راهنما:فرمول‌نویسی

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو
میانبر:

نویسه‌های ریاضی ممکن است اشکال گوناگون داشته باشد. یک روش ریاضی‌نویسی در ویکی‌پدیا استفاده از دستورهای تِک(TeX) در ویرایشگر ویکی است. در این روش، عبارت‌های ریاضی با استفاده از نحو خاص تک نوشته می‌شوند و بین دو برچسب <math> و <‎/math> قرار می‌گیرند. بسته به تنظیمات کاربر، نمادهای ریاضی به صورت اچ‌تی‌ام‌ال یا به صورت یک تصویر نمایش خواهند یافت.

عبارت های چپ به راست در میان متن[ویرایش]

برای نوشتن عبارتهای ریاضی یا فرمول هایی که چپ به راست هستند و درون متن قرار می‌گیرند برای درست نمایش دادن آنها از الگو {{عبارت چپ چین}} استفاده نمایید.

مقایسه تِک و اچ‌تی‌ام‌ال[ویرایش]

پیش از آشنایی با نحوهٔ استفاده از تِک بهتر است بدانید که بعضی نوشته‌های تولید شده با تِک را می‌توان با دستورهای سادهٔ اچ‌تی‌ام‌ال نیز بدست آورد.

TeX Syntax (forcing PNG) TeX Rendering HTML Syntax HTML Rendering
<math>\alpha\,</math> \alpha\, &alpha; α
<math>\sqrt{2}</math> \sqrt{2} &radic;2 √2
<math>\sqrt{1-e^2}</math> \sqrt{1-e^2} &radic;(1-''e''&sup2;) √(1-e²)

استفادهٔ اچ‌تی‌ام‌ال به جای تِک کماکان زیر سؤال است. ولی می‌توان نتیجه‌های زیر را در مورد آن اعلام کرد:

برتری‌های اچ‌تی‌ام‌ال[ویرایش]

  1. فرمول‌های اچ‌تی‌ام‌ال‌ همیشه در یک خط با ادامهٔ متن قرار می‌گیرد.
  2. پس‌زمینه، قلم، رنگ و خصوصیات متن در فرمول مورد استفاده نیز به همان شکل خواهد بود و CSS‌ استفاده شده در صفحه نیز در فرمول ریاضی نیز اعمال خواهد شد.
  3. امکان نوشتن فارسی.

برتری‌های تِک[ویرایش]

  1.  ;تِک از نظر معنایی به اچ‌تی‌ام‌ال‌ برتری چشم‌گیری دارد. "<nowiki>x"</nowiki> در تِک به معنی «متغیر ریاضی x» ولی در اچ‌تی‌ام‌ال هر چیزی می‌تواند باشد.
  2. تِک به طور مشخص برای حروف‌چینی فرمول‌های ریاضی ساخته شده و ورودی و خروجی آن مشخص‌تر و راضی‌ کننده ‌تر است. تقریباً تمام افرادی که به طور حرفه‌ای با ریاضیات سروکار دارند، با دستورات آن آشنا هستند.
  3. تِک قابل تبدیل به اچ‌تی‌ام‌ال‌ است ولی برعکس آن انجام پذیر نیست.
  4. نگرانی بابت پشتیبانی مرورگرهای مختلف از خروجی تولید شده وجود ندارد.

توابع، علائم و کاراکترهای ویژه[ویرایش]

مشخصه Syntax خروجی
Accents/Diacritics
\acute{a} \quad \grave{a} \quad \breve{a}
\check{a} \quad \tilde{a}
\acute{a} \quad \grave{a} \quad \breve{a}

\check{a} \quad \tilde{a}

Std. functions (good)
\sin x + \ln y +\operatorname{sgn} z
\sin a \ \cos b \ \tan c
\cot d \ \sec e \ \csc f
\sinh g \ \cosh h \ \tanh i \ \coth j
\arcsin k \ \arccos l \ \arctan m
\lim n \ \limsup o \ \liminf p
\min q \ \max r \ \inf s \ \sup t
\exp u \ \lg v \ \log w
\ker x \ \deg x \gcd x \Pr x
\det x \hom x \ \arg x \dim x
\sin x + \ln y +\operatorname{sgn} z

\sin a \ \cos b \ \tan c
\cot d \ \sec e \ \csc f
\sinh g \ \cosh h \ \tanh i \ \coth j
\arcsin k \ \arccos l \ \arctan m
\lim n \ \limsup o \ \liminf p
\min q \ \max r \ \inf s \ \sup t
\exp u \ \lg v \ \log w
\ker x \ \deg x \gcd x \Pr x
\det x \hom x \ \arg x \dim x

Std. functions (wrong)
sin x + ln y + sgn z
sin x + ln y + sgn z\,\!
Modular arithmetic
s_k \equiv 0 \pmod{m}
a \bmod b
s_k \equiv 0 \pmod{m}

a \bmod b\,\!

Derivatives
\nabla \; \partial x \; dx \; \dot x \; \ddot y
\nabla \; \partial x \; dx \; \dot x \; \ddot y
Sets

(Square symbols may not work for some wikis)

\forall \; \exists \; \empty \; \emptyset \; \varnothing
\in \ni \not\in \notin \subset \subseteq
\supset \supseteq \cap \bigcap \cup \bigcup \biguplus
\forall \; \exists \; \empty \; \emptyset \; \varnothing

\in \ni \not\in \notin \subset \subseteq
\supset \supseteq \cap \bigcap \cup \bigcup \biguplus

\sqsubset \sqsubseteq \sqsupset \sqsupseteq
\sqcap \sqcup \bigsqcup
\sqsubset \sqsubseteq \sqsupset \sqsupseteq

\sqcap \sqcup \bigsqcup

Logic
p \land \wedge \; \bigwedge \; \bar{q} \to p
\lor \; \vee \; \bigvee \; \lnot \; \neg q
\setminus \; \smallsetminus
p \land \wedge \; \bigwedge \; \bar{q} \to p

\lor \; \vee \; \bigvee \; \lnot \; \neg q
\setminus \; \smallsetminus

Root
\sqrt{2}\approx 1.4
\sqrt{2}\approx 1.4
\sqrt[n]{x}
\sqrt[n]{x}
Relations
\sim \; \approx \; \simeq \; \cong
\le \; < \; \ll \; \gg \; \ge >
\equiv \; \not\equiv \; \ne \; \propto
\pm \; \mp
\sim \; \approx \; \simeq \; \cong

\le \; < \; \ll \; \gg \; \ge \; >
\equiv \; \not\equiv \; \ne \; \propto
\pm \; \mp

Geometric
\Diamond \; \Box \; \triangle \; \angle \; \perp 
\; \mid \; \nmid \; \| \; 45^\circ
\Diamond \; \Box \; \triangle \; \angle \; \perp 
\; \mid \; \nmid \; \| \; 45^\circ
Arrows

(Harpoons may not work for some wikis)

\leftarrow \; \gets \; \rightarrow \; \to
\leftrightarrow \; \longleftarrow \; \longrightarrow
\mapsto \; \longmapsto
\hookrightarrow \; \hookleftarrow
\nearrow \; \searrow \; \swarrow \; \nwarrow
\uparrow \; \downarrow \; \updownarrow
\leftarrow \; \gets \; \rightarrow \; \to

\leftrightarrow \; \longleftarrow \; \longrightarrow
\mapsto \; \longmapsto
\hookrightarrow \; \hookleftarrow
\nearrow \; \searrow \; \swarrow \; \nwarrow
\uparrow \; \downarrow \; \updownarrow

\rightharpoonup \; \rightharpoondown 
\; \leftharpoonup \; \leftharpoondown 
\; \upharpoonleft \; \upharpoonright 
\; \downharpoonleft \; \downharpoonright
\rightharpoonup \; \rightharpoondown 
\; \leftharpoonup \; \leftharpoondown 
\; \upharpoonleft \; \upharpoonright 
\; \downharpoonleft \; \downharpoonright
\Leftarrow \; \Rightarrow \; \Leftrightarrow
\Longleftarrow \; \Longrightarrow
\Longleftrightarrow (or \iff)
\Uparrow \; \Downarrow \; \Updownarrow
\Leftarrow \; \Rightarrow \; \Leftrightarrow

\Longleftarrow \; \Longrightarrow
\Longleftrightarrow (or \iff)
\Uparrow \; \Downarrow \; \Updownarrow

Special
\eth \; \S \; \P \; \% \; \dagger \; \ddagger
\star \; * \; \ldots \smile \frown \wr
\eth \; \S \; \P \; \% \; \dagger \; \ddagger

\star \; * \; \ldots \; \smile \frown \wr

\oplus \bigoplus \otimes \bigotimes
\times \cdot \circ \bullet \bigodot
\oplus \bigoplus \otimes \bigotimes

\times \cdot \circ \bullet \bigodot

\triangleleft \triangleright \infty \bot \top
\vdash \vDash \Vdash \models \lVert \rVert
\triangleleft \triangleright \infty \bot \top

\vdash \vDash \Vdash \models \lVert \rVert

\imath \; \hbar \; \ell \; \mho \; \Finv
\Re \; \Im \; \wp \; \complement
\imath \; \hbar \; \ell \; \mho \; \Finv

\Re \; \Im \; \wp \; \complement

\diamondsuit \; \heartsuit \; \clubsuit \; \spadesuit
\Game \; \flat \; \natural \; \sharp
\diamondsuit \; \heartsuit \; \clubsuit \; \spadesuit

\Game \; \flat \; \natural \; \sharp

Lowercase \mathcal has some extras
\mathcal {45abcdenpqs}
\mathcal {45abcdenpqs}

اندیس، توان و انتگرال‌ها[ویرایش]

ویژگی Syntax نحوهٔ نمایش خروجی
HTML PNG
Superscript
a^2
a^2 a^2 \,\!
Subscript
a_2
a_2 a_2 \,\!
Grouping
a^{2+2}
a^{2+2} a^{2+2}\,\!
a_{i,j}
a_{i,j} a_{i,j}\,\!
Combining sub & super
x_2^3
x_2^3
Preceding sub & super
{}_1^2\!X_3^4
{}_1^2\!X_3^4
Derivative (forced PNG)
x', y'', f', f''\!
  x', y'', f', f''\!
Derivative (f in italics may overlap primes in HTML)
x', y'', f', f''
x', y'', f', f'' x', y'', f', f''\!
Derivative (wrong in HTML)
x^\prime, y^{\prime\prime}
x^\prime, y^{\prime\prime} x^\prime, y^{\prime\prime}\,\!
Derivative (wrong in PNG)
x\prime, y\prime\prime
x\prime, y\prime\prime x\prime, y\prime\prime\,\!
Derivative dots
\dot{x}, \ddot{x}
\dot{x}, \ddot{x}
Underlines, overlines, vectors
\hat a \ \bar b \ \vec c
\hat a \ \bar b \ \vec c
\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}
\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}
\overline{g h i} \ \underline{j k l}
\overline{g h i} \ \underline{j k l}
Overbraces
\begin{matrix} 5050 \ \overbrace{ 1+2+\cdots+100 } \end{matrix}
\begin{matrix} 5050 \ \overbrace{ 1+2+\cdots+100 } \end{matrix}
Underbraces
\begin{matrix} \underbrace{ a+b+\cdots+z } \ 26 \end{matrix}
\begin{matrix} \underbrace{ a+b+\cdots+z } \ 26 \end{matrix}
Sum
\sum_{k=1}^N k^2
\sum_{k=1}^N k^2
Sum (force \textstyle)
\begin{matrix} \sum_{k=1}^N k^2 \end{matrix}
\begin{matrix} \sum_{k=1}^N k^2 \end{matrix}
Product
\prod_{i=1}^N x_i
\prod_{i=1}^N x_i
Product (force \textstyle)
\begin{matrix} \prod_{i=1}^N x_i \end{matrix}
\begin{matrix} \prod_{i=1}^N x_i \end{matrix}
Coproduct
\coprod_{i=1}^N x_i
\coprod_{i=1}^N x_i
Coproduct (force \textstyle)
\begin{matrix} \coprod_{i=1}^N x_i \end{matrix}
\begin{matrix} \coprod_{i=1}^N x_i \end{matrix}
Limit
\lim_{n \to \infty}x_n
\lim_{n \to \infty}x_n
Limit (force \textstyle)
\begin{matrix} \lim_{n \to \infty}x_n \end{matrix}
\begin{matrix} \lim_{n \to \infty}x_n \end{matrix}
Integral
\int_{-N}^{N} e^x\, dx
\int_{-N}^{N} e^x\, dx
Integral (force \textstyle)
\begin{matrix} \int_{-N}^{N} e^x\, dx \end{matrix}
\begin{matrix} \int_{-N}^{N} e^x\, dx \end{matrix}
Double integral
\iint_{D}^{W} \, dx\,dy
\iint_{D}^{W} \, dx\,dy
Triple integral
\iiint_{E}^{V} \, dx\,dy\,dz
\iiint_{E}^{V} \, dx\,dy\,dz
Quadruple integral
\iiiint_{F}^{U} \, dx\,dy\,dz\,dt
\iiiint_{F}^{U} \, dx\,dy\,dz\,dt
Path integral
\oint_{C} x^3\, dx + 4y^2\, dy
\oint_{C} x^3\, dx + 4y^2\, dy
Intersections
\bigcap_1^{n} p
\bigcap_1^{n} p
Unions
\bigcup_1^{k} p
\bigcup_1^{k} p

کسرها، ماتریس‌ها و روابط چندخطی[ویرایش]

Feature Syntax How it looks rendered
Fractions \frac{2}{4}=0.5 \frac{2}{4}=0.5
Small Fractions \tfrac{2}{4} = 0.5 \tfrac{2}{4} = 0.5
Large (normal) Fractions \dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a \dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a
Large (nested) Fractions \cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a \cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a
Binomial coefficients \binom{n}{k} \binom{n}{k}
Small Binomial coefficients \tbinom{n}{k} \tbinom{n}{k}
Large (normal) Binomial coefficients \dbinom{n}{k} \dbinom{n}{k}
Matrices
\begin{matrix}
  x & y \\
  z & v 
\end{matrix}
\begin{matrix} x & y \\ z & v
\end{matrix}
\begin{vmatrix}
  x & y \\
  z & v 
\end{vmatrix}
\begin{vmatrix} x & y \\ z & v
\end{vmatrix}
\begin{Vmatrix}
  x & y \\
  z & v
\end{Vmatrix}
\begin{Vmatrix} x & y \\ z & v
\end{Vmatrix}
\begin{bmatrix}
  0      & \cdots & 0      \\
  \vdots & \ddots & \vdots \\ 
  0      & \cdots & 0
\end{bmatrix}
\begin{bmatrix} 0 & \cdots & 0 \\ \vdots
& \ddots & \vdots \\ 0 & \cdots &
0\end{bmatrix}
\begin{Bmatrix}
  x & y \\
  z & v
\end{Bmatrix}
\begin{Bmatrix} x & y \\ z & v
\end{Bmatrix}
\begin{pmatrix}
  x & y \\
  z & v 
\end{pmatrix}
\begin{pmatrix} x & y \\ z & v
\end{pmatrix}
\bigl( \begin{smallmatrix}
  a&b\\ c&d
\end{smallmatrix} \bigr)

\bigl( \begin{smallmatrix}
  a&b\\ c&d
\end{smallmatrix} \bigr)
Case distinctions
f(n) = 
\begin{cases} 
  n/2,  & \mbox{if }n\mbox{ is even} \\
  3n+1, & \mbox{if }n\mbox{ is odd} 
\end{cases}
f(n) = 
\begin{cases}
  n/2,  & \mbox{if }n\mbox{ is even} \\ 
  3n+1, & \mbox{if }n\mbox{ is odd} 
\end{cases}
Multiline equations
\begin{align}
 f(x) & = (a+b)^2 \\
      & = a^2+2ab+b^2 \\
\end{align}

\begin{align}
 f(x) & = (a+b)^2 \\
      & = a^2+2ab+b^2 \\
\end{align}
\begin{alignat}{2}
 f(x) & = (a-b)^2 \\
      & = a^2-2ab+b^2 \\
\end{alignat}

\begin{alignat}{2}
 f(x) & = (a-b)^2 \\
      & = a^2-2ab+b^2 \\
\end{alignat}
Multiline equations (must define number of colums used ({lcr}) (should not be used unless needed)
\begin{array}{lcl}
  z        & = & a \\
  f(x,y,z) & = & x + y + z  
\end{array}
\begin{array}{lcl}
  z        & = & a \\
  f(x,y,z) & = & x + y + z  
\end{array}
Multiline equations (more)
\begin{array}{lcr}
  z        & = & a \\
  f(x,y,z) & = & x + y + z     
\end{array}
\begin{array}{lcr}
  z        & = & a \\
  f(x,y,z) & = & x + y + z     
\end{array}
Breaking up a long expression so that it wraps when necessary

<math>f(x) \,\!</math>
<math>= \sum_{n=0}^\infty a_n x^n </math>
<math>= a_0+a_1x+a_2x^2+\cdots</math>

f(x) \,\!= \sum_{n=0}^\infty a_n x^n = a_0 +a_1x+a_2x^2+\cdots

Simultaneous equations
\begin{cases}
    3x + 5y +  z \\
    7x - 2y + 4z \\
   -6x + 3y + 2z 
\end{cases}
\begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases}
Arrays
\begin{array}{|c|c||c|} a & b & S \\
\hline
0&0&1\\
0&1&1\\
1&0&1\\
1&1&0\\
\end{array}

\begin{array}{|c|c||c|} a & b & S \\
\hline
0&0&1\\
0&1&1\\
1&0&1\\
1&1&0\\
\end{array}

الفبا و طرح حروف[ویرایش]

Texvc cannot render arbitrary Unicode characters. Those it can handle can be entered by the below expressions. For others, such as Cyrillic, they can be entered as Unicode or HTML entities in running text, but cannot be used in displayed formulas.

Greek alphabet
\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Alpha \Beta \Gamma \Delta \Epsilon \Zeta \,\!
\Eta \Theta \Iota \Kappa \Lambda \Mu \Eta \Theta \Iota \Kappa \Lambda \Mu \,\!
\Nu \Xi \Pi \Rho \Sigma \Tau \Nu \Xi \Pi \Rho \Sigma \Tau\,\!
\Upsilon \Phi \Chi \Psi \Omega \Upsilon \Phi \Chi \Psi \Omega \,\!
\alpha \beta \gamma \delta \epsilon \zeta \alpha \beta \gamma \delta \epsilon \zeta \,\!
\eta \theta \iota \kappa \lambda \mu \eta \theta \iota \kappa \lambda \mu \,\!
\nu \xi \pi \rho \sigma \tau \nu \xi \pi \rho \sigma \tau \,\!
\upsilon \phi \chi \psi \omega \upsilon \phi \chi \psi \omega \,\!
\varepsilon \digamma \vartheta \varkappa \varepsilon \digamma \vartheta \varkappa \,\!
\varpi \varrho \varsigma \varphi \varpi \varrho \varsigma \varphi\,\!
Blackboard Bold/Scripts
\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} \mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} \,\!
\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} \mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} \,\!
\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} \mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} \,\!
\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z} \mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}\,\!
boldface (vectors)
\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} \mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} \,\!
\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} \mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} \,\!
\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} \mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} \,\!
\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} \mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} \,\!
\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} \mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} \,\!
\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} \mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} \,\!
\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} \mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} \,\!
\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} \mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} \,\!
\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} \mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} \,\!
\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9} \mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}\,\!
Boldface (greek)
\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} \boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} \,\!
\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu} \boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}\,\!
\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau} \boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}\,\!
\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega} \boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}\,\!
\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta} \boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}\,\!
\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu} \boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}\,\!
\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau} \boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}\,\!
\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega} \boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}\,\!
\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa} \boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa} \,\!
\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi} \boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}\,\!
Italics
\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} \mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} \,\!
\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} \mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} \,\!
\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} \mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} \,\!
\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} \mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} \,\!
\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} \mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} \,\!
\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} \mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} \,\!
\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} \mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} \,\!
\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} \mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} \,\!
\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} \mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} \,\!
\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9} \mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}\,\!
Roman typeface
\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} \mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} \,\!
\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} \mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} \,\!
\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} \mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} \,\!
\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} \mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} \,\!
\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g} \mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}\,\!
\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} \mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} \,\!
\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} \mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} \,\!
\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} \mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} \,\!
\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} \mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} \,\!
\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9} \mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}\,\!
Fraktur typeface
\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} \mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} \,\!
\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} \mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} \,\!
\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} \mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} \,\!
\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} \mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} \,\!
\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} \mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} \,\!
\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} \mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} \,\!
\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} \mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} \,\!
\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} \mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} \,\!
\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} \mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} \,\!
\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9} \mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}\,\!
Calligraphy/Script
\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} \mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} \,\!
\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} \mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} \,\!
\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} \mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} \,\!
\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z} \mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}\,\!
Hebrew
\aleph \beth \gimel \daleth \aleph \beth \gimel \daleth\,\!
Feature Syntax How it looks rendered
non-italicised characters \mbox{abc} \mbox{abc} \mbox{abc} \,\!
mixed italics (bad) \mbox{if} n \mbox{is even} \mbox{if} n \mbox{is even} \mbox{if} n \mbox{is even} \,\!
mixed italics (good) \mbox{if }n\mbox{ is even} \mbox{if }n\mbox{ is even} \mbox{if }n\mbox{ is even} \,\!
mixed italics (more legible: ~ is a non-breaking space, while "\ " forces a space) \mbox{if}~n\ \mbox{is even} \mbox{if}~n\ \mbox{is even} \mbox{if}~n\ \mbox{is even} \,\!

پرانتزگذاری برای عبارت‌های بزرگ[ویرایش]

Feature Syntax How it looks rendered
Bad ( \frac{1}{2} ) ( \frac{1}{2} )
Good \left ( \frac{1}{2} \right ) \left ( \frac{1}{2} \right )

You can use various delimiters with \left and \right:

Feature Syntax How it looks rendered
Parentheses \left ( \frac{a}{b} \right ) \left ( \frac{a}{b} \right )
Brackets \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack
Braces \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace
Angle brackets \left \langle \frac{a}{b} \right \rangle \left \langle \frac{a}{b} \right \rangle
Bars and double bars \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \| \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \|
Floor and ceiling functions: \left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil \left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil
Slashes and backslashes \left / \frac{a}{b} \right \backslash \left / \frac{a}{b} \right \backslash
Up, down and up-down arrows \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow

Delimiters can be mixed,
as long as \left and \right match

\left [ 0,1 \right )
\left \langle \psi \right |

\left [ 0,1 \right )
\left \langle \psi \right |

Use \left. and \right. if you don't
want a delimiter to appear:
\left . \frac{A}{B} \right \} \to X \left . \frac{A}{B} \right \} \to X
Size of the delimiters \big( \Big( \bigg( \Bigg( \dots \Bigg] \bigg] \Big] \big]

\big( \Big( \bigg( \Bigg( \dots \Bigg] \bigg] \Big] \big]

\big\{ \Big\{ \bigg\{ \Bigg\{ \dots \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle

\big\{ \Big\{ \bigg\{ \Bigg\{ \dots \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle

\big\| \Big\| \bigg\| \Bigg\| \dots \Bigg| \bigg| \Big| \big| \big\| \Big\| \bigg\| \Bigg\| \dots \Bigg| \bigg| \Big| \big|
\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor \dots \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil

\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor \dots \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil

\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \dots \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow

\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \dots \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow

\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow \dots \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow

\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow \dots \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow

\big / \Big / \bigg / \Bigg / \dots \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash

\big / \Big / \bigg / \Bigg / \dots \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash

فاصله‌گذاری[ویرایش]

Note that TeX handles most spacing automatically, but you may sometimes want manual control.

Feature Syntax How it looks rendered
double quad space a \qquad b a \qquad b
quad space a \quad b a \quad b
text space a\ b a\ b
text space without PNG conversion a \mbox{ } b a \mbox{ } b
large space a\;b a\;b
medium space a\>b [not supported]
small space a\,b a\,b
no space ab ab\,
small negative space a\!b a\!b

همراستاسازی با متن معمولی[ویرایش]

Due to the default css

img.tex { vertical-align: middle; }

an inline expression like \int_{-N}^{N} e^x\, dx should look good.

If you need to align it otherwise, use <font style="vertical-align:-100%;"><math>...</math></font> and play with the vertical-align argument until you get it right; however, how it looks may depend on the browser and the browser settings.

Also note that if you rely on this workaround, if/when the rendering on the server gets fixed in future releases, as a result of this extra manual offset your formulae will suddenly be aligned incorrectly. So use it sparingly, if at all.

ارائه بصورت فایل پی‌ان‌جی[ویرایش]

To force the formula to render as PNG, add \, (small space) at the end of the formula (where it is not rendered). This will force PNG if the user is in "HTML if simple" mode, but not for "HTML if possible" mode (math rendering settings in preferences).

You can also use \,\! (small space and negative space, which cancel out) anywhere inside the math tags. This does force PNG even in "HTML if possible" mode, unlike \,.

This could be useful to keep the rendering of formulae in a proof consistent, for example, or to fix formulae that render incorrectly in HTML (at one time, a^{2+2} rendered with an extra underscore), or to demonstrate how something is rendered when it would normally show up as HTML (as in the examples above).

For instance:

Syntax How it looks rendered
a^{c+2} a^{c+2}
a^{c+2} \, a^{c+2} \,
a^{\,\!c+2} a^{\,\!c+2}
a^{b^{c+2}} a^{b^{c+2}} (WRONG with option "HTML if possible or else PNG"!)
a^{b^{c+2}} \, a^{b^{c+2}} \, (WRONG with option "HTML if possible or else PNG"!)
a^{b^{c+2}}\approx 5 a^{b^{c+2}}\approx 5 (due to "\approx" correctly displayed, no code "\,\!" needed)
a^{b^{\,\!c+2}} a^{b^{\,\!c+2}}
\int_{-N}^{N} e^x\, dx \int_{-N}^{N} e^x\, dx


This has been tested with most of the formulae on this page, and seems to work perfectly.

You might want to include a comment in the HTML so people don't "correct" the formula by removing it:

<!-- The \,\! is to keep the formula rendered as PNG instead of HTML. Please don't remove it.-->

رنگ[ویرایش]

Equations can use color:

  • {\color{Blue}x^2}+{\color{Brown}2x}-{\color{OliveGreen}1}
    {\color{Blue}x^2}+{\color{Brown}2x}-{\color{OliveGreen}1}
  • x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}
    x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}

See here for all named colors supported by LaTeX.

Note that color should not be used as the only way to identify something, because it will become meaningless on black-and-white media or for color-blind people. See .

Commutative diagrams[ویرایش]

To make a , there are three steps:

  • Write the diagram in TeX
  • Convert to * === Diagrams in TeX ===

Xy-pic (online manual) is the most power and general-purpose diagram package in TeX.

Simpler packages include:

The following is a template for Xy-pic, together with a to increase the in (suggested in : TUGboat, Volume 17 1996, No. 3):

\documentclass{amsart}
\usepackage[all, ps, dvips]{xy} % Loading the XY-Pic package
                                % Using postscript driver for smoother curves
\usepackage{color}              % For invisible frame
\begin{document}
\thispagestyle{empty} % No page numbers
\SelectTips{eu}{}     % Euler arrowheads (tips)
\setlength{\fboxsep}{0pt} % Frame box margin
{\color{white}\framebox{{\color{black}$$ % Frame for margin

\xymatrix{ % The diagram is a 3x3 matrix
%%% Diagram goes here %%%
}

$$}}} % end math, end frame
\end{document}

Convert to SVG[ویرایش]

Once one has the TeX code, one can produce an SVG file via the following, which assume the TeX file is called comm.tex:

latex comm.tex
dvips -E -y 2500 -o comm.eps comm.dvi
eps2eps -dNOCACHE comm.eps comm2.eps
pstoedit -f sk comm2.eps comm.sk
inkscape -z -f comm.sk -l comm.svg

These produce a DVI file, convert it to EPS (rescaling by 2.5x), convert fonts to outlines, and convert to SVG via Sketch.

This assumes several pieces of software:

  • a working TeX distribution, such as * * * === Upload the file ===
See also: en:Help:Contents/Images and media

Before uploading, check that the default size of the image is neither too large nor too small by opening in an SVG application, otherwise adjust the -y option to dvips.

Name
Make sure the file has a meaningful name.
Upload
Upload the file using own work upload.
Source code
Include the source code in the , in a section called ==TeX source==, so that the diagram can be edited in future. Include the complete .tex file, not just the fragment, so future editors do not need to reconstruct a compilable file.
Include image
Now include the image on the original page via [[Image:Diagram.svg]]

A sample diagram is .

مثال‌ها[ویرایش]

چندجمله‌ای درجه دوم[ویرایش]

ax^2 + bx + c = 0

<math>ax^2 + bx + c = 0</math>

چندجمله‌ای درجه دوم (پی‌ان‌جی)[ویرایش]

ax^2 + bx + c = 0\,\!

<math>ax^2 + bx + c = 0\,\!</math>

ریشه درجه دوم[ویرایش]

x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

<math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math>

کسر و انواع پرانتز[ویرایش]

2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right)

<math>2 = \left(
 \frac{\left(3-x\right) \times 2}{3-x}
 \right)</math>
S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2}

 <math>S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2}</math>
 

===انتگرال‌ها===

\int_a^x \int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy

<math>\int_a^x \int_a^s f(y)\,dy\,ds
 = \int_a^x f(y)(x-y)\,dy</math>

مجموع‌یابی و سیگما[ویرایش]

\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}{3^m\left(m\,3^n+n\,3^m\right)}
<math>\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}
 {3^m\left(m\,3^n+n\,3^m\right)}</math>

معادلات دیفرانسیل[ویرایش]

u'' + p(x)u' + q(x)u=f(x),\quad x>a

<math>u'' + p(x)u' + q(x)u=f(x),\quad x>a</math>

اعداد مختلط[ویرایش]

|\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z)

<math>|\bar{z}| = |z|,
 |(\bar{z})^n| = |z|^n,
 \arg(z^n) = n \arg(z)</math>

حد[ویرایش]

\lim_{z\rightarrow z_0} f(z)=f(z_0)

<math>\lim_{z\rightarrow z_0} f(z)=f(z_0)</math>

معادلات انتگرالی[ویرایش]

\phi_n(\kappa)
 = \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R}  \frac{\partial}{\partial R}  \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR

<math>\phi_n(\kappa) =
 \frac{1}{4\pi^2\kappa^2} \int_0^\infty
 \frac{\sin(\kappa R)}{\kappa R}
 \frac{\partial}{\partial R}
 \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR</math>

--[ویرایش]

\phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}

<math>\phi_n(\kappa) = 
 0.033C_n^2\kappa^{-11/3},\quad
 \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}</math>

Continuation and cases[ویرایش]

f(x) = \begin{cases}1 & -1 \le x < 0 \\
 \frac{1}{2} & x = 0 \\ 1 - x^2 & \mbox{otherwise}\end{cases}

<math>
 f(x) =
 \begin{cases}
 1 & -1 \le x < 0 \\
 \frac{1}{2} & x = 0 \\
 1 - x^2 & \mbox{otherwise}
 \end{cases}
 </math>

زیرنویس[ویرایش]

{}_pF_q(a_1,...,a_p;c_1,...,c_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdot\cdot\cdot(a_p)_n}{(c_1)_n\cdot\cdot\cdot(c_q)_n}\frac{z^n}{n!}

 <math>{}_pF_q(a_1,...,a_p;c_1,...,c_q;z)
 = \sum_{n=0}^\infty
 \frac{(a_1)_n\cdot\cdot\cdot(a_p)_n}{(c_1)_n\cdot\cdot\cdot(c_q)_n}
 \frac{z^n}{n!}</math>

جستارهای وابسته[ویرایش]

پیوندها[ویرایش]