Dec 12,2011. 
  10. Michell، J. «On the Means of Discovering the Distance, Magnitude, &c. of the Fixed Stars, in Consequence of the Diminution of the Velocity of Their Light, in Case Such a Diminution Should be Found to Take Place in any of Them, and Such Other Data Should be Procured from Observations, as Would be Farther Necessary for That Purpose». Philosophical Transactions of the Royal Society 74، ش. 0 (1784): 35-37. Bibcode۱۷۸۴RSPT...۷۴...۳۵. doi:10.1098/rstl.1784.0008. JSTOR ۱۰۶۵۷۶. 
  11. Gillispie, C. C. Pierre-Simon Laplace, 1749-1827: a life in exact science. Princeton paperbacks. Princeton University Press, 2000. 175. ISBN ‎0691050279. 
  12. Israel, W. “Dark stars: the evolution of an idea”. S. W Hawking and W Israel. In Three Hundred Years of Gravitation. انتشارات دانشگاه کمبریج, 1989. ISBN ‎9780521379762. 
  13. ۱۳٫۰ ۱۳٫۱ Schwarzschild, K. «Über das Gravitationsfeld eines Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen Theorie». Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften 7 (1916): 196-189. بازبینی‌شده در 20/12/2011.  Schwarzschild, K. «Über das Gravitationsfeld eines Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen Theorie». Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften 18 (1916): 424–434. بازبینی‌شده در 20/12/2011. 
  14. Droste, J. «On the field of a single centre in Einstein's theory of gravitation». Koninklijke Nederlandsche Akademie van Wetenschappen Proceedings 17, ش. 3 (1915): 1011-998. 
  15. 't Hooft, G. «[درآمدی بر نظریه سیاهچاله‌ها]». Introduction to the Theory of Black Holes. Institute for Theoretical Physics / Spinoza Insitute, 2009. 48-47. بازبینی‌شده در 20/12/2011. 
  16. Venkataraman، G.. Chandrasekhar and his limit [چاندراسکار و حد او]. Universities Press. 89. doi:10.1119/1.12686. شابک ‎۸۱۷۳۷۱۰۳۵X. 
  17. Detweiler, S. «Resource letter BH-1: Black holes». American Journal of Physics 49, ش. 5 (1981): 394–400. Bibcode1981AmJPh..49..394D. doi:10.1119/1.12686. بازبینی‌شده در 20/12/2011. 
  18. Harpaz، A. Stellar evolution [تکامل ستاره‌ای]. A K Peters, Ltd.، 1994. 105. شابک ‎۱-۵۶۸-۸۱۰۱۲-۱. 
  19. Oppenheimer, J. R. «On Massive Neutron Cores». Physical Review 55, ش. 4 (1939): 374–381. Bibcode1939PhRv...55..374O. doi:10.1103/PhysRev.55.374. 
  20. Finkelstein، D.. «Past-Future Asymmetry of the Gravitational Field of a Point Particle [عدم تقارن گذشته-آینده میدان گرانشی یک ذره نقطه‌ای]». Physical Review 110، ش. 4 (1958): 965–967. Bibcode۱۹۵۸PhRv..۱۱۰..۹۶۵F. doi:10.1103/PhysRev.110.965. 
  21. Kruskal، M.. «Maximal Extension of Schwarzschild Metric [گسترش ماکسیمال متریک شوارتزشیلد]». Physical Review 119، ش. 5 (1960): 1743. Bibcode۱۹۶۰PhRv..۱۱۹.۱۷۴۳K. doi:10.1103/PhysRev.119.1743. 
  22. Hewish، A.. «Pulsars [تپ اخترها]». Annual Review of Astronomy and Astrophysics 8، ش. 1 (1970): 265–296. Bibcode۱۹۷۰ARA&A...۸..۲۶۵H. doi:10.1146/annurev.aa.08.090170.001405. 
  23. Hewish، A. و دیگران. «Observation of a Rapidly Pulsating Radio Source [مشاهده یک منبع رادیوی سریعاً تپنده]». Nature (journal) 217، ش. 5130 (1968): 709–713. Bibcode۱۹۶۸Natur.۲۱۷..۷۰۹H. doi:10.1038/217709a0. 
  24. , Bibcode:1968Natur.218..126P, doi:10.1038/218126a0  Text "Nature " ignored (help); Unknown parameter |عنوان= ignored (help); Unknown parameter |نام خانوادگی= ignored (help); Unknown parameter |صفحه= ignored (help); Unknown parameter |سال= ignored (help); Unknown parameter |نام4= ignored (help); Unknown parameter |ژورنال= ignored (help); Unknown parameter |نام= ignored (help); Unknown parameter |نام خانوادگی3= ignored (help); Unknown parameter |نام2= ignored (help); Unknown parameter |نام خانوادگی4= ignored (help); Unknown parameter |ترجمه عنوان= ignored (help); Unknown parameter |نام3= ignored (help); Unknown parameter |دوره= ignored (help); Unknown parameter |شماره= ignored (help); Unknown parameter |نام خانوادگی2= ignored (help); Missing or empty |title= (help)
  25. Hawking، Stephen W.. GenralRelativity: an Einstein centenary survey [نسبیت عام: بررسی قرنی انیشتین]. Cambridge University Press. Cambridge University Press، 1979. 454. شابک ‎۰۵۲۱۲۲۲۸۵۰. 
  26. , Bibcode:1965JMP.....6..918N, doi:10.1063/1.1704351  Unknown parameter |نام6= ignored (help); Unknown parameter |نام5= ignored (help); Unknown parameter |نام خانوادگی= ignored (help); Unknown parameter |صفحه= ignored (help); Unknown parameter |سال= ignored (help); Unknown parameter |نام4= ignored (help); Unknown parameter |نام خانوادگی6= ignored (help); Unknown parameter |نام خانوادگی3= ignored (help); Unknown parameter |نام2= ignored (help); Unknown parameter |شماره= ignored (help); Unknown parameter |نام خانوادگی4= ignored (help); Unknown parameter |ژورنال= ignored (help); Unknown parameter |ترجمه عنوان= ignored (help); Unknown parameter |نام= ignored (help); Unknown parameter |نام3= ignored (help); Unknown parameter |دوره= ignored (help); Unknown parameter |نام خانوادگی5= ignored (help); Unknown parameter |عنوان= ignored (help); Unknown parameter |نام خانوادگی2= ignored (help); Missing or empty |title= (help)
  27. Israel، W.. «Event Horizons in Static Vacuum Space-Times [افقهای رویداد در فضا-زمانهای خلا ایستا]». Physical Review 164، ش. 5 (1967): 1776. Bibcode۱۹۶۷PhRv..۱۶۴.۱۷۷۶I. doi:10.1103/PhysRev.164.1776. 
  28. Carter، B.. «Axisymmetric Black Hole Has Only Two Degrees of Freedom [سیاهچاله نامتقارن محوری تنها دو درجه از آزادی دارد]». Physical Review Letters 26، ش. 6 (1971): 331. Bibcode۱۹۷۱PhRvL..۲۶..۳۳۱C. doi:10.1103/PhysRevLett.26.331. 
  29. Carter، B.. «The vacuum black hole uniqueness theorem and its conceivable generalisations». در Proceedings of the 1st Marcel Grossmann meeting on general relativity. 1977. 243–254. 
  30. Robinson، D.. «Uniqueness of the Kerr Black Hole». Physical Review Letters 34، ش. 14 (1975): 905. Bibcode۱۹۷۵PhRvL..۳۴..۹۰۵R. doi:10.1103/PhysRevLett.34.905. 
  31. ۳۱٫۰ ۳۱٫۱ Heusler، M.. «Stationary Black Holes: Uniqueness and Beyond [سیاهچاله‌های ایستا: یکتایی و فراتر]». Living Reviews in Relativity ۱، ش. ۶ (۱۹۹۸). 
  32. Carroll ۲۰۰۴، ص ۲۵۳
  33. Thorne، K. S. و R. H. Price. Black holes: the membrane paradigm [سیاهچاله‌ها:پاردایم غشایی]. Yale University Press، ۱۹۸۶. شابک ‎۹۷۸۰۳۰۰۰۳۷۷۰۸. 
  34. Anderson، Warren G.. «The Black Hole Information Loss Problem». Usenet Physics FAQ [مسئله گم شدن اطلاعات در سیاهچاله]. ۱۹۹۶. 
  35. Preskill، J.. Black holes and information: A crisis in quantum physics [سیاهچاله‌ها]. ۱۹۹۴-۱۰-۲۱. 
  36. Seeds، Michael A. و Dana E. Backman. Perspectives on Astronomy. Cengage Learning، ۲۰۰۷. ۱۶۷. شابک ‎۰۴۹۵۱۱۳۵۲۲. 
  37. Shapiro، S. L. و S. A. Teukolsky. Black holes, white dwarfs, and neutron stars: the physics of compact objects [سیاهچاله‌ها، کوتوله‌های سفید و ستاره‌های نوترونی: فیزیک اجسام فشرده]. John Wiley and Sons. ۳۵۷. شابک ‎۰۴۷۱۸۷۳۱۶۰. 
  38. Wald، R. M.. Gravitational Collapse and Cosmic Censorship. 
  39. McClintock، J. E.، R. Shafee، R. Narayan و R. A. Remillard. «The Spin of the Near-Extreme Kerr Black Hole GRS 1915+105». Astrophysical Journal ۶۵۲، ش. ۱ (۲۰۰۶): ۵۱۸–۵۳۹. arXiv:astro-ph/۰۶۰۶۰۷۶. Bibcode۲۰۰۶ApJ...۶۵۲..۵۱۸M. doi:10.1086/508457. 
  40. Thorne، Misner & Wheeler ۱۹۷۳، ص ۸۴۸
  41. Wheeler ۲۰۰۷، ص ۱۷۹
  42. Carroll ۲۰۰۴, Ch. 5.4 and 7.3
  43. Carroll ۲۰۰۴، ص ۲۱۷
  44. Carroll ۲۰۰۴، ص ۲۱۸
  45. «Inside a black hole». Knowing the universe and its secrets. 
  46. Carroll ۲۰۰۴، ص ۲۲۲
  47. Emparan، R. و H. S. Reall. «Black Holes in Higher Dimensions». Living Reviews in Relativity ۱۱، ش. ۶ (۲۰۰۸). arXiv:۰۸۰۱.۳۴۷۱. Bibcode۲۰۰۸LRR....۱۱....۶E. 
  48. Obers، N. A.. Eleftherios Papantonopoulos. «Black Holes in Higher-Dimensional Gravity». Lecture Notes in Physics ۷۶۹ (۲۰۰۹): ۲۱۱–۲۵۸. arXiv:۰۸۰۲.۰۵۱۹. doi:10.1007/978-3-540-88460-6. 
  49. hawking & ellis ۱۹۷۳, Ch. 9.3
  50. Carroll ۲۰۰۴، ص ۲۰۵
  51. Carroll ۲۰۰۴، صص ۲۶۴–۲۶۵
  52. Carroll ۲۰۰۴، ص ۲۵۲
  53. Lewis، G. F. و J. Kwan. «No Way Back: Maximizing Survival Time Below the Schwarzschild Event Horizon». Publications of the Astronomical Society of Australia ۲۴، ش. ۲ (۲۰۰۷): ۴۶–۵۲. arXiv:۰۷۰۵.۱۰۲۹. Bibcode۲۰۰۷PASA...۲۴...۴۶L. doi:10.1071/AS07012. 
  54. Wheeler ۲۰۰۷، ص ۱۸۲
  55. Carroll ۲۰۰۴، صص 257–259 and 265–266
  56. Droz، S.، W. Israel و S. M. Morsink. <in>%20(chtitle)) «Black holes: the inside story». Physics World ۹، ش. ۱ (۱۹۹۶): ۳۴–۳۷. Bibcode۱۹۹۶PhyW....۹...۳۴D. 
  57. Carroll ۲۰۰۴، ص ۲۶۶
  58. Wald ۱۹۸۴، ص ۲۱۲
  59. Hamade. «Black Holes and Quantum Gravity». Cambridge Relativity and Cosmology. University of Cambridge، ۱۹۹۶. بازبینی‌شده در ۲۰۰۹-۰۳-۲۶. 
  60. Palmer، D.. «Ask an Astrophysicist: Quantum Gravity and Black Holes». NASA. بازبینی‌شده در ۲۰۰۹-۰۳-۲۶. 
  61. ۶۱٫۰ ۶۱٫۱ Nitta، Daisuke، Takeshi Chiba و Naoshi Sugiyama. «Shadows of colliding black holes». Physical Review D ۸۴، ش. ۶ (September ۲۰۱۱). Bibcode۲۰۱۱PhRvD..۸۴f۳۰۰۸N. doi:10.1103/PhysRevD.84.063008. 
  62. Nemiroff، R. J.. «Visual distortions near a neutron star and black hole». American Journal of Physics ۶۱، ش. ۷ (۱۹۹۳): ۶۱۹. arXiv:astro-ph/۹۳۱۲۰۰۳. Bibcode۱۹۹۳AmJPh..۶۱..۶۱۹N. doi:10.1119/1.17224. 
  63. Carroll ۲۰۰۴, Ch. 6.6
  64. Carroll ۲۰۰۴, Ch. 6.7
  65. Einstein، A.. «On A Stationary System With Spherical Symmetry Consisting of Many Gravitating Masses». Annals of Mathematics ۴۰، ش. ۴ (۱۹۳۹): ۹۲۲–۹۳۶. doi:10.2307/1968902. 
  66. Kerr، R. P.. «The Kerr and Kerr-Schild metrics». در The Kerr Spacetime. Cambridge University Press، ۲۰۰۹. arXiv:۰۷۰۶.۱۱۰۹. شابک ‎۹۷۸۰۵۲۱۸۸۵۱۲۶. 
  67. ۶۷٫۰ ۶۷٫۱ Penrose، R.. «Gravitational Collapse and Space-Time Singularities». Physical Review Letters ۱۴، ش. ۳ (۱۹۶۵): ۵۷. Bibcode۱۹۶۵PhRvL..۱۴...۵۷P. doi:10.1103/PhysRevLett.14.57. 
  68. ۶۸٫۰ ۶۸٫۱ ۶۸٫۲ Carroll ۲۰۰۴, Section 5.8
  69. ۶۹٫۰ ۶۹٫۱ ۶۹٫۲ Rees، M. J. و M. Volonteri. «Massive black holes: formation and evolution». در Black Holes from Stars to Galaxies—Across the Range of Masses. Cambridge University Press، ۲۰۰۷. ۵۱–۵۸. arXiv:astro-ph/۰۷۰۱۵۱۲. شابک ‎۹۷۸۰۵۲۱۸۶۳۴۷۶. 
  70. Penrose، R.. «"Golden Oldie": Gravitational Collapse: The Role of General Relativity». General Relativity and Gravitation ۳۴، ش. ۷ (۲۰۰۲): ۱۱۴۱. Bibcode۲۰۰۲GReGr..۳۴.۱۱۴۱P. doi:10.1023/A:1016578408204. 
  71. Carr، B. J.. «Primordial Black Holes: Do They Exist and Are They Useful?». در Inflating Horizon of Particle Astrophysics and Cosmology. Universal Academy Press، ۲۰۰۵. arXiv:astro-ph/۰۵۱۱۷۴۳. شابک ‎۴۹۴۶۴۴۳۹۴۰. 
  72. Giddings و S. Thomas. «High energy colliders as black hole factories: The end of short distance physics». Physical Review D ۶۵، ش. ۵ (۲۰۰۲): ۰۵۶۰۱۰. arXiv:hep-ph/۰۱۰۶۲۱۹. Bibcode۲۰۰۲PhRvD..۶۵e۶۰۱۰G. doi:10.1103/PhysRevD.65.056010. 
  73. Harada، T.. «Is there a black hole minimum mass?». Physical Review D ۷۴، ش. ۸ (۲۰۰۶): ۰۸۴۰۰۴. arXiv:gr-qc/۰۶۰۹۰۵۵. Bibcode۲۰۰۶PhRvD..۷۴h۴۰۰۴H. doi:10.1103/PhysRevD.74.084004. 
  74. Arkani–Hamed، N.، S. Dimopoulos و G. Dvali. «The hierarchy problem and new dimensions at a millimeter». Physics Letters B ۴۲۹، ش. ۳–۴ (۱۹۹۸): ۲۶۳. arXiv:hep-ph/۹۸۰۳۳۱۵. Bibcode۱۹۹۸PhLB..۴۲۹..۲۶۳A. doi:10.1016/S0370-2693(98)00466-3. 
  75. LHC Safety Assessment Group. «Review of the Safety of LHC Collisions». CERN. 
  76. Cavaglià، M.. «Particle accelerators as black hole factories?». Einstein-Online (Max Planck Institute for Gravitational Physics (Albert Einstein Institute)) ۴ (۲۰۱۰): ۱۰۱۰. 
  77. Vesperini، E.، S. L. W. McMillan، A. D'Ercole و دیگران. «Intermediate-Mass Black Holes in Early Globular Clusters». The Astrophysical Journal Letters 713، ش. 1 (2010): L41–L44. arXiv:۱۰۰۳.۳۴۷۰. Bibcode۲۰۱۰ApJ...۷۱۳L..۴۱V. doi:10.1088/2041-8205/713/1/L41. 
  78. Zwart، S. F. P.، H. Baumgardt، P. Hut و دیگران. 724. «Formation of massive black holes through runaway collisions in dense young star clusters». Nature 428، ش. 6984 (2004). arXiv:astro-ph/۰۴۰۲۶۲۲. Bibcode۲۰۰۴Natur.۴۲۸..۷۲۴P. doi:10.1038/nature02448. PMID ۱۵۰۸۵۱۲۴. 
  79. O’leary, R. M.; Rasio, F. A.; Fregeau, J. M. et al (2006). "Binary Mergers and Growth of Black Holes in Dense Star Clusters". The Astrophysical Journal 637 (2): 937. arXiv:astro-ph/0508224. Bibcode 2006ApJ...637..937O. DOI:10.1086/498446. 
  80. Hawking, S. W. (1974). "Black hole explosions?". Nature 248 (5443): 30–31. Bibcode 1974Natur.248...30H. DOI:10.1038/248030a0. 
  81. Page, D. N. (2005). "Hawking radiation and black hole thermodynamics". New Journal of Physics 7: 203. arXiv:hep-th/0409024. Bibcode 2005NJPh....7..203P. DOI:10.1088/1367-2630/7/1/203. 
  82. Carroll ۲۰۰۴, Ch. 9.6
  83. "Evaporating black holes?". Einstein online. Max Planck Institute for Gravitational Physics. 2010. Retrieved 2010-12-12. 
  84. Giddings, S. B.; Mangano, M. L. (2008). "Astrophysical implications of hypothetical stable TeV-scale black holes". Physical Review D 78 (3): 035009. arXiv:0806.3381. Bibcode 2008PhRvD..78c5009G. DOI:10.1103/PhysRevD.78.035009. 
  85. Peskin, M. E. (2008). "The end of the world at the Large Hadron Collider?". Physics 1: 14. Bibcode 2008PhyOJ...1...14P. DOI:10.1103/Physics.1.14. 
  86. Wald ۱۹۸۴، صص ۱۲۴–۱۲۵
  87. ۸۷٫۰ ۸۷٫۱ King, Andrew (2003-09-15). "Black Holes, Galaxy Formation, and the MBH-σ Relation". The Astrophysical Journal Letters 596: L27–L29. arXiv:astro-ph/0308342. Bibcode 2003ApJ...596L..27K. DOI:10.1086/379143. 
  88. Richstone, D. et al. (January 13, 1997). "Massive Black Holes Dwell in Most Galaxies, According to Hubble Census". 189th Meeting of the American Astronomical Society. Retrieved 2009-05-17. 
  89. Bender, Ralf; et al. (2005-09-20). "HST STIS Spectroscopy of the Triple Nucleus of M31: Two Nested Disks in Keplerian Rotation around a Supermassive Black Hole". The Astrophysical Journal 631 (1): 280–300. arXiv:astro-ph/0509839. Bibcode 2005ApJ...631..280B. DOI:10.1086/432434. 
  90. Gebhardt, Karl; Thomas, Jens (August 2009). "The Black Hole Mass, Stellar Mass-to-Light Ratio, and Dark Halo in M87". The Astrophysical Journal 700 (2): 1690–1701. Bibcode 2009ApJ...700.1690G. DOI:10.1088/0004-637X/700/2/1690. 
  91. Macchetto, F. ; Marconi, A. ; Axon, D. J.; Capetti, A. ; Sparks, W. ; Crane, P. (November 1997). "The Supermassive Black Hole of M87 and the Kinematics of Its Associated Gaseous Disk". Astrophysical Journal 489 (2): 579. arXiv:astro-ph/9706252. Bibcode 1997ApJ...489..579M. DOI:10.1086/304823. 
  92. Shiga, David (10 January 2008). "Biggest black hole in the cosmos discovered". NewScientist.com news service. 
  93. "Black Hole Boldly Goes Where No Black Hole Has Gone Before". ESA News. January 3, 2007. Retrieved 2006-05-24. 
  94. Maccarone, T.J.; et al.., A; Zepf, SE; Rhode, KL (2007). "A black hole in a globular cluster". Nature 455 (7124): 183–185. arXiv:astro-ph/0701310. Bibcode 2007Natur.445..183M. DOI:10.1038/nature05434. PMID 17203062 
  95. Hopman, Clovis; Simon Portegies Zwart (2005). "Gravitational waves from remnants of ultraluminous X-ray sources". Mon.Not.Roy.Astron.Soc.Lett. 363 (1): L56–L60. arXiv:astro-ph/0506181. Bibcode 2005MNRAS.363L..56H. DOI:10.1111/j.1745-3933.2005.00083.x. 
  96. ۹۶٫۰ ۹۶٫۱ ۹۶٫۲ ۹۶٫۳ ۹۶٫۴ ۹۶٫۵ ۹۶٫۶ Celotti, A.; Miller, J.C.; Sciama, D.W. (1999). "Astrophysical evidence for the existence of black holes". Classical and Quantum Gravity 16 (12A): A3–A21. arXiv:astro-ph/9912186. DOI:10.1088/0264-9381/16/12A/301. 
  97. Hughes, Scott A. (۲۰۰۵). "Trust but verify: The case for astrophysical black holes". arXiv:hep-ph/0511217 [hep-ph]. 
  98. J. Casares: Observational evidence for stellar mass black holes. Preprint
  99. M.R. Garcia et al. : Resolved Jets and Long Period Black Hole Novae. Preprint
  100. J.E. McClintock and R.A. Remillard: Black Hole Binaries. Preprint
  101. B.J. Carr and S.B. Giddings, "Quantum black holes,"Scientific American 292N5 (2005) 30.
  102. Hawking, S. W. (1975). "Particle Creation by Black Holes". Commun. Math. Phys. 43 (3): 199–220. Bibcode 1975CMaPh..43..199H. DOI:10.1007/BF02345020. 
  103. Fichtel, C. E.; Bertsch, D. L.; Dingus, B. L. et al (1994). "Search of the energetic gamma-ray experiment telescope (EGRET) data for high-energy gamma-ray microsecond bursts". Astrophysical Journal 434 (2): 557–559. Bibcode 1994ApJ...434..557F. DOI:10.1086/174758. 
  104. Naeye, R.. "Testing Fundamental Physics". NASA. Retrieved 2008-09-16. 
  105. ۱۰۵٫۰ ۱۰۵٫۱ McClintock, J. E.; Remillard, R. A. (2006). "Black Hole Binaries". In Lewin, W.; van der Klis, M.. Compact Stellar X-ray Sources. Cambridge University Press. arXiv:astro-ph/0306213. ISBN 0521826594.  section 4.1.5.
  106. Winter, L. M.; Mushotzky, R. F.; Reynolds, C. S. (2006). "XMM‐Newton Archival Study of the Ultraluminous X‐Ray Population in Nearby Galaxies". The Astrophysical Journal 649 (2): 730. arXiv:astro-ph/0512480. Bibcode 2006ApJ...649..730W. DOI:10.1086/506579. 
  107. Bolton, C. T. (1972). "Identification of Cygnus X-1 with HDE 226868". Nature 235 (5336): 271–273. Bibcode 1972Natur.235..271B. DOI:10.1038/235271b0. 
  108. Webster, B. L.; Murdin, P. (1972). "Cygnus X-1—a Spectroscopic Binary with a Heavy Companion ?". Nature 235 (5332): 37–38. Bibcode 1972Natur.235...37W. DOI:10.1038/235037a0. 
  109. Rolston, B. (10 November 1997). "The First Black Hole". The bulletin. University of Toronto. Archived from the original on 2008-05-02. Retrieved 2008-03-11. 
  110. Shipman, H. L. (1 January 1975). "The implausible history of triple star models for Cygnus X-1 Evidence for a black hole". Astrophysical Letters 16 (1): 9–12. Bibcode 1975ApL....16....9S. DOI:10.1016/S0304-8853(99)00384-4. 
  111. "NASA scientists identify smallest known black hole" (Press release). مرکز پرواز فضایی گادرد. ۲۰۰۸-۰۴-۰۱. Retrieved ۲۰۰۹-۰۳-۱۴. 
  112. Krolik, J. H. (1999). Active Galactic Nuclei. Princeton University Press. Ch. 1.2. ISBN 0-691-01151-6. 
  113. Sparke, L. S.; Gallagher, J. S. (2000). Galaxies in the Universe: An Introduction. Cambridge University Press. Ch. 9.1. ISBN 0-521-59704-4. 
  114. Kormendy, J.; Richstone, D. (1995). "Inward Bound—The Search For Supermassive Black Holes In Galactic Nuclei". Annual Reviews of Astronomy and Astrophysics 33 (1): 581–624. Bibcode 1995ARA&A..33..581K. DOI:10.1146/annurev.aa.33.090195.003053. 
  115. Ferrarese, L.; Merritt, D. (2000). "A Fundamental Relation Between Supermassive Black Holes and their Host Galaxies". The Astrophysical Journal Letters 539 (1): 9–12. arXiv:astro-ph/0006053. Bibcode 2000ApJ...539L...9F. DOI:10.1086/312838. 
  116. ۱۱۶٫۰ ۱۱۶٫۱ Gillessen, S.; Eisenhauer, F.; Trippe, S. et al (2009). "Monitoring Stellar Orbits around the Massive Black Hole in the Galactic Center". The Astrophysical Journal 692 (2): 1075. arXiv:0810.4674. Bibcode 2009ApJ...692.1075G. DOI:10.1088/0004-637X/692/2/1075. 
  117. ۱۱۷٫۰ ۱۱۷٫۱ Ghez, A. M.; Klein, B. L.; Morris, M. et al (1998). "High Proper‐Motion Stars in the Vicinity of Sagittarius A*: Evidence for a Supermassive Black Hole at the Center of Our Galaxy". The Astrophysical Journal 509 (2): 678. arXiv:astro-ph/9807210. Bibcode 1998ApJ...509..678G. DOI:10.1086/306528. 
  118. ۱۱۸٫۰ ۱۱۸٫۱ Bozza, Valerio (۲۰۰۹). "Gravitational Lensing by Black Holes". arXiv:۰۹۱۱.۲۱۸۷ [gr-qc]. 
  119. Preparata, Giuliano (1995). QED Coherence in Matter. Princeton paperbacks. World Scientific Pub Co Inc. p. 145. ISBN 9810222491. 
  120. Kovacs, Z.; Cheng, K. S.; Harko, T. (2009). "Can stellar mass black holes be quark stars?". Monthly Notices of the Royal Astronomical Society 400 (3): 1632–1642. arXiv:0908.2672. Bibcode 2009MNRAS.400.1632K. DOI:10.1111/j.1365-2966.2009.15571.x. 
  121. Kusenko, A. (۲۰۰۶). "Properties and signatures of supersymmetric Q-balls". arXiv:hep-ph/0612159 [hep-ph]. 
  122. Hansson, J.; Sandin, F. (2005). "Preon stars: a new class of cosmic compact objects". Physics Letters B 616 (1–2): 1. arXiv:astro-ph/0410417. Bibcode 2005PhLB..616....1H. DOI:10.1016/j.physletb.2005.04.034. 
  123. Kiefer, C. (2006). "Quantum gravity: general introduction and recent developments". Annalen der Physik 15 (1–2): 129. arXiv:gr-qc/0508120. Bibcode 2006AnP...518..129K. DOI:10.1002/andp.200510175. 
  124. Skenderis, K.; Taylor, M. (2008). "The fuzzball proposal for black holes". Physics Reports 467 (4–5): 117. arXiv:0804.0552. Bibcode 2008PhR...467..117S. DOI:10.1016/j.physrep.2008.08.001. 
  125. Hawking, S. W. (1971). "Gravitational Radiation from Colliding Black Holes". Physical Review Letters 26 (21): 1344–1346. Bibcode 1971PhRvL..26.1344H. DOI:10.1103/PhysRevLett.26.1344. 
  126. ۱۲۶٫۰ ۱۲۶٫۱ Wald, R. M. (2001). "The Thermodynamics of Black Holes". Living Reviews in Relativity 4 (6). arXiv:gr-qc/9912119. Bibcode 1999gr.qc....12119W. Retrieved 2011-02-10. 
  127. 't Hooft, G. (2001). "The Holographic Principle". In Zichichi, A.. Basics and highlights in fundamental physics. Subnuclear series. 37. World Scientific. arXiv:hep-th/0003004. ISBN 9789810245368. 
  128. Strominger, A.; Vafa, C. (1996). "Microscopic origin of the Bekenstein-Hawking entropy". Physics Letters B 379 (1–4): 99. arXiv:hep-th/9601029. Bibcode 1996PhLB..379...99S. DOI:10.1016/0370-2693(96)00345-0. 
  129. Carlip, S. (2009). "Black Hole Thermodynamics and Statistical Mechanics". Lecture Notes in Physics 769: 89. arXiv:0807.4520. DOI:10.1007/978-3-540-88460-6_3. 
  130. Hawking, S. W.. "Does God Play Dice?". www.hawking.org.uk. Retrieved 2009-03-14. 
  131. HubbleSite: "How many black holes are there?"
  132. Poplawski, N. J. (2010). "Radial motion into an Einstein-Rosen bridge". Physics Letters B 687: 110. Bibcode 2010PhLB..687..110P. DOI:10.1016/j.physletb.2010.03.029. 
  133. Indiana University Newsroom: "Our universe at home within a larger universe? So suggests IU theoretical physicist's wormhole research"
  134. National Geographic Daily News: "Every Black Hole Contains Another Universe?"
  135. Science Now: "Does Our Universe Live Inside a Wormhole?"
  136. Space.com: "Our Universe Was Born in a Black Hole, Theory Says"
  137. National Geographic Daily News: "Top Ten Discoveries of 2010: Nat Geo News's Most Popular"
  138. Science Now: "Top 10 ScienceNOWs of 2010"
  139. Smolin, L. (1992). "Did the Universe evolve?". Classical and Quantum Gravity 9: 173. DOI:10.1088/0264-9381/9/1/016. 
  140. New Scientist, Vol. 207, No. 2770, p. 9 (2010): "Every black hole may hold a hidden universe"
  141. Washington Post: "Cosmologist's theory about black holes puts a new spin on the universe"
  142. Poplawski, N. J. (2010). "Cosmology with torsion: An alternative to cosmic inflation". Physics Letters B 694: 181. DOI:10.1016/j.physletb.2010.09.056. 
  143. Popular Science: "Are We Living Inside a Black Hole?"
  144. National Post: "We may exist inside a black hole, scientist says"
  145. Telegraph: "A universe could exist 'inside every black hole,' claims scientist"
  146. Pathria, R. K. (1972). "The Universe as a Black Hole". Nature 240 (5379): 298. DOI:10.1038/240298a0. 
  147. Wolfson, Richard (2002). "black+hole"+"misconception"+"cosmic+vacuum+cleaner"+-wikipedia Simply Einstein: relativity demystified. W. W. Norton & Company. p. 261. ISBN 0-393-05154-4. 
  148. "Frontiers And Controversies In Astrophysics Transcript 9". دانشگاه ییل. Retrieved April 26, 2011.