رنگ

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو
فارسی English
مداد رنگی

رَنگ بازتابی از نور است که به شکل‌های متفاوتی در می‌آید و این بازتاب مجموعهٔ وسیعی را شامل می‌شود.

اگر یک ناحیه باریک از طول موج‌های نور مرئی توسط ماده جذب شود رنگ بوجود می‌آید.

نور سفید از طیف کاملی از رنگ‌ها تشکیل یافته‌است. اگر یک ناحیه باریک از طول موج‌های نور سفید توسط ماده جذب شود بقیه طول موج‌ها از ماده عبور کرده و چشم انسان طول موج‌های ترکیبی که از ماده عبور کرده را می‌بیند.

رنگ به هر مایع، شبهه مایع یا هر ترکیب صمغ مانندی که موقع اعمال شدن، لایه نازکی را جهت پوشاندن جسمی جامد ایجاد کند، گویند.

دید کلی[ویرایش]

از رنگ برای محافظت، نگهداری، دکوراسیون یا جهت اضافه کردن هرگونه قابلیت بر روی یک سطح که توسط رنگدانه پوشانده می‌گردد، استفاده می‌شود. مثال‌هایی از محافظت عبارتند از: پوشاندن سطح فلزات برای کند کردن خوردگی، یا رنگ کردن خانه جهت محافظت از آن در برابر عناصر خارجی (آب، خاک و...).

مثالی از دکوراسیون، رنگ کردن اتاقی برای آماده‌سازی آن جهت جشن می‌باشد. استفاده‌های دیگری که از رنگ می‌شود، شامل برگرداندن رنگی خاص از روی سطح و یا استفاده بر روی سطوح علیه حرارت یا موازات با استفادهٔ حرارتی از آن سطح در کاربردهای مختلف است. مثال کاربردی دیگری در این زمینه، برای تشخیص دادن علامات صنعتی یا هشدارها، یا علامت گذاری لوله‌ها در صنعت یا در زمینهٔ کاربردهای نظامی می‌باشد. رنگ را برای هر جسمی می‌توان استفاده کرد، برای مثال در هنر، پوششهای صنعتی، علامات جاده‌ای یا در لنگرگاه‌ها جهت جلوگیری از خوردگی توسط آبها.

رنگ یک محصول نیمه تمام شده‌است، بدین معنی که بعد از استفاده توسط کاربر است که به مرحله پایانی خود می‌رسد. از رنگ همچنین همراه با مخلوط کردن لعاب، برای پوششهای پیشرفته و صیقلی سازی سطوح نیز می‌توان استفاده کرد.

تاریخچه[ویرایش]

نقاشی‌های پیدا شده در غارها که توسط رنگهای بدست آمده از اُخرا، و اکسیدهای هماتیت و مگنتیت کشیده شده‌اند به ۴۰۰۰۰ سال قبل و به دوران انسانهای هموساپینس باز می‌گردد. نقاشی‌های کهن در درنادای مصر که برای سالیان متمادی بدون حفاظ و در معرض هوا بوده‌است، یک پدیده درخشان اثر برلینسی می‌باشد که هنوز هم به همان روشنی ۲۰۰۰ سال قبل است. مصری‌ها رنگهایشان را با ماده‌ای صمغ مانند، ترکیب می‌کردند و هر یک را به صورت جداگانه بر روی سطح اعمال می‌کردند بدون اینکه ذره‌ای با هم مخلوط گردند. آنها از ۶ رنگ استفاده می‌کردند: سفید، سیاه، قرمز، آبی، زرد و سبز. مابقی بحث راجع به تاریخ رنگ، از حوصله این مقاله خارج است.

ترکیبات[ویرایش]

رنگدانه:دانه‌های جامد ریزی هستند که در رنگ جهت توزیع رنگ، زبری، غلظت رنگ و... با یکدیگر متحد می‌گردند. ولی بعضی از رنگها یه جای ترکیبات معمول رنگدانه، از رنگ‌های دانه‌ای میکرونیزه استفاده می‌کنند. رنگدانه‌ها به دو دسته طبیعی و شیمیایی تقسیم بندی می‌گردند. رنگدانه‌های طبیعی شامل خاک رس، کلسیم کربنات، سیلیکا، تالک و میکا می‌باشد. رنگدانه‌های شیمیایی حاوی مولکولهای مهندسی یعنی خاک رس تکلیس شده، رسوب‌های شیمیایی کلسیم کربنات و سیلیکاهای مصنوعی می‌باشد. رنگدانه‌های مخفی، در کدر سازی رنگ و محافظت از لایه رنگ از اشعه ماورابنفش به کار می‌آید. انواع رنگدانه‌های مخفی از این قرار است:تیتانیوم دی اکسید، فتالوی آبی، و اکسید آهن قرمز. پرکننده‌ها نوعی مخصوص از رنگدانه‌ها هستند که برای حجم دادن به لایه رنگ، پشتیبانی از ساختار رنگ و حجم دادن به خود رنگ، مورد مصرف قرار می‌گیرند. پر کننده‌ها معمولاً حاوی مواد بی اثر ارزان قیمتی مانند آرد کوهی، تالک، آهک، باریت، خاک رس و.... می‌باشند. بعضی از رنگدانه‌ها سمی می‌باشند مانند سرب که در رنگ‌های سربی به کار رفته‌است.

صنعت رنگسازی، شروع به جایگزینی رنگدانه‌های سرب با رنگدانه‌های کم خطر تر تیتانیوم دی اکسید، از سال ۱۹۷۸ نموده‌است. تیتانیوم دی اکسیدی که امروزه در رنگسازی استفاده می‌گردد، به دلایل مختلفی توسط سیلیکن یا آلومینیوم اکسید پوشانده می‌گردد.

چسب یا ناقل:چسب معمولاً به ناقلی اطلاق می‌گردد که ترکیب شکل دهنده اصلی فیلم (لایه نازک رنگ) می‌باشد. تنها ماده‌ای که حتماً باید در رنگ حاضر باشد، همین ماده‌است. حضور سایر ترکیبات در رنگ، اختیاری است. چسب‌ها حاوی زرین‌های طبیعی یا شیمیایی اند مانند اکریلیک، پلی اورتان، پلی استر، ررزین‌های ملامین، اپوکسی‌ها و روغن‌ها. رنگ لاتکس، محلولی کلوئیدی بر پایه آب است که از ذرات پلیمری میکرونیزه تشکیل شده‌است. معنی کلمه لاتکس، یعنی حلّال در آب.

این روزها که بحث حفاظت از محیط زیست نیز مطرح است، شرکتهای تولید کننده رنگ، از استفاده از مواد آلی فّرار در تولیداتشان، محدود شده‌اند. دلیل این امر، که توسط سازمان محیط زیست اعلام گشته‌است، صدمه زدن احتمالی بعضی از این ترکیبات به لایه ازون و در نتیجه، افزایش میزان پرتو فرابنفش می‌باشد. حلال‌هایی که در مرحله اول از رنگ تبخیر می‌گردد، باعث تخریب لایه ازون می‌گردد.

بحث حلال‌ها در رنگ، جداگانه مطرح می‌گردد: حلال‌ها:هدف اصلی از استفاده از حلالها، تنظیم کردن رقّت و فرارّیت و وسیکوزیته رنگ است. حلال، فّرار است و در فیلم (لایه نازک رنگ) باقی نمی‌ماند. حلال، همچنین نرخ جریان تابع لزجت و کاربرد سایر ترکیبات و نیز پایداری رنگ را در حالت سیال، کنترل می‌کند.

آب، بهترین نوع حلال برای رنگ‌های آب-محور می‌باشد. رنگهای حلال-محور، که گاهی نیز رنگ‌های روغنی نامیده می‌شوند، می‌توانند تعداد کثیری از حلال‌ها را در خود جای دهند که شامل ترکیبات آروماتیک، آلیفاتیک، الکلها وکتونها و رزین‌های سبک رقیق کننده خواهند بود. چنین حلالهایی در مواقعی استفاده می‌گردند که رنگهای روغن-محور و ضد آب مورد نیاز است.

مواد افزودنی:کنار ست تشکیل دهنده اصلی رنگ که در بالا مورد بحث قرار گرفتند، رنگ می‌تواند حاوی مواردی بسیار وسیع از مواد افزودنی باشد که به مقدار بسیار کمی به رنگ افزوده می‌گردد و در کمال تعجب، اثر بسیار زیادی بر روی خواص رنگ می‌گذارد. مثالهایی از این موارد، موادی هستند که کشش سطحی رنگ را تنظیم می‌کنند، جاری شدن رنگ را بهبود می‌بخشند، ظاهر پایانی را تصحیح می‌کنند، تری و خیسی لبه رنگ را بالا می‌برند، پایداری رنگدانه را بهبود می‌بخشند، خواص ضدّ یخ زدگی ایجاد می‌کنند، مقدار کف کنندگی و پوسته پذیری رنگ را کنترل می‌کند.

انواع دیگر از مواد افزودنی شامل کاتالیست‌ها، حجم دهنده‌ها (با پر کننده‌ها اشتباه گرفته نشوند)، پایدار کننده‌ها، امولسیون سازها، زمینه سازها، پیش بَرهای مواد افزودنی، پایدار کننده‌های ضد اشعه ماورابنفش، عوامل کدر کننده و بایوسایدها (جهت مقابله با رشد باکتری‌ها) می‌باشند.

فیزیک رنگ[ویرایش]

خاصیت ذره‌ای و موجی نور یک پدیده فیزیکی است که در نتیجه برخورد نور به سطح اشیا توسط چشم احساس می شود. تجزیه نور سفید توسط منشور نیز یک خاصیت فیزیکی است که با این عمل هفت رنگ طیف بدست می آید: شامل بنفش، نیلی، آبی، سبز، زرد، نارنجی و قرمز است. بنابراین رنگ‌ها ناشی از امواج نور هستند و چشم انسان قادر است رنگ‌هایی را که طول موج آن‌ها بین ۴۰۰ تا ۷۰۰ میلی میکرون است ببیند. (میلی میکرون واحدی است برای اندازه‌گیری امواج که معادل یک میلیونوم میلیمتر است). در قرن هفدهم میلادی نیوتن موفق شد با تجزیه نور سفید طیف رنگ‌ ها را به دست‌آورد. او کشف نمود که نور سفید شامل انواع اشعه است که هرگاه به طور جداگانه‌ای با شبکهٔ چشم انسان برخورد کند احساس یک رنگ مچزا را به وجود خواهدآورد و اختلاط این اشعه‌ها بر روی شبکهٔ چشم، رنگ سفید را محسوس می‌سازد.

رنگ‌های اصلی شامل رنگ‌های قرمز، زرد، آبی، هستند که به آنها رنگ‌های اولیه یا بنیادی نیز می‌گویند.رنگ‌های فرعی، شامل رنگ‌ های نارنچی، سبز و بنفش هستند که به آنها رنگهای ثانویه تکمیلی یا مکمل می‌گویند. از ترکیب رنگهای فرعی نمی‌توان رنگهای اصلی را به وجود آورد ولی از ترکیب رنگهای اصلی رنگهای مکمل به دست می-آید. با ترکیب دو به دو یعنی شش رنگ مجاور هم رنگهای درجه سوم را می‌بینیم.

هارمونی[ویرایش]

هر چه رنگها ساده‌تر باشند هارمونی آنها واضح تر است.آزمایشها و تجربیات متفاوت نشان می‌دهد که افراد نسبت به هماهنگی یا عدم هماهنگی رنگها نقطه نظرهای متفاوتی دارند اغلب در نظر مردم رنگهای هماهنگ آنهایی هستند که از یک خانواده باشند و یا در عین تنوع با جلوه یکسانی خودنمایی کنند و یا رنگهایی که بدون تضاد در مجاور هم قرار بگیرند. به طور کلی عنوان هارمونی یا عدم هارمونی فقط در رابطه با احساس انسان است که به صورت مطلوب بودن یا نبودن و جذاب بودن یا نبودن مطرح می‌گردد. تمام این‌ها از یک ارزیابی مشخصی است. هارمونی یعنی تعادل و توازن بین قدرت‌های رنگی. مثلاً اگر ما برای مدتی به یک مربع قرمز خیره شویم و سپس جشم را ببندیم یک پس تصویر که به صورت مربع سبز رنگ است در نظرمان ظاهر می-شود و بر عکس اگر به مربع سبز رنگ نگاه کنیم بعد از مدتی که چشم بسته شود. مربع قرمز رنگ در چشم ظاهر می-شود. در چشم انسان همیشه رنگهای مکمل رنگ نخستین ظاهر می‌شود. این عکس العمل فیزیکی نسبت به رنگها جست وجویی برای ایجاد توازن و تعادل است. رنگهای مکمل یکی از پایه‌ها و اصول هارمونی هستند.[۱]

دمای رنگ[ویرایش]

رنگها دارای مشخصه‌ای بنام سردی یا گرمی هستند. رنگی که ما می‌بینیم حاصل طول موج نور منعکس شده از رنگ است. طیفهای قابل دیدن بین فروسرخ (در انتهای طرف گرم) و فرابنفش (در انتهای طرف سرد) قرار دارند.

انواع رنگ‌ها[ویرایش]

رنگ‌های گرم[ویرایش]

رنگهای گرم نیمه قرمز چرخه رنگها به عنوان رنگهای گرم شناخته می‌شوند که شامل زرد- سبز و قرمز-بنفش می‌باشد.

  • نقاط قوت: این رنگها القاء کننده گرمی و راحتی هستند.
  • نقاط ضعف: رنگهای گرم زیادی در تصویر باعث تضعیف برجستگی که باید در تصویر وجود داشته باشد می‌شود.

نکته: بنفش نقشی دوگانه دارد در کنار رنگ‌های گرم خاصیت گرمی ودر کنار رنگهای سرد خصلت سرد دارد. بطور کلی می‌توان رنگ‌های اصلی را «زرد = متناسب با شکل مثلث --- قرمز = متناسب با شکل مربع --- آبی = متناسب با شکل دایره» دانست ودر کنار آن سه رنگ دیگر «نارنجی - سبز - بنفش» را در گروه رنگهای مکمل طبقه‌بندی کرد.

رنگ‌های سرد[ویرایش]

نیمه آبی چرخه رنگ به عنوان رنگهای سرد شناخته شده که شامل آبی - سبز و آبی - بنفش می‌باشد.

  • نقاط قوت: این رنگها آرام و راحت هستند. این رنگها ممکن است بصورت غیر صمیمی و بی تکلف و ساده دیده شوند و برای انتخاب به عنوان پس زمینه مناسب هستند.
  • نقاط ضعف: این رنگها احساس منفعلانه داشته و ممکن است برای تصاویر گرافیکی قوی مناسب نباشند.

گام رنگ‌ها[ویرایش]

تمام پدیده‌های طبیعت از امواج یا ارتعاشات ساخته شده‌اند. صوت هم مانند نور و حرارت پدیده ایست برخاسته از ارتعاشاتی میان ۳۲ درجه تا ۷۳۰۰۰ درجه. همین طور است امواج حرارتی(که عالمان فیزیک به آن ارتعاشات حرارتی گفته‌اند) این ارتعاشات ۱۳۴ تریلیون تخمین زده شده‌است. همچنین است ارتعاشات نوری که از ۴۸۳ تریلیون آغاز می‌شود و به ۷۰۸ تریلیون ختم می‌گردد.[۲]

اعداد ذیل درجات ارتعاشات هفت رنگ رنگین کمان را که به گام رنگ‌ها موسوم است نشان می‌دهد.

  1. قرمز: ۴۸۳ تریلیون موج یا ارتعاش در ثانیه
  2. نارنجی: ۵۱۳ تریلیون موج یا ارتعاش در ثانیه
  3. زرد: ۵۴۳ تریلیون موج یا ارتعاش در ثانیه
  4. سبز: ۵۷۹ تریلیون موج یا ارتعاش در ثانیه
  5. آبی: ۶۳۰ تریلیون موج یا ارتعاش در ثانیه
  6. نیلی: ۶۶۹ تریلیون موج یا ارتعاش در ثانیه
  7. بنفش: ۷۰۸ تریلیون موج یا ارتعاش در ثانیه

جان داشتن و تفکر موسیقایی، تحرک و پیوستگی لحن برگزیده شده به منظور تجسم اندیشه، هم‌آهنگی اختیار شده برای تقویت و القاء اندیشه، و وزن‌های گونه گون، سازنده رنگ در یک اثر موسیقی هستند. رنگ، به موسیقی سهمی عطا می‌کند که موسیقی دان به وسیله آن قادر خواهد شد صحنه‌ای، یا فضایی را که مورد نظرش است تجسم بدهد. با تجزیه نور توسط منشور، آن دسته از اشعه‌ها که طول موج کوتاهی دارند به رنگ آبی بنفش دیده می‌شوند و آن دسته از اشعه‌های نو که بلندترین طول موج را دارند به رنگ قرمز دیده می‌شوند. دسته‌ای دیگر از طیف حاصل که دارای طول موج متوسط هستند به رنگ سبز دیده می‌شوند. بنابراین سه رنگ اصلی نور:قرمز با طول موج بلند، سبز با طول موج متوسط و بنفش با طول موج کوتاه، وقتی با یکدیگر ترکیب می‌شوند نور سفید حاصل می‌شود.[۳]

مفهوم رنگ[ویرایش]

نوشتار اصلی: بیان رنگ
  • رنگ به عنوان عنصری تجسمی برای توصیف موضوع اثر و خصوصیات آن ؛مثل ترسیم یک منظره پاییزی یا زمستانی که برای هرکدام از اجزای آن منظره (درخت‌ها، ساختمان‌ها، زمین، آسمان و ...)از طیف رنگ‌های خاصی استفاده می‌شود و به این ترتیب پاییزی یا زمستانی بودن فضای آن منظره و همه ویژگی‌هایش با رنگ‌هایی که در آن استفاده شده توصیف می‌گردد. این خصوصیت توصیف گرانه رنگ می‌تواند در ترسیم یک طبیعت بیجان و عناصر آن، یک چهره و پیکره ویا هر موضوع دیگری به کار گرفته شود. مثل آثار نقاشان طبیعت گرا یا همانگونه که رنگ‌های یک عکس رنگی موضوع خود را توصیف می‌کنند.
  • رنگ به عنوان عنصری نمادین و استعاری که معانی عمیق و درونی اثر و اجزای آن را به نمایش می‌گذارد. برای مثال در بسیاری از آثاری که هنرمندان بر اساس محتوای موضوعات اعتقادی، مذهبی، رمزی و افسانه‌ای ساخته‌اند، کاربرد رنگ عموماً جنبه‌ای نمادین و استعاری دارد.
  • استفاده از رنگ برا به نمابش گذاشتن ارزش‌های درونی و زیبایی‌ها و تاثیرات خود رنگ، بدون در نظر داشتن ارزش‌های استعاری و توصیفی آن. ارزش‌های بصری رنگ‌ها در هنر معاصر بیش از هر دوره دیگری مورد توجه هنرمندان قرار گرفته است. به طوری که در برخی از شیوه‌های هنر جدید، آثار صرفاً بر اساس ارزش‌های بیانی خود رنگ‌ها و نمایش قدرت تاثیر گذاری و زیبایی‌های بصری آن‌ها ساخته شده است. همچنین از این خصوصیت رنگ به عنوان جنبه تزیینی دربسیاری از محصولات صنعتی، کاربردی و هنرهای سنتی مثل فرش، گلیم، پارچه، طراحی و دوخت لباس، معماری و شهرسازی بهره می‌بردند.[۴]

جستارهای وابسته[ویرایش]

پانویس[ویرایش]

  1. ژوله، تورج. پژوشی در فرش ایران. یساولی، ۱۳۸۱. 
  2. albert lavignac
  3. آموزش و پرورش. مبانی هنرهای تجسمی. مدرسه. 
  4. آموزش و پرورش. مبانی هنرهای تجسمی. مدرسه. 
  • ۱.Berendsen, A. M. , & Berendsen, A. M. (۱۹۸۹). Marine painting manual. London: Graham & Trotman. ISBN ۱-۸۵۳۳۳-۲۸۶-۰ p. ۱۱۳.
  • ۲.a b Berendsen, A. M. , & Berendsen, A. M. (۱۹۸۹). Marine painting manual. London: Graham & Trotman. ISBN ۱-۸۵۳۳۳-۲۸۶-۰ p. ۱۱۴.
  • DailyTech - Nissan Develops Color Changing Paint for Vehicles۳.
  • «Safe Use, Storage and Disposal of Paint»۴.
  • «Storage and Disposal of Paint Facts»۵.

منابع[ویرایش]

  • Bently, J. (Author) and Turner, G.P.A. (Author) (۱۹۹۷). Introduction to Paint Chemistry and Principles of Paint Technology. Unk.. ISBN ۰-۴۱۲-۷۲۳۲۰-۴.
  • .Talbert, Rodger (۲۰۰۷). Paint Technology Handbook. Grand Rapids, Michigan, USA. ISBN ۱-۵۷۴۴۴-۷۰۳-۳.
  • .Woodbridge, Paul R. (Editor) (۱۹۹۱). Principles of Paint Formulation. Unk.. ISBN ۰-۴۱۲-۰۲۹۵۱-۰.
  • . ریچرسون، دیوید دبلیو. مهندسی سرامیک‌های مدرن، ترجمه محمد ابراهیم ابراهیمی سالومه مسگری عباسی، سیمین سلام تبریزی. تهران:مترجمین،.

ISBN 964-06-6467-7٫۱۳۸۴

  • فلامکی_منصور، نامی_ غلام حسین، ملاح_ حسینعلی و...«معماری و موسیقی»_انتشارات تهران؛ فضا ۱۳۸۳
  • لاوینیاک، آلبرت - گام رنگ‌ها

پیوند به بیرون[ویرایش]

This article is about the perceptual property. For a list of colors, see Lists of colors. For other uses, see Color (disambiguation).
"Colorful" redirects here. For other uses, see Colorful (disambiguation).
For usage of color on Wikipedia, see Help:Using colours.
Colored pencils

Color or colour (see spelling differences) is the visual perceptual property corresponding in humans to the categories called red, blue, yellow, green and others. Color derives from the spectrum of light (distribution of light power versus wavelength) interacting in the eye with the spectral sensitivities of the light receptors. Color categories and physical specifications of color are also associated with objects or materials based on their physical properties such as light absorption, reflection, or emission spectra. By defining a color space, colors can be identified numerically by their coordinates.

Because perception of color stems from the varying spectral sensitivity of different types of cone cells in the retina to different parts of the spectrum, colors may be defined and quantified by the degree to which they stimulate these cells. These physical or physiological quantifications of color, however, do not fully explain the psychophysical perception of color appearance.

The science of color is sometimes called chromatics, chromatography, colorimetry, or simply color science. It includes the perception of color by the human eye and brain, the origin of color in materials, color theory in art, and the physics of electromagnetic radiation in the visible range (that is, what we commonly refer to simply as light).

Physics of color

Continuous optical spectrum rendered into the sRGB color space.
The colors of the visible light spectrum[1]
color wavelength interval frequency interval
red ~ 700–635 nm ~ 430–480 THz
orange ~ 635–590 nm ~ 480–510 THz
yellow ~ 590–560 nm ~ 510–540 THz
green ~ 560–490 nm ~ 540–610 THz
blue ~ 490–450 nm ~ 610–670 THz
violet or purple ~ 450–400 nm ~ 670–750 THz
Color, wavelength, frequency and energy of light
Color \lambda \,\!

(nm)

\nu \,\!

(THz)

\nu_b \,\!

(μm−1)

E \,\!

(eV)

E \,\!

(kJ mol−1)

Infrared >1000 <300 <1.00 <1.24 <120
Red 700 428 1.43 1.77 171
Orange 620 484 1.61 2.00 193
Yellow 580 517 1.72 2.14 206
Green 530 566 1.89 2.34 226
Blue 470 638 2.13 2.64 254
Violet or Purple 420 714 2.38 2.95 285
Near ultraviolet 300 1000 3.33 4.15 400
Far ultraviolet <200 >1500 >5.00 >6.20 >598

Electromagnetic radiation is characterized by its wavelength (or frequency) and its intensity. When the wavelength is within the visible spectrum (the range of wavelengths humans can perceive, approximately from 390 nm to 700 nm), it is known as "visible light".

Most light sources emit light at many different wavelengths; a source's spectrum is a distribution giving its intensity at each wavelength. Although the spectrum of light arriving at the eye from a given direction determines the color sensation in that direction, there are many more possible spectral combinations than color sensations. In fact, one may formally define a color as a class of spectra that give rise to the same color sensation, although such classes would vary widely among different species, and to a lesser extent among individuals within the same species. In each such class the members are called metamers of the color in question.

Spectral colors

The familiar colors of the rainbow in the spectrum – named using the Latin word for appearance or apparition by Isaac Newton in 1671 – include all those colors that can be produced by visible light of a single wavelength only, the pure spectral or monochromatic colors. The table at right shows approximate frequencies (in terahertz) and wavelengths (in nanometers) for various pure spectral colors. The wavelengths listed are as measured in air or vacuum (see refractive index).

The color table should not be interpreted as a definitive list – the pure spectral colors form a continuous spectrum, and how it is divided into distinct colors linguistically is a matter of culture and historical contingency (although people everywhere have been shown to perceive colors in the same way[2]). A common list identifies six main bands: red, orange, yellow, green, blue, and violet. Newton's conception included a seventh color, indigo, between blue and purple. It is possible that what Newton referred to as blue is nearer to what today we call cyan, and that indigo was simply the dark blue of the indigo dye that was being imported at the time.[3]

The intensity of a spectral color, relative to the context in which it is viewed, may alter its perception considerably; for example, a low-intensity orange-yellow is brown, and a low-intensity yellow-green is olive-green.

Color of objects

The color of an object depends on both the physics of the object in its environment and the characteristics of the perceiving eye and brain. Physically, objects can be said to have the color of the light leaving their surfaces, which normally depends on the spectrum of the incident illumination and the reflectance properties of the surface, as well as potentially on the angles of illumination and viewing. Some objects not only reflect light, but also transmit light or emit light themselves, which also contribute to the color. A viewer's perception of the object's color depends not only on the spectrum of the light leaving its surface, but also on a host of contextual cues, so that color differences between objects can be discerned mostly independent of the lighting spectrum, viewing angle, etc. This effect is known as color constancy.

The upper disk and the lower disk have exactly the same objective color, and are in identical gray surroundings; based on context differences, humans perceive the squares as having different reflectances, and may interpret the colors as different color categories; see checker shadow illusion.

Some generalizations of the physics can be drawn, neglecting perceptual effects for now:

  • Light arriving at an opaque surface is either reflected "specularly" (that is, in the manner of a mirror), scattered (that is, reflected with diffuse scattering), or absorbed – or some combination of these.
  • Opaque objects that do not reflect specularly (which tend to have rough surfaces) have their color determined by which wavelengths of light they scatter strongly (with the light that is not scattered being absorbed). If objects scatter all wavelengths with roughly equal strength, they appear white. If they absorb all wavelengths, they appear black.
  • Opaque objects that specularly reflect light of different wavelengths with different efficiencies look like mirrors tinted with colors determined by those differences. An object that reflects some fraction of impinging light and absorbs the rest may look black but also be faintly reflective; examples are black objects coated with layers of enamel or lacquer.
  • Objects that transmit light are either translucent (scattering the transmitted light) or transparent (not scattering the transmitted light). If they also absorb (or reflect) light of various wavelengths differentially, they appear tinted with a color determined by the nature of that absorption (or that reflectance).
  • Objects may emit light that they generate from having excited electrons, rather than merely reflecting or transmitting light. The electrons may be excited due to elevated temperature (incandescence), as a result of chemical reactions (chemoluminescence), after absorbing light of other frequencies ("fluorescence" or "phosphorescence") or from electrical contacts as in light emitting diodes, or other light sources.

To summarize, the color of an object is a complex result of its surface properties, its transmission properties, and its emission properties, all of which contribute to the mix of wavelengths in the light leaving the surface of the object. The perceived color is then further conditioned by the nature of the ambient illumination, and by the color properties of other objects nearby, and via other characteristics of the perceiving eye and brain.

Perception

This image (when viewed in full size, 1000 pixels wide) contains 1 million pixels, each of a different color. The human eye can distinguish about 10 million different colors.[4]

Development of theories of color vision

Main article: Color theory

Although Aristotle and other ancient scientists had already written on the nature of light and color vision, it was not until Newton that light was identified as the source of the color sensation. In 1810, Goethe published his comprehensive Theory of Colors in which he ascribed physiological effects to color that are now understood as psychological.

In 1801 Thomas Young proposed his trichromatic theory, based on the observation that any color could be matched with a combination of three lights. This theory was later refined by James Clerk Maxwell and Hermann von Helmholtz. As Helmholtz puts it, "the principles of Newton's law of mixture were experimentally confirmed by Maxwell in 1856. Young's theory of color sensations, like so much else that this marvelous investigator achieved in advance of his time, remained unnoticed until Maxwell directed attention to it."[5]

At the same time as Helmholtz, Ewald Hering developed the opponent process theory of color, noting that color blindness and afterimages typically come in opponent pairs (red-green, blue-orange, yellow-violet, and black-white). Ultimately these two theories were synthesized in 1957 by Hurvich and Jameson, who showed that retinal processing corresponds to the trichromatic theory, while processing at the level of the lateral geniculate nucleus corresponds to the opponent theory.[6]

In 1931, an international group of experts known as the Commission internationale de l'éclairage (CIE) developed a mathematical color model, which mapped out the space of observable colors and assigned a set of three numbers to each.

Color in the eye

Main article: Color vision
Normalized typical human cone cell responses (S, M, and L types) to monochromatic spectral stimuli

The ability of the human eye to distinguish colors is based upon the varying sensitivity of different cells in the retina to light of different wavelengths. Humans being trichromatic, the retina contains three types of color receptor cells, or cones. One type, relatively distinct from the other two, is most responsive to light that we perceive as blue or blue-violet, with wavelengths around 450 nm; cones of this type are sometimes called short-wavelength cones, S cones, or blue cones. The other two types are closely related genetically and chemically: middle-wavelength cones, M cones, or green cones are most sensitive to light perceived as green, with wavelengths around 540 nm, while the long-wavelength cones, L cones, or red cones, are most sensitive to light we perceive as greenish yellow, with wavelengths around 570  nm.

Light, no matter how complex its composition of wavelengths, is reduced to three color components by the eye. For each location in the visual field, the three types of cones yield three signals based on the extent to which each is stimulated. These amounts of stimulation are sometimes called tristimulus values.

The response curve as a function of wavelength varies for each type of cone. Because the curves overlap, some tristimulus values do not occur for any incoming light combination. For example, it is not possible to stimulate only the mid-wavelength (so-called "green") cones; the other cones will inevitably be stimulated to some degree at the same time. The set of all possible tristimulus values determines the human color space. It has been estimated that humans can distinguish roughly 10 million different colors.[4]

The other type of light-sensitive cell in the eye, the rod, has a different response curve. In normal situations, when light is bright enough to strongly stimulate the cones, rods play virtually no role in vision at all.[7] On the other hand, in dim light, the cones are understimulated leaving only the signal from the rods, resulting in a colorless response. (Furthermore, the rods are barely sensitive to light in the "red" range.) In certain conditions of intermediate illumination, the rod response and a weak cone response can together result in color discriminations not accounted for by cone responses alone. These effects, combined, are summarized also in the Kruithof curve, that describes the change of color perception and pleasingness of light as function of temperature and intensity.

Color in the brain

Main article: Color vision
The visual dorsal stream (green) and ventral stream (purple) are shown. The ventral stream is responsible for color perception.

While the mechanisms of color vision at the level of the retina are well-described in terms of tristimulus values, color processing after that point is organized differently. A dominant theory of color vision proposes that color information is transmitted out of the eye by three opponent processes, or opponent channels, each constructed from the raw output of the cones: a red–green channel, a blue–yellow channel, and a black–white "luminance" channel. This theory has been supported by neurobiology, and accounts for the structure of our subjective color experience. Specifically, it explains why we cannot perceive a "reddish green" or "yellowish blue", and it predicts the color wheel: it is the collection of colors for which at least one of the two color channels measures a value at one of its extremes.

The exact nature of color perception beyond the processing already described, and indeed the status of color as a feature of the perceived world or rather as a feature of our perception of the world – a type of qualia – is a matter of complex and continuing philosophical dispute.

Nonstandard color perception

Color deficiency

Main article: Color blindness

If one or more types of a person's color-sensing cones are missing or less responsive than normal to incoming light, that person can distinguish fewer colors and is said to be color deficient or color blind (though this latter term can be misleading; almost all color deficient individuals can distinguish at least some colors). Some kinds of color deficiency are caused by anomalies in the number or nature of cones in the retina. Others (like central or cortical achromatopsia) are caused by neural anomalies in those parts of the brain where visual processing takes place.

Tetrachromacy

Main article: Tetrachromacy

While most humans are trichromatic (having three types of color receptors), many animals, known as tetrachromats, have four types. These include some species of spiders, most marsupials, birds, reptiles, and many species of fish. Other species are sensitive to only two axes of color or do not perceive color at all; these are called dichromats and monochromats respectively. A distinction is made between retinal tetrachromacy (having four pigments in cone cells in the retina, compared to three in trichromats) and functional tetrachromacy (having the ability to make enhanced color discriminations based on that retinal difference). As many as half of all women are retinal tetrachromats.[8]:p.256 The phenomenon arises when an individual receives two slightly different copies of the gene for either the medium- or long-wavelength cones, which are carried on the x-chromosome. To have two different genes, a person must have two x-chromosomes, which is why the phenomenon only occurs in women.[8] For some of these retinal tetrachromats, color discriminations are enhanced, making them functional tetrachromats.[8]

Synesthesia

In certain forms of synesthesia, perceiving letters and numbers (grapheme–color synesthesia) or hearing musical sounds (music–color synesthesia) will lead to the unusual additional experiences of seeing colors. Behavioral and functional neuroimaging experiments have demonstrated that these color experiences lead to changes in behavioral tasks and lead to increased activation of brain regions involved in color perception, thus demonstrating their reality, and similarity to real color percepts, albeit evoked through a non-standard route.

Afterimages

After exposure to strong light in their sensitivity range, photoreceptors of a given type become desensitized. For a few seconds after the light ceases, they will continue to signal less strongly than they otherwise would. Colors observed during that period will appear to lack the color component detected by the desensitized photoreceptors. This effect is responsible for the phenomenon of afterimages, in which the eye may continue to see a bright figure after looking away from it, but in a complementary color.

Afterimage effects have also been utilized by artists, including Vincent van Gogh.

Color constancy

Main article: Color constancy

When an artist uses a limited color palette, the eye tends to compensate by seeing any gray or neutral color as the color which is missing from the color wheel. For example, in a limited palette consisting of red, yellow, black, and white, a mixture of yellow and black will appear as a variety of green, a mixture of red and black will appear as a variety of purple, and pure gray will appear bluish.[9]

The trichromatic theory is strictly true when the visual system is in a fixed state of adaptation. In reality, the visual system is constantly adapting to changes in the environment and compares the various colors in a scene to reduce the effects of the illumination. If a scene is illuminated with one light, and then with another, as long as the difference between the light sources stays within a reasonable range, the colors in the scene appear relatively constant to us. This was studied by Edwin Land in the 1970s and led to his retinex theory of color constancy.

It should be noted, that both phenomena are readily explained and mathematically modeled with modern theories of chromatic adaptation and color appearance (e.g. CIECAM02, iCAM).[10] There is no need to dismiss the trichromatic theory of vision, but rather it can be enhanced with an understanding of how the visual system adapts to changes in the viewing environment.

Color naming

Main article: Color term

Colors vary in several different ways, including hue (shades of red, orange, yellow, green, blue, and violet), saturation, brightness, and gloss. Some color words are derived from the name of an object of that color, such as "orange" or "salmon", while others are abstract, like "red".

In the 1969 study Basic Color Terms: Their Universality and Evolution, Brent Berlin and Paul Kay describe a pattern in naming "basic" colors (like "red" but not "red-orange" or "dark red" or "blood red", which are "shades" of red). All languages that have two "basic" color names distinguish dark/cool colors from bright/warm colors. The next colors to be distinguished are usually red and then yellow or green. All languages with six "basic" colors include black, white, red, green, blue, and yellow. The pattern holds up to a set of twelve: black, gray, white, pink, red, orange, yellow, green, blue, purple, brown, and azure (distinct from blue in Russian and Italian, but not English).

Associations

Individual colors have a variety of cultural associations such as national colors (in general described in individual color articles and color symbolism). The field of color psychology attempts to identify the effects of color on human emotion and activity. Chromotherapy is a form of alternative medicine attributed to various Eastern traditions. Colors have different associations in different countries and cultures.[11]

Different colors have been demonstrated to have effects on cognition. For example, researchers at the University of Linz in Austria demonstrated that the color red significantly decreases cognitive functioning in men.[12]

Spectral colors and color reproduction

The CIE 1931 color space chromaticity diagram. The outer curved boundary is the spectral (or monochromatic) locus, with wavelengths shown in nanometers. The colors depicted depend on the color space of the device on which you are viewing the image, and therefore may not be a strictly accurate representation of the color at a particular position, and especially not for monochromatic colors.

Most light sources are mixtures of various wavelengths of light. Many such sources can still effectively produce a spectral color, as the eye cannot distinguish them from single-wavelength sources. For example, most computer displays reproduce the spectral color orange as a combination of red and green light; it appears orange because the red and green are mixed in the right proportions to allow the eye's cones to respond the way they do to the spectral color orange.

A useful concept in understanding the perceived color of a non-monochromatic light source is the dominant wavelength, which identifies the single wavelength of light that produces a sensation most similar to the light source. Dominant wavelength is roughly akin to hue.

There are many color perceptions that by definition cannot be pure spectral colors due to desaturation or because they are purples (mixtures of red and violet light, from opposite ends of the spectrum). Some examples of necessarily non-spectral colors are the achromatic colors (black, gray, and white) and colors such as pink, tan, and magenta.

Two different light spectra that have the same effect on the three color receptors in the human eye will be perceived as the same color. They are metamers of that color. This is exemplified by the white light emitted by fluorescent lamps, which typically has a spectrum of a few narrow bands, while daylight has a continuous spectrum. The human eye cannot tell the difference between such light spectra just by looking into the light source, although reflected colors from objects can look different. (This is often exploited; for example, to make fruit or tomatoes look more intensely red.)

Similarly, most human color perceptions can be generated by a mixture of three colors called primaries. This is used to reproduce color scenes in photography, printing, television, and other media. There are a number of methods or color spaces for specifying a color in terms of three particular primary colors. Each method has its advantages and disadvantages depending on the particular application.

No mixture of colors, however, can produce a response truly identical to that of a spectral color, although one can get close, especially for the longer wavelengths, where the CIE 1931 color space chromaticity diagram has a nearly straight edge. For example, mixing green light (530 nm) and blue light (460 nm) produces cyan light that is slightly desaturated, because response of the red color receptor would be greater to the green and blue light in the mixture than it would be to a pure cyan light at 485 nm that has the same intensity as the mixture of blue and green.

Because of this, and because the primaries in color printing systems generally are not pure themselves, the colors reproduced are never perfectly saturated spectral colors, and so spectral colors cannot be matched exactly. However, natural scenes rarely contain fully saturated colors, thus such scenes can usually be approximated well by these systems. The range of colors that can be reproduced with a given color reproduction system is called the gamut. The CIE chromaticity diagram can be used to describe the gamut.

Another problem with color reproduction systems is connected with the acquisition devices, like cameras or scanners. The characteristics of the color sensors in the devices are often very far from the characteristics of the receptors in the human eye. In effect, acquisition of colors can be relatively poor if they have special, often very "jagged", spectra caused for example by unusual lighting of the photographed scene. A color reproduction system "tuned" to a human with normal color vision may give very inaccurate results for other observers.

The different color response of different devices can be problematic if not properly managed. For color information stored and transferred in digital form, color management techniques, such as those based on ICC profiles, can help to avoid distortions of the reproduced colors. Color management does not circumvent the gamut limitations of particular output devices, but can assist in finding good mapping of input colors into the gamut that can be reproduced.

Additive coloring

Additive color mixing: adding red to green yields yellow; adding all three primary colors together yields white.

Additive color is light created by mixing together light of two or more different colors. Red, green, and blue are the additive primary colors normally used in additive color systems such as projectors and computer terminals.

Subtractive coloring

Subtractive color mixing: adding magenta to yellow yields red; adding all three primary colors together yields black

Subtractive coloring uses dyes, inks, and pigments to absorb some wavelengths of light and not others. The color that a surface displays comes from the parts of the visible spectrum that are not absorbed and therefore remain visible. Without pigments or dye, fabric fibers, paint base and paper are usually made of particles that scatter white light (all colors) well in all directions. When a pigment or ink is added, wavelengths are absorbed or "subtracted" from white light, so light of another color reaches the eye.

If the light is not a pure white source (the case of nearly all forms of artificial lighting), the resulting spectrum will appear a slightly different color. Red paint, viewed under blue light, may appear black. Red paint is red because it scatters only the red components of the spectrum. If red paint is illuminated by blue light, it will be absorbed by the red paint, creating the appearance of a black object.

Structural color

Further information: Structural coloration and Animal coloration

Structural colors are colors caused by interference effects rather than by pigments. Color effects are produced when a material is scored with fine parallel lines, formed of one or more parallel thin layers, or otherwise composed of microstructures on the scale of the color's wavelength. If the microstructures are spaced randomly, light of shorter wavelengths will be scattered preferentially to produce Tyndall effect colors: the blue of the sky (Rayleigh scattering, caused by structures much smaller than the wavelength of light, in this case air molecules), the luster of opals, and the blue of human irises. If the microstructures are aligned in arrays, for example the array of pits in a CD, they behave as a diffraction grating: the grating reflects different wavelengths in different directions due to interference phenomena, separating mixed "white" light into light of different wavelengths. If the structure is one or more thin layers then it will reflect some wavelengths and transmit others, depending on the layers' thickness.

Structural color is studied in the field of thin-film optics. A layman's term that describes particularly the most ordered or the most changeable structural colors is iridescence. Structural color is responsible for the blues and greens of the feathers of many birds (the blue jay, for example), as well as certain butterfly wings and beetle shells. Variations in the pattern's spacing often give rise to an iridescent effect, as seen in peacock feathers, soap bubbles, films of oil, and mother of pearl, because the reflected color depends upon the viewing angle. Numerous scientists have carried out research in butterfly wings and beetle shells, including Isaac Newton and Robert Hooke. Since 1942, electron micrography has been used, advancing the development of products that exploit structural color, such as "photonic" cosmetics.[13]

Additional terms

  • Color Wheel: an illustrative organization of color hues in a circle that shows relationships.
  • Colorfulness, chroma, purity, or saturation: how "intense" or "concentrated" a color is. Technical definitions distinguish between colorfulness, chroma, and saturation as distinct perceptual attributes and include purity as a physical quantity. These terms, and others related to light and color are internationally agreed upon and published in the CIE Lighting Vocabulary.[14] More readily available texts on colorimetry also define and explain these terms.[10][15]
  • Dichromatism: a phenomenon where the hue is dependent on concentration and/or thickness of the absorbing substance.
  • Hue: the color's direction from white, for example in a color wheel or chromaticity diagram.
  • Shade: a color made darker by adding black.
  • Tint: a color made lighter by adding white.
  • Value, brightness, lightness, or luminosity: how light or dark a color is.

See also

References

  1. ^ Craig F. Bohren (2006). Fundamentals of Atmospheric Radiation: An Introduction with 400 Problems. Wiley-VCH. ISBN 3-527-40503-8. 
  2. ^ Berlin, B. and Kay, P., Basic Color Terms: Their Universality and Evolution, Berkeley: University of California Press, 1969.
  3. ^ Waldman, Gary (2002). Introduction to light : the physics of light, vision, and color (Dover ed. ed.). Mineola: Dover Publications. p. 193. ISBN 978-0-486-42118-6. 
  4. ^ a b Judd, Deane B.; Wyszecki, Günter (1975). Color in Business, Science and Industry. Wiley Series in Pure and Applied Optics (third ed.). New York: Wiley-Interscience. p. 388. ISBN 0-471-45212-2. 
  5. ^ Hermann von Helmholtz, Physiological Optics – The Sensations of Vision, 1866, as translated in Sources of Color Science, David L. MacAdam, ed., Cambridge: MIT Press, 1970.
  6. ^ Palmer, S.E. (1999). Vision Science: Photons to Phenomenology, Cambridge, MA: MIT Press. ISBN 0-262-16183-4.
  7. ^ "Under well-lit viewing conditions (photopic vision), cones  ...are highly active and rods are inactive." Hirakawa, K.; Parks, T.W. (2005). "Chromatic Adaptation and White-Balance Problem". IEEE ICIP. doi:10.1109/ICIP.2005.1530559. 
  8. ^ a b c Jameson, K. A., Highnote, S. M., & Wasserman, L. M. (2001). "Richer color experience in observers with multiple photopigment opsin genes." (PDF). Psychonomic Bulletin and Review 8 (2): 244–261. doi:10.3758/BF03196159. PMID 11495112. 
  9. ^ Depauw, Robert C. "United States Patent". Retrieved 20 March 2011. 
  10. ^ a b M.D. Fairchild, Color Appearance Models, 2nd Ed., Wiley, Chichester (2005).
  11. ^ "Chart: Color Meanings by Culture". Retrieved 2010-06-29. 
  12. ^ Gnambs, Timo; Appel, Markus; Batinic, Bernad. (2010). Color red in web-based knowledge testing. Computers in Human Behavior, 26, p1625-1631.
  13. ^ "Economic and Social Research Council - Science in the Dock, Art in the Stocks". Retrieved 2007-10-07. 
  14. ^ CIE Pub. 17-4, International Lighting Vocabulary, 1987. http://www.cie.co.at/publ/abst/17-4-89.html
  15. ^ R.S. Berns, Principles of Color Technology, 3rd Ed., Wiley, New York (2001).

External links and sources