خواب

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو
فارسی English
این مقاله درباره خواب است، برای «خواب دیدن» به مقاله رویا مراجعه کنید.
گربه‌های خوابیده.
دو مرد خوابیده بر روی نیمکتی در تهران.

خواب عبارت است از کاهش تا فقدان سطح هوشیاری، تعلیق نسبی ادراکات حسی و غیر فعال شدن تقریباً تمام عضلات ارادی در زمان استراحت به طوری که فعالیت بدن و ذهن تغییر کرده و توهم‌های بینایی جایگزین تصاویر واضح واقعی بشوند. در بین پستانداران، پرندگان، ماهیان و دیگر جانوران مراحل خواب و بیداری وجود دارد. خواب برای سلامت و بازسازی سیستم اعصاب، سیستم ایمنی و سیستم عضلانی-اسکلتی انسان‌ها و جانوران اهمیت دارد.

مراحل خواب[ویرایش]

اختراع دستگاه نوار مغزی به دانشمندان اجازه داد تا به مطالعه خواب انسان، به روش‌هایی که پیش از آن ممکن نبود، بپردازند. در خلال دهه ۱۹۵۰ فردی به نام اوژن آسرینسکی که تازه از دانشگاه فارغ‌التحصیل شده بود، از این وسیله برای کشف آنچه امروز خواب REM خوانده می‌شود استفاده کرد. مطالعات بیشتر بر روی خواب انسان نشان داده است که خواب از یک سری مراحل گذر می‌کند که الگوهای امواج مغزی در هر مرحله با یکدیگر متفاوتند. خواب دارای دو نوع اصلی است:

خواب NREM (حرکت غیرسریع چشم) که خواب آرام نیز خوانده می‌شود. خواب REM (حرکت سریع چشم) که خواب فعال یا خواب نابه‌روال (paradoxical) نیز خوانده می‌شود.

شروع خواب

در خلال نخستین مراحل خواب، ما هنوز نسبتاً بیدار و هشیار هستیم. مغز امواجی تولید می‌کند به نام امواج بتا که کوچک و سریع هستند. به مرور که مغز شروع به آرامش یافتن می‌کند، امواج کندتری به نام امواج آلفا متصاعد میشوند. در طول این مدّت و هنگامی که هنوز کاملاً به خواب نرفته‌ایم ممکن است احساس عجیب و کاملاً واضحی را تجربه کنیم که توهمات پیش خواب نامیده می‌شود. مثال‌های متداول و شایع این پدیده عبارتند از احساس افتادن (پرت شدن) یا شنیدن این که کسی نام شما را صدا می‌کند. رویداد بسیار شایع دیگری که در این دوره زمانی وجود دارد، پرش میوکلونیک است. اگر تا کنون، بدون هیچ دلیل مشخص و خاصی، ناگهان بدنتان تکان خورده یا پریده است این پدیده ظاهراً عجیب را تجربه کرده‌اید. در عالم واقع، این پرش‌های میوکلونیک بسیار شایعند.

اولین قسمت خواب non-REM است. خواب دیدن در خواب non-REM بسیار کم است و اگر هم خواب ببینیم آن را فراموش می‌کنیم. در این خواب ماهیچه‌ها بی حس نیستند. خواب non-REM شامل سه مرحله می‌شود:

  • مرحلهٔ اول:

مرحله ۱ شروع چرخه خواب و نسبتاً مرحله سبک و خفیفی از خواب است. مرحله ۱ را می‌توان به صورت دوره گذار بین بیداری و خواب در نظر گرفت. در مرحله ۱، مغز امواج تتا تولید می‌کند که امواجی با دامنه بلند و خیلی کند هستند. این مرحله از خواب، تنها مدّت زمانی کوتاهی در حدود ۵ تا ۱۰ دقیقه طول می‌کشد و اگر در این مرحله کسی را از خواب بیدار کنید احتمالاً به شما خواهد گفت که خواب نبوده است!

  • مرحلهٔ دوم:

دومین مرحله خواب تقریباً ۲۰ دقیقه طول می‌کشد. مغز شروع به تولید امواج منظم و سریعی می‌کند که به نام دوک‌های خواب معروفند. دمای بدن شروع به کاهش و ضربان قلب شروع به کندشدن می‌کند. یک مرحلهٔ ناهشیار است که خواب رونده به راحتی بیدار می‌شود.

  • مرحلهٔ سوم:

عمیق‌ترین مرحلهٔ خواب non-REM است. پس از این مرحله قسمت دوم خواب REM آغاز می‌شود. امواج مغزیِ عمیق و کند به نام امواج دلتا در خلال مرحله ۳ خواب شروع به پدیدار شدن می‌کنند. مرحله ۳، دوره گذار بین خواب سبک و خواب بسیار عمیق است.

خواب REM در بزرگسالان حدود ۲۰ تا ۲۵ درصد از کل خواب را تشکیل می‌دهد (حدود ۹۰ تا ۱۲۰ دقیقه در خوابِ شب). مقدار خواب REM در سنین مختلف متفاوت است. یک نوزاد بیشتر از ۸۰ درصد کل خوابش را در خواب REM است. رویا در مرحلهٔ REM رخ می‌دهد.

ضربان قلب و تنفس در خواب REM نامنظم است؛ مانند زمان بیداری. بزرگ شدن آلت جنسی مرد (NPT) در خواب REM رخ می‌دهد. پژوهش گران به فعالیت در ناحیه‌هایی از مغز که مربوط به کنترل بینایی، شنوایی، بویایی، لمسی و تعادل حرکات بدن پی برده‌اند. نکته قابل ذکر این است که فرایند خواب، این مراحل را به ترتیب پشت سر نمی‌گذارد. خواب از مرحله ۱ شروع می‌شود و سپس به مراحل ۲، ۳ و ۴ می‌رود. پس از مرحله ۴ و قبل از وارد شدن به مرحله ۵ یا همان خواب REM، مرحله ۳ و به دنبال آن مرحله ۲ خواب تکرار می‌شوند. پس از خاتمه خواب REM، بدن معمولاً به مرحله ۲ خواب باز می‌گردد. در طول شب، خواب انسان تقریباً ۴ یا ۵ بار بین این مراحل می‌چرخد. ما به طور میانگین ۹۰ دقیقه پس از به خواب رفتن وارد مرحله ۵ یا خواب REM می‌شویم. نخستین چرخه خواب REM ممکن است تنها زمان کوتاهی به طول بینجامد امّا هر چرخه از چرخه قبل طولانی‌تر می‌شود به نحوی که خواب REM می‌تواند تا نزدیک به یک ساعت پایدار بماند.

خواب REM با کاهش سروتونین (Serotonin) در مغز همراه است. بنابراین خواب REM در افراد افسرده زودتر می‌رسد. سروتونین ماده‌ای است که در افراد افسرده کاهش یافته‌است.

محرومیت از خواب[ویرایش]

بیش‌ترین مدت بی خوابی انسان‌ها در جهان، ۳۳ سال معادل ۱۱۷۰۰ شب بوده‌است.[نیازمند منبع] جز این مورد استثنایی، هیچ شخص دیگری نتوانسته بیش از یازده روز را بدون خواب سپری کند. افرادی که از خواب محروم می‌مانند، دچار افسردگی می‌شوند. این افراد، هوشیاری‌شان را از دست می‌دهند و دچار توهم می‌شوند. حالت چهره شخص بی خواب، کشیده و بی حرکت می‌شود، ابروها چین می‌خورد، شخص با زحمت زیاد چشمانش را باز نگاه می‌دارد و دچار هذیان می‌شود. محرومیت از رویا، اغلب به پرخاشگری، بیمناکی، و یا افسردگی منجر می‌شود.

مدت زمان خواب[ویرایش]

مدت زمان بیداری در شخص بالغ، معادل چهار برابر مدت زمان بیداری یک کودک است. نوزاد، به طور متوسط در ازای هر یک ساعت بیداری، دو ساعت را در خواب می‌گذراند، حال آن که فرد بالغ در همان زمان نیم ساعت در خواب است. خواب افراد بالای ۱۵ سال تا ۳۰ سال بین ۹ تا ۱۰ ساعت است.

تغییرات پیش از خواب[ویرایش]

بعضی افراد به آسانی و به سرعت به خواب می‌روند و در برخی دیگر این امر تدریجی‌تر است. گروهی از افراد، حالت‌های حسی مختلفی تجربه می‌کنند یا دچار پرش اندام‌ها می‌شوند. پیش خواب شامل حالت‌هایی چون توهمات بینایی و شنوایی زودگذر یا تغییراتی در تصویر بدنی است که با احساس معلق بودن در فضا همراه است.

تغییرات در طول خواب[ویرایش]

یکی از تغییرات در طول خواب بی حرکتی عمومی و شل شدن برخی ماهیچه‌هاست. در زمان خواب، انسان‌ها و حیوانات می‌توانند رویا ببینند. این رویاها بر اثر حرکات سریع چشم‌است. دست‌ها وپاها در زمان خواب حرکت می‌کنند. در خواب انسان‌ها معمولاً بین ۲۵ تا ۴۰ بار موقعیت خود را در طول شب تغییر می‌دهند. حرکات بدن در طول خواب ارتباطی با عمق خواب ندارد. در خواب جریان خون در ماهیچه‌ها کاهش می‌یابد، و بر جریان خون پوست افزوده می‌شود، پوست برافروخته می‌شود، و غدد عرقی پیوسته فعالیت می‌کنند. بدن در طول خواب حرارت را به سرعت از دست می‌دهد، تعداد ضربان‌های قلب و اندازه فشارخون کاهش می‌یابد، تنفس آهسته و عمیق تر می‌شود. شل شدن فک پایین، و ماهیچه‌های حلق سبب خرخر کردن می‌شود.

اختلالات خواب[ویرایش]

اختلالات خواب در انسان‌ها عبارت‌اند از: خرخر، کم‌خوابی، پرخوابی، خوابگردی، فلج خواب، کابوس، هراس شبانه، خواب‌ترسی، دندان قرچه، شب‌ادراری و خواب‌های تجزیه‌ای. علاوه بر این‌ها، خواب می‌تواند با آشفتگی‌های ادراکی هنگام به خواب رفتن و بیدار شدن همراه باشد که آن را به ترتیب پیش خواب و پس خواب می‌نامند. این حالت‌ها بر اختلال در تصاویر، صداها و عواطف مشتمل است. این گونه اختلالات معمولاً در رشته خواب‌شناسی یا روان‌شناسی خواب، بررسی می‌شود.

آشنایی با ساعت بدن[ویرایش]

تمام موجودات زنده دارای یک سازوکار زمان سنجی یا «ساعت» هستند که دوره‌های فعالیت و استراحت آن‌ها را کنترل می‌کند. این ساعت‌ها که به نام «چرخه‌های زیستی» خوانده می‌شوند، به دوره فرایندهای فیزیولوژیک و بیولوژیکی که در یک جدول زمانی تقریباً ۲۴ ساعته نوسان دارند، اشاره می‌کنند. شما احتمالاً خودتان نیز متوجه این تغییرات در بدن خود شده‌اید، احساس انرژی وهوشیاری بیشتر در طول روز و خستگی و کمبود انرژی در ساعات شب. با وجودی که بسیاری از افراد به چرخه‌های زیستی به صورت یک فرایند منفرد می‌نگرند، امّا در واقع تعدادی ساعت مختلف در بدن وجود دارد که در طول روز نوسان می‌کنند. برای مثال، هوشیاری ذهنی دو نوبت در روز در ساعت‌های ۹ صبح و ۹ شب به نقطه اوج می‌رسد در حالی که این زمان‌ها برای قدرت بدنی ۱۱ صبح و ۷ بعدازظهر است.

چگونه بدن شما «ساعت را نگه می‌دارد؟» خوشه نازکی از حدود ۲۰ هزار نورون در هیپوتالاموس، چرخه‌های زیستی بدن شما را کنترل می‌کند. این مرکز کنترل که به نام هسته فوق کیاسمائی (SCN) شناخته می‌شود، به عنوان مسئول تنظیم ضربان درونی بدن شما عمل می‌کند. هر چند سازوکار دقیق چگونگی عملکرد این فرایند هنوز روشن نیست، امّا نشانه‌های محیطی اهمیت دارند. تأثیر نور خورشید در زمانبندی خواب-بیداری روزانه شاید از همه چیز واضح‌تر باشد. نور خورشید چگونه بر چرخه‌های زیستی اثر می‌گذارد؟ هنگامی که از نور خورشید در ساعات پایانی روز کاسته می‌شود، سیستم بینایی به هسته فوق کیاسمائی علامت می‌فرستد. سپس SCN به غدّه صنوبری مغز علامت می‌دهد که تولید هورمون ملاتونین را افزایش دهد. این افزایش هورمون به کاهش فعالیت و احساس خواب آلودگی در شما کمک می‌کند.

وقتی نور خورشید نباشد چه اتفاقی می‌افتد؟ پژوهش‌های بسیاری در مورد این مساله صورت گرفته است که هنگامی که الگوهای طبیعی نور خورشید دچار وقفه شوند چه اتفاقی برای چرخه‌های زیستی می‌افتد. پژوهش‌های بالینی نشان داده‌اند که افرادی که به طور مادرزادی نابینا هستند به دلیل فقدان کامل نور محیطی، معمولاً در چرخه خواب-بیداری خود دچار مشکل می‌باشند. همچنین کسانی که شب کاری می‌کنند و یا زیاد مسافرت می‌کنند نیز با اختلالاتی در چرخه‌های زیستی خود روبرو هستند. در برخی مطالعاتی که در زمینه چرخه‌های زیستی به عمل آمده، عده‌ای را برای چند هفته و یا حتی چند ماه در واحدهای زیرزمینی نگاه داشته‌اند و متوجه شده‌اند که چرخه‌های زیستی این افراد به دلیل محرومیت از نور طبیعی، شروع به تغییر از ۲۴ ساعت به ۲۵ ساعت نموده است.

نکته‌هایی برای به خاطر سپردن

چرخه‌های زیستی شما به نور خورشید وابسته است. اختلال در این الگوها می‌تواند به مشکلاتی در خوابیدن بینجامد بدون نور طبیعی، زمانبندی بدن افراد ۲۵ ساعته می‌شود. چرخه‌های زیستی بر روی دمای بدن، حساسیت نسبت به درد، هوشیاری ذهنی، قدرت جسمی و احساسات تاثیر می‌گذارد.

نظریه‌های خواب[ویرایش]

به خواب رفتن انسان‌ها از زمان فلاسفه قدیم یونان موضوع تفکر و بررسی بوده است امّا تنها چند سالی است که پژوهشگران توانسته‌اند به راه‌هایی برای مطالعه این پدیده به شیوه‌ای سیستماتیک و عینی دست یابند. پیدایش فناوری‌های جدید مانند دستگاه نوار مغزی، دانشمندان را قادر ساخته است که الگوهای الکتریکی و فعالیت‌های مغز انسان در حال خواب را زیر نظر بگیرند. با وجودی که اکنون بررسی خواب و پدیده‌های مرتبط به آن امکانپذیر گشته است امّا همه پژوهشگران بر سر این که «چرا ما می‌خوابیم» اتفاق نظر ندارند. چند نظریه مختلف برای توضیح ضرورت خوابیدن و نیز عملکردها و هدف‌های آن ارائه گشته است که در اینجا با سه نظریه عمده در بین آن‌ها آشنا می‌شویم.

۱- نظریه جبران و ترمیم بر اساس نظریه جبران و ترمیم، خوابیدن برای تجدید قوا و احیای فرایندهای فیزیولوژیک که بدن و ذهن را سالم نگه می‌دارند و باعث عملکرد مناسب آن‌ها می‌شوند ضرورت اساسی دارد. بر طبق این نظریه، خواب NREM (مرحله خواب آرام که به نام حرکت غیرسریع چشم خوانده می‌شود) برای بازسازی و ترمیم فعالیت‌های فیزیولوژیک اهمیت دارد در حالی که خواب REM (مرحله پنجم خواب که به نام حرکت سریع چشم خوانده می‌شود) برای بازسازی فعالیت‌های ذهنی است. پشتیبان این نظریه، پژوهش‌هایی است که نشان می‌دهد دوره‌های خواب REM پس از مدتی کم‌خوابی و فعالیت جسمی شدید، افزایش می‌یابد. بدن در هنگام خواب، سرعت تقسیم سلولی و ترکیب پروتئینی را افزایش می‌دهد و این پدیده نیز به نوبه خود پشتیبان نظریه جبران وترمیم به هنگام خواب است.

۲- نظریه تکاملی بنابر نظریه تکاملی که به نام نظریه انطباقی خواب نیز خوانده می‌شود، دوره‌های فعالیت و سکون به عنوان وسیله‌ای برای ذخیره انرژی در سیر تکاملی به وجود آمده‌اند. براساس این نظریه، تمام موجودات زنده در زمان‌هایی که بیداری و هشیاری برای آن‌ها خطرناک و مخاطره‌آمیز بوده است خود را با خوابیدن انطباق داده‌اند. پشتیبان این نظریه، پژوهش‌های تطبیقی است که بر روی حیوانات مختلف صورت گرفته است. حیواناتی که شکارچیان طبیعی کمتری دارند، مانند خرس‌ها و شیرها، معمولاً روزانه بین ۱۲ تا ۱۵ ساعت می‌خوابند. امّا حیواناتی که شکارچیان طبیعی زیادی دارند، دارای دوره‌های خواب کوتاهی هستند و معمولاً روزانه بیش از ۴ تا ۵ ساعت نمی‌خوابند.

۳- نظریه تحکیم اطلاعات نظریه تحکیم اطلاعات بر پایه پژوهش‌های شناختی است و می‌گوید انسان‌ها برای پردازش اطلاعاتی که در طول روز به دست آورده‌اند می‌خوابند. بر اساس این نظریه، علاوه بر پردازش اطلاعات کسب شده در طول روز، خوابیدن به مغز اجازه می‌دهد که خود را برای روز بعد آماده کند. برخی پژوهش‌ها همچنین نشان داده است که خواب به تحکیم و پیونددادن چیزهایی که در طول روز فرا گرفته‌ایم و قرار دادن آن‌ها در حافظه دراز مدّت کمک می‌کند. پشتیبان این نظریه، مطالعاتی است که نشان می‌دهد کم خوابی، تأثیر جدّی بر روی توانایی به یاد آوری اطلاعات دارد.

  • * *

در حالی که پژوهش‌ها و شواهدی برای پشتیبانی از نظریه‌های مختلف خواب وجود دارد، هنوز هیچ پشتیبان روشن و قاطعی برای هیچیک از نظریه‌ها به دست نیامده است. هر کدام از این نظریه‌ها ممکن است برای تشریح و توضیح این که «چرا ما می‌خوابیم» به کار روند. خوابیدن بر روی بسیاری از فرایندهای فیزیولوژیک تأثیر می‌گذارد. بنابراین احتمال زیادی دارد که خوابیدن به دلایل و منظورهای مختلف و متعددی باشد.

مشکلات متداول خواب در نوجوانان[ویرایش]

اغلب نوجوانان به مقدار کافی خواب ندارند. این امر معمولاً به خاطر این است که بار کاری آن‌ها زیاد است و آن‌ها برای این که به انجام همه برنامه‌هایشان برسند از خوابشان می‌زنند. امّا مشکلات خواب می‌تواند بعضی از نوجوانان را شب‌ها بیدار نگاه دارد علی‌رغم این که آن‌ها واقعاً می‌خواهند بخوابند. شب‌های کم خوابی (چه به علّت اختلال خواب و چه به علّت عدم تخصیص زمان کافی برای خواب)، در طول زمان رفته رفته به «نقص خواب» می‌انجامد. کسانی که دچار نقص خواب باشند قادر به تمرکز، مطالعه و کار مؤثر نیستند. آن‌ها همچنین در معرض خطر مشکلات هیجانی، نظیر افسردگی، قرار دارند.

در طول خواب چه اتفاقی می‌افتد؟[ویرایش]

شما البته متوجه نمی‌شوید امّا هنگامی که خواب هستید، مغزتان همچنان فعال است. هنگامی که فردی به خواب می‌رود مغزش از ۵ مرحله عبور می‌کند. این مراحل که به مراحل ۱، ۲، ۳، ۴ و REM (حرکات سریع و پرشی کره چشم) موسومند، روی هم رفته یک چرخه خواب را تشکیل می‌دهند. یک چرخه خواب کامل در حدود ۹۰ تا ۱۰۰ دقیقه به طول می‌انجامد. بنابراین، درخلال یک خواب شبانه، هر فرد به طور میانگین در حدود ۴ تا ۵ چرخه خواب را طی می‌کند. مراحل ۱ و ۲، دوره‌های خواب سبک هستند و در خلال این دو مرحله، فرد می‌تواند به آسانی بیدار شود. در خلال این مراحل، حرکت چشم‌ها آرام می‌شود و نهایتاً متوقف می‌گردد، ضربان قلب و آهنگ تنفس آرام می‌گیرد، و دمای بدن کاهش می‌یابد. مراحل ۳ و ۴، مراحل خواب عمیقند. بیدار کردن فردی که در این دو مرحله قرار دارد مشکل‌تر است و هنگامی که فرد بیدار شود غالباً برای چند دقیقه احساس ضعف و بیحالی و گیجی می‌کند. مراحل ۳ و ۴، نیروبخش‌ترین و سرحال‌آورترین مراحل خوابند- همین نوع خواب است که ما به هنگام خستگی نیازمند آنیم. مرحله آخر در چرخه خواب REM نام دارد و این نام به خاطر حرکات سریع کره چشم که در این مرحله اتفاق می‌افتد، روی آن گذاشته شده است. در خلال خواب REM، برخی تغییرات فیزیکی اتفاق می‌افتد: تنفس سریع‌تر می‌شود، ضربان قلب تندتر می‌شود، و عضلات دست و پا بی‌حرکت می‌گردند. در این مرحله خواب است که فرد واضح‌ترین و روشن‌ترین خواب را می‌بیند.

چرا نوجوانان مشکل خواب دارند؟[ویرایش]

پژوهش‌ها نشان می‌دهد که نوجوانان به ‎۸/۵ تا ۹ ساعت خواب شبانه نیاز دارند. بنابراین اگر کسی می‌خواهد صبح ساعت ۶ برای رفتن به مدرسه از خواب بیدار شود باید شب‌ها ساعت ۹ به رختخواب رود. امّا مطالعات نشان می‌دهد که بسیاری از نوجوانان برای این قدر زود خوابیدن دچار مشکل هستند. نه به دلیل آن که نمی‌خواهند بخوابند بلکه به دلیل این که مغزشان به طور طبیعی سرگرم کار است و برای به رختخواب رفتن آمادگی ندارد. در دوران بلوغ، ساعت بیولوژیک بدن تغییر می‌کند و به نوجوان می‌گوید که شب‌ها دیرتر بخوابد و صبح‌ها دیرتر بلند شود. این تغییر ظاهراً به این دلیل است که هورمون ملاتونین در نوجوانان نسبت به کودکان و بزرگسالان در ساعات دیرتر شب تولید می‌شود و این امر، به خواب رفتن نوجوانان را دشوارتر می‌سازد. به این پدیده سندروم (نشانگان) تأخیر در مراحل خواب گفته می‌شود. این عارضه با این که بسیار شایع است امّا بر روی همه نوجوانان اثر نمی‌گذارد. البته تغییرات در ساعت بدن، تنها دلیل مشکل خواب در نوجوانان نیست. بسیاری از مردم مشکل بیخوابی دارند. متداول‌ترین دلیل بیخوابی استرس است امّا دلایل دیگری نظیر ناراحتی‌های جسمی (مثل سردرد، گرفتگی بینی به هنگام سرماخوردگی)، مشکلات هیجانی (مثل مشکلات خانوادگی یا ارتباطی)، و حتی محیط خواب (مثل گرم بودن یا سرد بودن یا پر سروصدا بودن اتاق خواب) نیز برای آن وجود دارد. همه افراد ممکن است گاهی دچار بیخوابی شوند. امّا اگر بیخوابی به مدّت یک ماه یا بیشتر ادامه یابد، پزشکان آن را مزمن قلمداد می‌کنند. بیخوابی مزمن ممکن است بر اثر مشکلاتی از قبیل افسردگی پدید آید. کسانی که دچار بیخوابی مزمن باشند باید از پزشک، روان درمانگر و یا مشاور کمک بگیرند. برای برخی افراد، نگرانی در مورد بیخوابی می‌تواند وضعیت بیخوابی‌شان را خراب‌تر کند. یک دوره کوتاه بیخوابی ممکن است با مضطرب شدن فرد درباره این که خوابش نمی‌برد یا نگرانی درباره احساس خستگی در روز بعد، به یک پدیده طولانی مدّت تبدیل شود. پزشکان به این پدیده بیخوابی روانی- فیزیولوژیکی می‌گویند.

سندروم (نشانگان) پاهای بیقرار و اختلال حرکت دوره‌ای دست و پا[ویرایش]

کسانی که دچار این وضعیت‌ها باشند، به دلیل حرکت‌های پا (و در موارد کمتری، بازو) از خواب می‌پرند و به دلیل کمبود خواب، خسته و تحریک‌پذیر باقی می‌مانند. در اختلال حرکت دوره‌ای دست و پا (PLMD)، این گونه حرکت‌ها غیرارادی است و فرد کنترلی بر روی آن‌ها ندارد و غالباً از آن‌ها آگاه نیست. امّا درسندروم (نشانگان) پاهای بیقرار (RLS)، فرد نوعی حس فیزیکی، مثل خارش، سوزش یا جزجز در پاهای خود دارد. تنها راهی که فرد می‌تواند از این حس‌های مزاحم خلاصی یابد با حرکت دادن پاها (و در موارد اندکی، بازوها) است. پزشکان می‌توانند PLMD و RLS را درمان کنند. RLS معمولاً با رفع کمبود آهن در بدن از بین می‌رود. در بعضی موارد نیز به نوع دیگری از دارو درمانی نیاز می‌باشد.

آپنه بازدارنده خواب[ویرایش]

این اختلال خواب باعث می‌شود که فرد در حین خواب موقتاً (بیش از ۱۰ ثانیه) جریان تنفسش قطع گردد. یکی از دلایل شایع آپنه بازدارنده خواب، بزرگ شدن لوزه‌ها یا ورم لوزه‌هاست (بافت‌هایی که در مجرای ارتباط دهنده بینی و حلق قرار دارند.) داشتن اضافه وزن یا چاقی نیز می‌تواند باعث این نوع اختلال خواب گردد. کسانی که دچار آپنه بازدارنده خواب هستند معمولاً خروپف می‌کنند، مشکل تنفسی دارند و در طول خواب به شدّت عرق می‌کنند. به دلیل آن که این اختلال، مانع از خواب مداوم و کافی است، فردی که دچار آن باشد در طول روز به شدّت احساس خواب آلودگی و تحریک‌پذیری می‌کند. کسانی که نشانه‌های آپنه بازدارنده خواب، مثل خروپف بلند یا خواب آلودگی فزاینده در طول روز، داشته باشند باید توسط پزشک مورد معاینه و درمان قرار گیرند.

برگشت (ریفلاکس)[ویرایش]

بعضی افراد به بیماری برگشت اسید معده به مری (GERD) مبتلا هستند. این بیماری باعث نوعی حس سوزش و ناراحتی در بیمار می‌گردد که به «سوزش سر دل» یا ترش کردگی معروف است. عوارض GERD هنگامی که فرد دراز کشیده باشد ممکن است بدتر شود. حتی چنانچه فرد متوجه احساس سوزش سر دل به هنگام خواب نشود امّا ناراحتی‌هایی که توسط این بیماری ایجاد می‌شود می‌تواند با چرخه خواب تداخل نماید.

کابوس[ویرایش]

اغلب نوجوانان گاهی اوقات در خواب دچار کابوس می‌شوند امّا اگر تعداد دفعات کابوس دیدن زیاد باشد می‌تواند الگوهای خواب را به هم زند زیرا معمولاً باعث از خواب پریدن می‌گردد. برخی چیزها می‌تواند کابوس دیدن در خواب را تشدید کند که از آن جمله می‌توان به مصرف برخی داروها، الکل و مواد مخدّر اشاره کرد. و البته محرومیت از خواب کافی نیز خود می‌تواند عامل مهمی برای کابوس دیدن باشد. امّا شایع‌ترین عامل کابوس‌های شبانه، استرس یا اضطراب است. اگر کابوس‌ها شبانه با خواب شما تداخل دارد بهتر است با یک پزشک، روان‌درمانگر یا مشاور صحبت کنید.

راه رفتن در خواب[ویرایش]

راه رفتن در خواب معمولاً برای نوجوانان به ندرت اتفاق می‌افتد. اغلب کسانی که در خواب راه می‌روند را کودکان تشکیل می‌دهند. راه رفتن در خواب ممکن است زمینه خانوادگی داشته باشد. این پدیده غالباً هنگامی که فرد بیمار است، تب دارد، خواب کافی نداشته و یا استرس داشته باشد روی می‌دهد. از آنجا که راه رفتن در خواب معمولاً برای یک فرد زیاد اتفاق نمی‌افتد، غالباً به عنوان یک مشکل جدّی در نظر گرفته نمی‌شود. کسانی که در خواب راه می‌روند معمولاً خودشان به بستر باز می‌گردند و معمولاً راه رفتن خود در خواب را به یاد نمی‌آورند. راه رفتن در خواب غالباً در خلال مراحل عمیق خواب، بین مراحل ۳ و۴ چرخه خواب، صورت می‌گیرد. گاهی اوقات، این گونه افراد به کمک برای بازکردن راه (کنار گذاشتن موانع) و بازگشتن به بستر نیازمند خواهند بود. نکته قابل توجه این است که بیدار کردن کسی که در حال راه‌روی در خواب است باعث ترساندن او می‌شود. بنابراین بهتر است این افراد را به آرامی به سمت بستر هدایت کرد.

چکار باید کرد؟[ویرایش]

اگر شما به قدر کافی استراحت شبانه دارید ولی هنوز روزها احساس خستگی می‌کنید، بهتر است به پزشک مراجعه کنید. خستگی فزاینده و مفرط می‌تواند به دلیل انواع و اقسام مشکلات سلامتی، و نه تنها کمبود خواب، باشد. اگر پزشک به مشکل خواب مشکوک شود، سلامت کلّی و عادت‌های خواب شما را مورد نظر قرار خواهد داد. علاوه بر آزمایش‌های پزشکی، به سابقه پزشکی شما خواهد پرداخت و از شما سوالاتی درباره سابقه بیماری‌ها، داروهای مورد مصرف، بیماری‌های خانوادگی، حساسیت و از این قبیل خواهد پرسید. همچنین پزشک ممکن است به انجام آزمایش‌هایی بپردازد تا دریابد شرایطی مانند آپنه بازدارنده خواب با خواب شما تداخل دارد یا نه. مشکلات متفاوت خواب، درمان‌های متفاوتی دارند. برخی افراد با دارو و برخی با کمک روش‌های خاصی نظیر نوردرمانی (نشستن درمقابل یک منبع نور برای مدّت خاصی در هر روز) یا تمرین‌های دیگر، ساعت بدنشان قابل تنظیم مجدّد است. پزشکان معمولاً نوجوانان را تشویق می‌کنند که با تغییر سبک زندگی، به الگوها و عادت‌های بهتری برای خواب دست یابند. شما احتمالاً می‌دانید که مصرف کافئین می‌تواند شما را بیدار نگاه دارد امّا بسیاری از نوجوانان نمی‌دانند که انجام بازی‌های ویدیویی و تماشای تلویزیون قبل از خواب نیز می‌تواند همین اثر را داشته باشد.

منابع[ویرایش]

مشارکت‌کنندگان ویکی‌پدیا، «‎ NREM ‎»، ویکی‌پدیای انگلیسی، دانشنامهٔ آزاد.

This article is about sleep mostly in humans. For non-human sleep, see Sleep (non-human). For other uses, see Sleep (disambiguation).
"Waking up", "Asleep", and "Slept" redirect here. For other uses, see Waking Up (disambiguation), Asleep (disambiguation), or SLEPT analysis.
Sleeping is associated with a state of muscle relaxation and limited perception of environmental stimuli.

In animals, sleep is a naturally recurring state characterized by altered consciousness, relatively inhibited sensory activity, and inhibition of nearly all voluntary muscles.[1] It is distinguished from wakefulness by a decreased ability to react to stimuli, and it is more easily reversible than being in hibernation or a coma.

During sleep, most systems in an animal are in a heightened anabolic state, accentuating the growth and rejuvenation of the immune, nervous, skeletal, and muscular systems. Sleep in non-human animals is observed in mammals, birds, reptiles, amphibians, and fish, and in some form in insects and even in simpler animals such as nematodes, suggesting that sleep is universal in the animal kingdom.

The purposes and mechanisms of sleep are only partially clear and the subject of substantial ongoing research.[2] Sleep is sometimes thought to help conserve energy, though this theory is not fully adequate as it only decreases metabolism by about 5–10%.[3][4] Additionally it is observed that mammals require sleep even during the hypometabolic state of hibernation, in which circumstance it is actually a net loss of energy as the animal returns from hypothermia to euthermia in order to sleep.[5]

Humans may suffer from a number of sleep disorders. These include dyssomnias (such as insomnia, hypersomnia, and sleep apnea), parasomnias (such as sleepwalking and REM behavior disorder), and the circadian rhythm sleep disorders.

Physiology

Hypnogram showing sleep cycles from midnight to morning.
Hypnogram showing sleep cycles from midnight to 6.30 am, with deep sleep early on. There is more REM (marked red) before waking.

In mammals and birds, sleep is divided into two broad types: rapid eye movement (REM sleep) and non-rapid eye movement (NREM or non-REM sleep). Each type has a distinct set of physiological and neurological features associated with it. REM sleep is associated with the capability of dreaming.[6] The American Academy of Sleep Medicine (AASM) divides NREM into three stages: N1, N2, and N3, the last of which is also called delta sleep or slow-wave sleep.[7]

Stages

Further information: Neural oscillation
  • NREM stage 1: This is a stage between sleep and wakefulness. The muscles are active, and the eyes roll slowly, opening and closing moderately.
  • NREM stage 3: Formerly divided into stages 3 and 4, this stage is called slow-wave sleep (SWS). SWS is initiated in the preoptic area and consists of delta activity, high amplitude waves at less than 3.5 Hz. The sleeper is less responsive to the environment; many environmental stimuli no longer produce any reactions.
  • REM: The sleeper now enters rapid eye movement (REM) where most muscles are paralyzed. REM sleep is turned on by acetylcholine secretion and is inhibited by neurons that secrete serotonin. This level is also referred to as paradoxical sleep because the sleeper, although exhibiting EEG waves similar to a waking state, is harder to arouse than at any other sleep stage. Vital signs indicate arousal and oxygen consumption by the brain is higher than when the sleeper is awake.[9] An adult reaches REM approximately every 90 minutes, with the latter half of sleep being more dominated by this stage. REM sleep occurs as a person returns to stage 1 from a deep sleep.[6] The function of REM sleep is uncertain but a lack of it impairs the ability to learn complex tasks. One approach to understanding the role of sleep is to study the deprivation of it.[10] During this period, the EEG pattern returns to high-frequency waves that look similar to the waves produced while the person is awake.[8]
30 seconds of deep (stage N3) sleep.
A screenshot of a PSG of a person in REM sleep. Eye movements highlighted by red box.

Sleep proceeds in cycles of REM and NREM, usually four or five of them per night, the order normally being N1 → N2 → N3 → N2 → REM. There is a greater amount of deep sleep (stage N3) earlier in the night, while the proportion of REM sleep increases in the two cycles just before natural awakening.

The stages of sleep were first described in 1937 by Alfred Lee Loomis and his coworkers, who separated the different electroencephalography (EEG) features of sleep into five levels (A to E), which represented the spectrum from wakefulness to deep sleep.[11] In 1953, REM sleep was discovered as distinct, and thus William Dement and Nathaniel Kleitman reclassified sleep into four NREM stages and REM.[12] The staging criteria were standardized in 1968 by Allan Rechtschaffen and Anthony Kales in the "R&K sleep scoring manual."[13]

In the R&K standard, NREM sleep was divided into four stages, with slow-wave sleep comprising stages 3 and 4. In stage 3, delta waves made up less than 50% of the total wave patterns, while they made up more than 50% in stage 4. Furthermore, REM sleep was sometimes referred to as stage 5.

In 2004, the AASM commissioned the AASM Visual Scoring Task Force to review the R&K scoring system. The review resulted in several changes, the most significant being the combination of stages 3 and 4 into Stage N3. The revised scoring was published in 2007 as The AASM Manual for the Scoring of Sleep and Associated Events.[14] Arousals and respiratory, cardiac, and movement events were also added.[15][16]

Sleep stages and other characteristics of sleep are commonly assessed by polysomnography in a specialized sleep laboratory. Measurements taken include EEG of brain waves, electrooculography (EOG) of eye movements, and electromyography (EMG) of skeletal muscle activity. In humans, the average length of the first sleep cycle is approximately 90 minutes and 100 to 120 minutes from the second to the fourth cycle, which is usually the last one.[17] Each stage may have a distinct physiological function and this can result in sleep that exhibits loss of consciousness but does not fulfill its physiological functions (i.e., one may still feel tired after apparently sufficient sleep).

Scientific studies on sleep have shown that sleep stage at awakening is an important factor in amplifying sleep inertia.[citation needed] Alarm clocks involving sleep stage monitoring appeared on the market in 2005.[18] Using sensing technologies such as EEG electrodes or accelerometers, these alarm clocks are supposed to wake people only from light sleep.

NREM sleep

According to 2007 AASM standards, NREM consists of three stages. There is relatively little dreaming in NREM.

Stage N1 refers to the transition of the brain from alpha waves having a frequency of 8–13 Hz (common in the awake state) to theta waves having a frequency of 4–7 Hz. This stage is sometimes referred to as somnolence or drowsy sleep. Sudden twitches and hypnic jerks, also known as positive myoclonus, may be associated with the onset of sleep during N1. Some people may also experience hypnagogic hallucinations during this stage. During N1, the subject loses some muscle tone and most conscious awareness of the external environment.

Stage N2 is characterized by sleep spindles ranging from 11 to 16 Hz (most commonly 12–14 Hz) and K-complexes. During this stage, muscular activity as measured by EMG decreases, and conscious awareness of the external environment disappears. This stage occupies 45–55% of total sleep in adults.

Stage N3 (deep or slow-wave sleep) is characterized by the presence of a minimum of 20% delta waves ranging from 0.5–2 Hz and having a peak-to-peak amplitude >75 μV. (EEG standards define delta waves to be from 0 to 4 Hz, but sleep standards in both the original R&K, as well as the new 2007 AASM guidelines have a range of 0.5–2 Hz.) This is the stage in which parasomnias such as night terrors, nocturnal enuresis, sleepwalking, and somniloquy occur. Many illustrations and descriptions still show a stage N3 with 20–50% delta waves and a stage N4 with greater than 50% delta waves; these have been combined as stage N3.

REM sleep

Rapid eye movement sleep, or REM sleep (also known as paradoxical sleep),[19] accounts for 20–25% of total sleep time in most human adults. The criteria for REM sleep include rapid eye movements as well as a rapid low-voltage EEG. During REM sleep, EEG patterns returns to higher frequency saw-tooth waves. Most memorable dreaming occurs in this stage. At least in mammals, a descending muscular atonia is seen. Such paralysis may be necessary to protect organisms from self-damage through physically acting out scenes from the often-vivid dreams that occur during this stage.[citation needed]

Timing

Main article: Circadian rhythm
The human "biological clock"

Sleep timing is controlled by the circadian clock, sleep-wake homeostasis, and in humans, within certain bounds, willed behavior. The circadian clock—an inner timekeeping, temperature-fluctuating, enzyme-controlling device—works in tandem with adenosine, a neurotransmitter that inhibits many of the bodily processes associated with wakefulness. Adenosine is created over the course of the day; high levels of adenosine lead to sleepiness.[20]

In diurnal animals, sleepiness occurs as the circadian element causes the release of the hormone melatonin and a gradual decrease in core body temperature. The timing is affected by one's chronotype. It is the circadian rhythm that determines the ideal timing of a correctly structured and restorative sleep episode.[21]

Homeostatic sleep propensity (the need for sleep as a function of the amount of time elapsed since the last adequate sleep episode) must be balanced against the circadian element for satisfactory sleep.[22] Along with corresponding messages from the circadian clock, this tells the body it needs to sleep.[23] Sleep offset (awakening) is primarily determined by circadian rhythm. A person who regularly awakens at an early hour will generally not be able to sleep much later than his or her normal waking time, even if moderately sleep-deprived[citation needed].

Sleep duration is affected by the gene DEC2. People with a certain DEC2 mutation sleep two hours less than normal. The gene also affects the sleep patterns of mice, and likely does so for all mammals.[24][25]

Optimal amount in humans

Adults

The main health effects of sleep deprivation,[26] indicating impairment of normal maintenance by sleep.

The optimal amount of sleep is not a meaningful concept unless the timing of that sleep is seen in relation to an individual's circadian rhythms. A person's major sleep episode is relatively inefficient and inadequate when it occurs at the "wrong" time of day; one should be asleep at least six hours before the lowest body temperature.[27] The timing is correct when the following two circadian markers occur after the middle of the sleep episode and before awakening:[28] maximum concentration of the hormone melatonin, and minimum core body temperature.

Human sleep needs vary by age and amongst individuals, and sleep is considered to be adequate when there is no daytime sleepiness or dysfunction. Moreover, self-reported sleep duration is only moderately correlated with actual sleep time as measured by actigraphy,[29] and those affected with sleep state misperception may typically report having slept only four hours despite having slept a full eight hours.[30]

A University of California, San Diego psychiatry study of more than one million adults found that people who live the longest self-report sleeping for six to seven hours each night.[31] Another study of sleep duration and mortality risk in women showed similar results.[32] Other studies show that "sleeping more than 7 to 8 hours per day has been consistently associated with increased mortality," though this study suggests the cause is probably other factors such as depression and socioeconomic status, which would correlate statistically.[33] It has been suggested that the correlation between lower sleep hours and reduced morbidity only occurs with those who wake naturally, rather than those who use an alarm.[citation needed]

Researchers at the University of Warwick and University College London have found that lack of sleep can more than double the risk of death from cardiovascular disease, but that too much sleep can also be associated with a doubling of the risk of death, though not primarily from cardiovascular disease.[34]

Professor Francesco Cappuccio said, "Short sleep has been shown to be a risk factor for weight gain, hypertension, and Type 2 diabetes, sometimes leading to mortality; but in contrast to the short sleep-mortality association, it appears that no potential mechanisms by which long sleep could be associated with increased mortality have yet been investigated. Some candidate causes for this include depression, low socioeconomic status, and cancer-related fatigue... In terms of prevention, our findings indicate that consistently sleeping around seven hours per night is optimal for health, and a sustained reduction may predispose to ill health."

Furthermore, sleep difficulties are closely associated with psychiatric disorders such as depression, alcoholism, and bipolar disorder.[35] Up to 90% of adults with depression are found to have sleep difficulties. Dysregulation found on EEG includes disturbances in sleep continuity, decreased delta sleep and altered REM patterns with regard to latency, distribution across the night and density of eye movements.[36]

Children

By the time infants reach the age of two, their brain size has reached 90 per cent of an adult-sized brain;[37] a majority of this brain growth has occurred during the period of life with the highest rate of sleep. The hours that children spend asleep influence their ability to perform on cognitive tasks.[38][39] Children who sleep through the night and have few night waking episodes have higher cognitive attainments and easier temperaments than other children.[39][40][41]

Sleep also influences language development. To test this, researchers taught infants a faux language and observed their recollection of the rules for that language.[42] Infants who slept within four hours of learning the language could remember the language rules better, while infants who stayed awake longer did not recall those rules as well. There is also a relationship between infants' vocabulary and sleeping;[41] infants who sleep longer at night at 12 months have better vocabularies at 26 months.[41]

Hours required by age

Children need more sleep per day in order to develop and function properly: up to 18 hours for newborn babies, with a declining rate as a child ages.[23] A newborn baby spends almost 9 hours a day in REM sleep. By the age of five or so, only slightly over two hours is spent in REM. Studies say that school age children need about 10 to 11 hours of sleep.[43]

Age and condition Sleep Needs
Newborns (0–2 months) 12 to 18 hours[44]
Infants (3–11 months) 14 to 15 hours[44]
Toddlers (1–3 years) 12 to 14 hours[44]
Preschoolers (3–5 years) 11 to 13 hours[44]
School-age children (5–10 years) 10 to 11 hours[44]
Adolescents (10–17 years) 8.5 to 9.25 hours[44][45]
Adults, including elderly 7 to 9 hours[44]

Naps

People sleeping on a train at night
Main article: Nap

The siesta habit has recently been associated with a 37% reduction in coronary mortality, possibly due to reduced cardiovascular stress mediated by daytime sleep.[46] Nevertheless, epidemiological studies on the relations between cardiovascular health and siestas have led to conflicting conclusions, possibly because of poor control of moderator variables, such as physical activity. It is possible that people who take siestas have different physical activity habits, e.g., waking earlier and scheduling more activity during the morning. Such differences in physical activity may mediate different 24-hour profiles in cardiovascular function. Even if such effects of physical activity can be discounted for explaining the relationship between siestas and cardiovascular health, it is still unknown whether it is the daytime nap itself, a supine posture, or the expectancy of a nap that is the most important factor. It was recently suggested that a short nap can reduce stress and blood pressure (BP), with the main changes in BP occurring between the time of lights off and the onset of stage 1.[47][48]

Dr. Zaregarizi and his team have concluded that the acute time of falling asleep was when beneficial cardiovascular changes take place. This study has indicated that a large decline in BP occurs during the daytime sleep-onset period only when sleep is expected. However, when subjects rest in a supine position, the same reduction in BP is not observed. This BP reduction may be associated with the lower coronary mortality rates seen in Mediterranean and Latin American populations in which siestas are common. Dr. Zaregarizi assessed cardiovascular function (BP, heart rate, and measurements of blood vessel dilation) while nine healthy volunteers, 34 years of age on average, spent an hour standing quietly, reclining at rest but not sleeping, or reclining to nap. All participants were restricted to 4 hours of sleep on the night prior to each of the sleep laboratory tests. During the three phases of daytime sleep, he noted significant reductions in BP and heart rate. By contrast, they did not observe changes in cardiovascular function while the participants were standing or reclining at rest. These findings also show that the greatest decline in BP occurs between lights-off and onset of daytime sleep itself.

During this sleep period, which lasted 9.7 minutes on average, BP decreased, while blood vessel dilation increased by more than 9 percent.

“There is little change in blood pressure once a subject is actually asleep," Dr. Zaregarizi noted, and he found minor changes in blood vessel dilation during sleep.[47][48]

Sleep duration in long-term experienced meditators is lower than in non-meditators and general population norms, with no apparent decrements in vigilance.[49]

Sleep debt

Main article: Sleep debt

Sleep debt is the effect of not getting enough sleep; a large debt causes mental, emotional and physical fatigue.[citation needed]

Sleep debt results in diminished abilities to perform high-level cognitive functions. Neurophysiological and functional imaging studies have demonstrated that frontal regions of the brain are particularly responsive to homeostatic sleep pressure.[50]

Scientists do not agree on how much sleep debt it is possible to accumulate; whether it is accumulated against an individual's average sleep or some other benchmark; nor on whether the prevalence of sleep debt among adults has changed appreciably in the industrialized world in recent decades. It is likely that children are sleeping less than previously in Western societies.[51]

Genetics

It is hypothesized that a considerable amount of sleep-related behavior, such as when and how long a person needs to sleep, is regulated by genetics. Researchers have discovered some evidence that seems to support this assumption.[52] ABCC9 is one gene found which influences the duration of human sleep.[53]

Functions

The multiple hypotheses proposed to explain the function of sleep reflect the incomplete understanding of the subject. (When asked, after 50 years of research, what he knew about the reason people sleep, William Dement, founder of Stanford University's Sleep Research Center, answered, "As far as I know, the only reason we need to sleep that is really, really solid is because we get sleepy.")[54] It is likely that sleep evolved to fulfill some primeval function and took on multiple functions over time[citation needed] (analogous to the larynx, which controls the passage of food and air, but descended over time to develop speech capabilities).

If sleep were not essential, one would expect to find:

  • Animal species that do not sleep at all
  • Animals that do not need recovery sleep after staying awake longer than usual
  • Animals that suffer no serious consequences as a result of lack of sleep

Outside of a few basal animals that have no brain or a very simple one, no animals have been found to date that satisfy any of these criteria.[55] While some varieties of shark, such as great whites and hammerheads, must remain in motion at all times to move oxygenated water over their gills, it is possible they still sleep one cerebral hemisphere at a time as marine mammals do. However it remains to be shown definitively whether any fish is capable of unihemispheric sleep.

Some of the many proposed functions of sleep are as follows:

Increased waste clearance of brain

A publication by L. Xie and colleagues in 2013 explored the efficiency of the glymphatic system during sleep and provided the first direct evidence that the clearance of interstitial waste products increases during the resting state. Using a combination of diffusion ionophoresis techniques pioneered by Nicholson and colleagues, in vivo 2-photon imaging, and electroencephalography to confirm the wake and sleep states, Xia and Nedergaard demonstrated that the changes in efficiency of CSF–ISF exchange between the awake and sleeping brain were caused by expansion and contraction of the extracellular space, which increased by ~60% in the sleeping brain to promote clearance of interstitial wastes such as amyloid beta.[56] On the basis of these findings, they hypothesized that the restorative properties of sleep may be linked to increased glymphatic clearance of metabolic waste products produced by neural activity in the awake brain.

Restoration

Wound healing has been shown to be affected by sleep. Sleep deprivation hinders the healing of burns on rats.[57]

It has been shown that sleep deprivation affects the immune system. When compared with a control group, sleep-deprived rats' blood tests indicated a 20% decrease in white blood cell count, a significant change in the immune system.[58] It is now possible to state that "sleep loss impairs immune function and immune challenge alters sleep," and it has been suggested that mammalian species which invest in longer sleep times are investing in the immune system, as species with the longer sleep times have higher white blood cell counts.[59] A 2014 study found that depriving mice of sleep increased cancer growth and dampened the immune system's ability to control cancers. The researchers found higher levels of M2 tumor-associated macrophages and TLR4 molecules in the sleep deprived mice and proposed this as the mechanism for increased susceptibility of the mice to cancer growth. M2 cells suppress the immune system and encourage tumour growth. TRL4 molecules are signalling molecules in the activation of the immune system.[60] Sleep has also been theorized to effectively combat the accumulation of free radicals in the brain, by increasing the efficiency of endogeneous antioxidant mechanisms.[61]

The effect of sleep duration on somatic growth is not completely known. One study recorded growth, height, and weight, as correlated to parent-reported time in bed in 305 children over a period of nine years (age 1–10). It was found that "the variation of sleep duration among children does not seem to have an effect on growth."[62] It has been shown that sleep—more specifically, slow-wave sleep (SWS)—does affect growth hormone levels in adult men. During eight hours' sleep, Van Cauter, Leproult, and Plat[63] found that the men with a high percentage of SWS (average 24%) also had high growth hormone secretion, while subjects with a low percentage of SWS (average 9%) had low growth hormone secretion.

There is some supporting evidence of the restorative function of sleep. The sleeping brain has been shown to remove metabolic waste products at a faster rate than during an awake state.[64] While awake, metabolism generates reactive oxygen species, which are damaging to cells. In sleep, metabolic rates decrease and reactive oxygen species generation is reduced allowing restorative processes to take over. It is theorized that sleep helps facilitate the synthesis of molecules that help repair and protect the brain from these harmful elements generated during waking.[65] The metabolic phase during sleep is anabolic; anabolic hormones such as growth hormones (as mentioned above) are secreted preferentially during sleep. The duration of sleep among species is, broadly speaking, inversely related to animal size[citation needed] and directly related to basal metabolic rate (BMR). Rats, which have a high BMR, sleep for up to 14 hours a day, whereas elephants and giraffes, which have lower BMRs, sleep only 3–4 hours per day.

Energy conservation could as well have been accomplished by resting quiescent without shutting off the organism from the environment, potentially a dangerous situation. A sedentary nonsleeping animal is more likely to survive predators, while still preserving energy. Sleep, therefore, seems to serve another purpose, or other purposes, than simply conserving energy; for example, hibernating animals waking up from hibernation go into rebound sleep because of lack of sleep during the hibernation period. They are definitely well-rested and are conserving energy during hibernation, but need sleep for something else.[5] Rats kept awake indefinitely develop skin lesions, hyperphagia, loss of body mass, hypothermia, and, eventually, fatal sepsis.[66]

Another potential purpose for sleep could be to restore signal strength in synapses that are activated while awake to a "baseline" level, weakening unnecessary connections to better facilitate learning and memory functions again the next day.[67]

Ontogenesis

According to the ontogenetic hypothesis of REM sleep, the activity occurring during neonatal REM sleep (or active sleep) seems to be particularly important to the developing organism.[68] Studies investigating the effects of deprivation of active sleep have shown that deprivation early in life can result in behavioral problems, permanent sleep disruption, decreased brain mass,[69] and an abnormal amount of neuronal cell death.[70]

REM sleep appears to be important for development of the brain. REM sleep occupies the majority of time of sleep of infants, who spend most of their time sleeping. Among different species, the more immature the baby is born, the more time it spends in REM sleep. Proponents also suggest that REM-induced muscle inhibition in the presence of brain activation exists to allow for brain development by activating the synapses, yet without any motor consequences that may get the infant in trouble. Additionally, REM deprivation results in developmental abnormalities later in life.

However, this does not explain why older adults still need REM sleep. Aquatic mammal infants do not have REM sleep in infancy;[71] REM sleep in those animals increases as they age.

Memory processing

Scientists have shown numerous ways in which sleep is related to memory. In a study conducted by Turner, Drummond, Salamat, and Brown (2007),[72] working memory was shown to be affected by sleep deprivation. Working memory is important because it keeps information active for further processing and supports higher-level cognitive functions such as decision making, reasoning, and episodic memory. The study allowed 18 women and 22 men to sleep only 26 minutes per night over a four-day period. Subjects were given initial cognitive tests while well-rested, and then were tested again twice a day during the four days of sleep deprivation. On the final test, the average working memory span of the sleep-deprived group had dropped by 38% in comparison to the control group.

The relation between working memory and sleep can also be explored by testing how working memory works during sleep. Daltrozzo, Claude, Tillmann, Bastuji, Perrin,[73] using Event-Related Potentials to the perception of sentences during sleep showed that working memory for linguistic information is partially preserved during sleep with a smaller capacity compared to wake.

Memory seems to be affected differently by certain stages of sleep such as REM and slow-wave sleep (SWS). In one study,[74] multiple groups of human subjects were used: wake control groups and sleep test groups. Sleep and wake groups were taught a task and were then tested on it, both on early and late nights, with the order of nights balanced across participants. When the subjects' brains were scanned during sleep, hypnograms revealed that SWS was the dominant sleep stage during the early night, representing around 23% on average for sleep stage activity.

The early-night test group performed 16% better on the declarative memory test than the control group. During late-night sleep, REM became the most active sleep stage at about 24%, and the late-night test group performed 25% better on the procedural memory test than the control group. This suggests that procedural memory benefits from late, REM-rich sleep, whereas declarative memory benefits from early, slow wave-rich sleep.

A study conducted by Datta[75] indirectly supports these results. The subjects chosen were 22 male rats. A box was constructed wherein a single rat could move freely from one end to the other. The bottom of the box was made of a steel grate. A light would shine in the box accompanied by a sound. After a five-second delay, an electrical shock would be applied. Once the shock commenced, the rat could move to the other end of the box, ending the shock immediately. The rat could also use the five-second delay to move to the other end of the box and avoid the shock entirely.

The length of the shock never exceeded five seconds. This was repeated 30 times for half the rats. The other half, the control group, was placed in the same trial, but the rats were shocked regardless of their reaction. After each of the training sessions, the rat would be placed in a recording cage for six hours of polygraphic recordings.

This process was repeated for three consecutive days. This study found that during the posttrial sleep recording session, rats spent 25.47% more time in REM sleep after learning trials than after control trials. These trials support the results of the Born et al. study, suggesting a correlation between REM sleep and procedural knowledge.

An observation of the Datta study is that the learning group spent 180% more time in SWS than did the control group during the post-trial sleep-recording session.[76] This study shows that after spatial exploration activity, patterns of hippocampal place cells are reactivated during SWS following the experiment. Rats were run through a linear track using rewards on either end. The rats would then be placed in the track for 30 minutes to allow them to adjust (PRE), then they ran the track with reward-based training for 30 minutes (RUN), and then they were allowed to rest for 30 minutes.

During each of these three periods, EEG data were collected for information on the rats' sleep stages. The mean firing rates of hippocampal place cells during prebehavior SWS (PRE) and three ten-minute intervals in postbehavior SWS (POST) were calculated by averaging across 22 track-running sessions from seven rats. The results showed that ten minutes after the trial RUN session, there was a 12% increase in the mean firing rate of hippocampal place cells from the PRE level. After 20 minutes, the mean firing rate returned rapidly toward the PRE level. The elevated firing of hippocampal place cells during SWS after spatial exploration could explain why there were elevated levels of slow-wave sleep in Datta's study, as it also dealt with a form of spatial exploration.

A study has also been done involving direct current stimulation to the prefrontal cortex to increase the amount of slow oscillations during SWS. The direct current stimulation greatly enhanced word-pair retention the following day, giving evidence that SWS plays a large role in the consolidation of episodic memories.[77]

The different studies suggest that there is a correlation between sleep and the complex functions of memory. Harvard sleep researchers Saper[78] and Stickgold[79] point out that an essential part of memory and learning consists of nerve cell dendrites' sending of information to the cell body to be organized into new neuronal connections. This process demands that no external information is presented to these dendrites, and it is suggested that this may be why it is during sleep that memories and knowledge are solidified and organized.

Recent studies examining gene expression and evolutionary increases in brain size offer complimentary support for the role of sleep in the mammalian memory consolidation theory. Evolutionary advances in the size of the mammalian amygdala, (a brain structure active during sleep and involved in memory processing), are also associated with increases in NREM sleep durations.[80] Likewise, nighttime gene expression differs from daytime expression and specifically targets genes thought to be involved in memory consolidation and brain plasticity.[81]

Preservation

The "Preservation and Protection" theory holds that sleep serves an adaptive function. It protects the animal during that portion of the 24-hour day in which being awake, and hence roaming around, would place the individual at greatest risk.[82] Organisms do not require 24 hours to feed themselves and meet other necessities. From this perspective of adaptation, organisms are safer by staying out of harm's way, where potentially they could be prey to other, stronger organisms. They sleep at times that maximize their safety, given their physical capacities and their habitats.

This theory fails to explain why the brain disengages from the external environment during normal sleep. However, the brain consumes a large proportion of the body's energy at any one time and preservation of energy could only occur by limiting its sensory inputs. Another argument against the theory is that sleep is not simply a passive consequence of removing the animal from the environment, but is a "drive"; animals alter their behaviors in order to obtain sleep.

Therefore, circadian regulation is more than sufficient to explain periods of activity and quiescence that are adaptive to an organism, but the more peculiar specializations of sleep probably serve different and unknown functions. Moreover, the preservation theory needs to explain why carnivores like lions, which are on top of the food chain and thus have little to fear, sleep the most. It has been suggested that they need to minimize energy expenditure when not hunting.

Preservation also does not explain why aquatic mammals sleep while moving. Quiescence during these vulnerable hours would do the same and would be more advantageous, because the animal would still be able to respond to environmental challenges like predators, etc. Sleep rebound that occurs after a sleepless night will be maladaptive, but obviously must occur for a reason. A zebra falling asleep the day after it spent the sleeping time running from a lion is more, not less, vulnerable to predation.

Dreaming

Main article: Dream
Bronze statue of Eros sleeping, 3rd century BC–early 1st century AD

Dreaming is the perceived experience of sensory images and sounds during sleep, in a sequence which the dreamer usually perceives more as an apparent participant than as an observer. Dreaming is stimulated by the pons and mostly occurs during the REM phase of sleep.

As Dement studied, he found out that people need REM, or dreaming, sleep. He conducted a sleep and dream research project, in which the first eight of his participants were published in the article he wrote. All eight were male. For a maximum span of a 7 days, he varyingly deprived the participants of strictly REM sleep by waking them each time they started to enter the stage. He monitored this with small electrodes attached to their scalp and temples. As the study went on, he noticed that the more he deprived them of REM sleep, the more often he had to wake the men.[83]

Dreams can also be suppressed or encouraged; using anti-depressants, acetaminophen, ibuprofen, or alcoholic beverages is thought to potentially suppress dreams, whereas melatonin may have the ability to encourage them.[84]

People have proposed many hypotheses about the functions of dreaming. Sigmund Freud postulated that dreams are the symbolic expression of frustrated desires that have been relegated to the unconscious mind, and he used dream interpretation in the form of psychoanalysis to uncover these desires. See Freud: The Interpretation of Dreams.

While penile erections during sleep are commonly believed to indicate dreams with sexual content, they are not more frequent during sexual dreams than they are during nonsexual dreams.[85] The parasympathetic nervous system experiences increased activity during REM sleep which may cause erection of the penis or clitoris. In males, 80% to 95% of erection accompanies REM sleep while only about 12% of men's dreams contain sexual content.[9]

Freud's work concerns the psychological role of dreams, which does not exclude any physiological role they may have. Recent research[86] claims that sleep has the overall role of consolidation and organization of synaptic connections formed during learning and experience. As such, Freud's work is not ruled out. Nevertheless, Freud's research has been expanded on, especially with regard to the organization and consolidation of recent memory.

Certain processes in the cerebral cortex have been studied by John Allan Hobson and Robert McCarley. In their activation synthesis theory, for example, they propose that dreams are caused by the random firing of neurons in the cerebral cortex during the REM period. Neatly, this theory helps explain the irrationality of the mind during REM periods, as, according to this theory, the forebrain then creates a story in an attempt to reconcile and make sense of the nonsensical sensory information presented to it.[87] Ergo, the odd nature of many dreams.

Evolution

According to Tsoukalas (2012) REM sleep is an evolutionary transformation of a well-known defensive mechanism, the tonic immobility reflex. This reflex, also known as animal hypnosis or death feigning, functions as the last line of defense against an attacking predator and consists of the total immobilization of the animal: the animal appears dead (cf. “playing possum”). The neurophysiology and phenomenology of this reaction shows striking similarities to REM sleep, a fact which betrays a deep evolutionary kinship. For example, both reactions exhibit brainstem control, paralysis, sympathetic activation, and thermoregulatory changes. This theory integrates many earlier findings into a unified, and evolutionary well informed, framework.[88][89]

Mammals, birds and reptiles evolved from amniotic ancestors, the first vertebrates with life cycles independent of water. The fact that birds and mammals are the only known animals to exhibit REM and NREM sleep indicates a common trait before divergence.[90] Reptiles are therefore the most logical group to investigate the origins of sleep. Daytime activity in reptiles alternates between basking and short bouts of active behavior, which has significant neurological and physiological similarities to sleep states in mammals. It is proposed that REM sleep evolved from short bouts of motor activity in reptiles while SWS evolved from their basking state which shows similar slow wave EEG patterns.[91]

Early mammals engaged in polyphasic sleep, dividing sleep into multiple bouts per day. What then explains monophasic sleep behavior widely observed in mammals today? Higher daily sleep quotas and shorter sleep cycles in polyphasic species as compared to monophasic species, suggest that polyphasic sleep may be a less efficient means of attaining sleep’s benefits. Small species with higher BMR may therefore have less efficient sleep patterns. It follows that the evolution of monophasic sleep may hitherto be an unknown advantage of evolving larger mammalian body sizes and therefore lower BMR.[92]

Insomnia

Insomnia, a dyssomnia, is a general term describing difficulty falling asleep and staying asleep. Insomnia can have many different causes, including psychological stress, a poor sleep environment, an inconsistent sleep schedule, or excessive mental or physical stimulation in the hours before bedtime. Insomnia is often treated through behavioral changes like keeping a regular sleep schedule, avoiding stimulating or stressful activities before bedtime, and cutting down on stimulants such as caffeine. The sleep environment may be improved by installing heavy drapes to shut out all sunlight, and keeping computers, televisions and work materials out of the sleeping area.

A 2010 review of published scientific research suggested that exercise generally improves sleep for most people, and helps sleep disorders such as insomnia. The optimum time to exercise may be 4 to 8 hours before bedtime, though exercise at any time of day is beneficial, with the exception of heavy exercise taken shortly before bedtime, which may disturb sleep. However there is insufficient evidence to draw detailed conclusions about the relationship between exercise and sleep.[93]

Sleeping medications such as Ambien and Lunesta are an increasingly popular treatment for insomnia, and have become a major source of revenue for drug companies. Although these nonbenzodiazepine medications are generally believed to be better and safer than earlier generations of sedatives, they have still generated some controversy and discussion regarding side-effects.

White noise appears to be a promising treatment for insomnia.[94]

Obstructive sleep apnea

Obstructive sleep apnea is a condition in which major pauses in breathing occur during sleep, disrupting the normal progression of sleep and often causing other more severe health problems. Apneas occur when the muscles around the patient's airway relax during sleep, causing the airway to collapse and block the intake of oxygen. As oxygen levels in the blood drop, the patient then comes out of deep sleep in order to resume breathing. When several of these episodes occur per hour, sleep apnea rises to a level of seriousness that may require treatment.

Diagnosing sleep apnea usually requires a professional sleep study performed in a sleep clinic, because the episodes of wakefulness caused by the disorder are extremely brief and patients usually do not remember experiencing them. Instead, many patients simply feel tired after getting several hours of sleep and have no idea why. Major risk factors for sleep apnea include chronic fatigue, old age, obesity and snoring.

Other sleep disorders

Sleep disorders include narcolepsy, periodic limb movement disorder (PLMD), restless leg syndrome (RLS), upper airway resistance syndrome (UARS), and the circadian rhythm sleep disorders. Fatal familial insomnia, or FFI, is an extremely rare genetic disease with no known treatment or cure, is characterized by increasing insomnia as one of its symptoms; ultimately sufferers of the disease stop sleeping entirely, before dying of the disease.[54]

Somnambulism, known as sleep walking, is also a common sleeping disorder, especially among children. In somnambulism the individual gets up from his/her sleep and wanders around while still sleeping.[95]

Older people may be more easily awakened by disturbances in the environment[96] and may to some degree lose the ability to consolidate sleep.

Effect of food and drugs on sleep

Hypnotics

  • Nonbenzodiazepine hypnotics such as eszopiclone (Lunesta), zaleplon (Sonata), and zolpidem (Ambien) are commonly used as sleep aids prescribed by doctors to treat forms of insomnia. Nonbenzodiazepines are the most commonly prescribed and OTC sleep aids used worldwide and have been greatly growing in use since the 1990s. They target the GABAA receptor.
  • Benzodiazepines target the GABAA receptor also, and as such, they are commonly used sleep aids as well, though benzodiazepines have been found to decrease REM sleep.[97]
  • Alcohol – Often, people start drinking alcohol in order to get to sleep (alcohol is initially a sedative and will cause somnolence, encouraging sleep).[98] However, being addicted to alcohol can lead to disrupted sleep, because alcohol has a rebound effect later in the night. As a result, there is strong evidence linking alcoholism and forms of insomnia.[99] Alcohol also reduces REM sleep.[97]
  • Barbiturates cause drowsiness and have actions similar to alcohol in that they have a rebound effect and inhibit REM sleep, so they are not used as a long-term sleep aid.[100]
  • Melatonin is a naturally occurring hormone that regulates sleepiness. It is made in the brain, where tryptophan is converted into serotonin and then into melatonin, which is released at night by the pineal gland to induce and maintain sleep. Melatonin supplementation may be used as a sleep aid, both as a hypnotic and as a chronobiotic (see phase response curve, PRC).
  • Siesta and the "post-lunch dip" – Many people have a temporary drop in alertness in the early afternoon, commonly known as the "post-lunch dip." While a large meal can make a person feel sleepy, the post-lunch dip is mostly an effect of the biological clock. People naturally feel most sleepy (have the greatest "drive for sleep") at two times of the day about 12 hours apart—for example, at 2:00 a.m. and 2:00 p.m. At those two times, the body clock "kicks in." At about 2 p.m. (14:00), it overrides the homeostatic buildup of sleep debt, allowing several more hours of wakefulness. At about 2 a.m. (02:00), with the daily sleep debt paid off, it "kicks in" again to ensure a few more hours of sleep.
  • Tryptophan – The amino acid tryptophan is a building block of proteins. It has been claimed to contribute to sleepiness, since it is a precursor of the neurotransmitter serotonin, involved in sleep regulation. However, no solid data have ever linked modest dietary changes in tryptophan to changes in sleep.
  • Marijuana – Some people use marijuana to induce sleepiness. Users often report relaxation and drowsiness. It has been shown that Tetrahydrocannabinol, the principal psychoactive constituent in marijuana, reduces the amount of REM sleep.[101] Frequent users often report being unable to recall their dreams.

Stimulants

  • Caffeine is a stimulant that works by slowing the action of the hormones in the brain that cause somnolence, particularly by acting as an antagonist at adenosine receptors. Effective dosage is individual, in part dependent on prior usage. It can cause a rapid reduction in alertness as it wears off.
  • Cocaine and crack cocaine – Studies on cocaine have shown its effects to be mediated through the circadian rhythm system.[102] This may be related to the onset of hypersomnia (oversleeping) in regard to "cocaine-induced sleep disorder."[103]
  • Methylphenidate – Commonly known by the brand names Ritalin and Concerta, methylphenidate is similar in action to amphetamine and cocaine; its chemical composition more closely resembles that of cocaine.
  • Tobacco – Tobacco has been found not only to disrupt but also to reduce total sleep time. In studies, users have described more daytime drowsiness than nonsmokers.[104]

Nutritional effects on sleep

Dietary and nutritional choices affect sleep duration and quality. Research is being conducted in an attempt to discover what kinds of nutritional choices result in better sleep quality.

A study in the Western Journal of Nursing Research in 2011[105] compared how sleep quality was affected by four different diets: a high protein diet, a high fat diet, a high carbohydrate diet, and a control diet. Results indicated that the diets high in protein resulted in fewer wakeful episodes during night-time sleep. The high carbohydrate diet was linked to much shorter periods of quiescent or restful sleep. These results suggest that ingested nutrients do play a role in determining sleep quality. Another investigation published in Nutrition Research in 2012[106] examined the effects of various combinations of dietary choices in regard to sleep. Although it is difficult to determine one perfect diet for sleep enhancement, this study indicated that a variety of micro and macro nutrients are needed to maintain levels of healthful and restful sleep. A varied diet containing fresh fruits and vegetables, low-fat proteins, and whole grains can be the best nutritional option for individuals seeking to improve the quality of their sleep.

Anthropology of sleep

Research suggests that sleep patterns vary significantly across cultures.[107][108] The most striking differences are between societies that have plentiful sources of artificial light and ones that do not.[107] The primary difference appears to be that pre-light cultures have more broken-up sleep patterns.[107] For example, people without artificial light might go to sleep far sooner after the sun sets, but then wake up several times throughout the night, punctuating their sleep with periods of wakefulness, perhaps lasting several hours.[107]

The boundaries between sleeping and waking are blurred in these societies.[107] Some observers believe that nighttime sleep in these societies is most often split into two main periods, the first characterized primarily by deep sleep and the second by REM sleep.[107]

Some societies display a fragmented sleep pattern in which people sleep at all times of the day and night for shorter periods. In many nomadic or hunter-gatherer societies, people will sleep on and off throughout the day or night depending on what is happening.[107] Plentiful artificial light has been available in the industrialized West since at least the mid-19th century, and sleep patterns have changed significantly everywhere that lighting has been introduced.[107] In general, people sleep in a more concentrated burst through the night, going to sleep much later, although this is not always true.[107]

Historian Roger Ekrich thinks that the traditional pattern of "segmented sleep" as it is called began to disappear among the urban upper class in Europe in the late 17th century and the change spread over the next 200 years; by the 1920s "the idea of a first and second sleep had receded entirely from our social consciousness."[109] Ekrich attributes the change to increases in "street lighting, domestic lighting and a surge in coffee houses," which slowly made nighttime a legitimate time for activity, decreasing the time available for rest.[109] Today in most societies people sleep during the night, but in very hot climates they may sleep during the day.[110] During Ramadan, many Muslims sleep during the day rather than at night[111] and people working nights try to sleep in the daytime.

In some societies, people generally sleep with at least one other person (sometimes many) or with animals. In other cultures, people rarely sleep with anyone but a most intimate relation, such as a spouse. In almost all societies, sleeping partners are strongly regulated by social standards. For example, a person might only sleep with the immediate family, the extended family, a spouse or romantic partner, children, children of a certain age, children of specific gender, peers of a certain gender, friends, peers of equal social rank, or with no one at all. Sleep may be an actively social time, depending on the sleep groupings, with no constraints on noise or activity.[107]

People sleep in a variety of locations. Some sleep directly on the ground; others on a skin or blanket; others sleep on platforms or beds. Some sleep with blankets, some with pillows, some with simple headrests, some with no head support. These choices are shaped by a variety of factors, such as climate, protection from predators, housing type, technology, personal preference, and the incidence of pests.[107]

Sleep in other animals

Main article: Sleep (non-human)

Neurological sleep states can be difficult to detect in some animals. In these cases, sleep may be defined using behavioral characteristics such as minimal movement, postures typical for the species, and reduced responsiveness to external stimulation. Sleep is quickly reversible, as opposed to hibernation or coma, and sleep deprivation is followed by longer or deeper rebound sleep. Herbivores, who require a long waking period to gather and consume their diet, typically sleep less each day than similarly sized carnivores, who might well consume several days' supply of meat in a sitting.

Horses and other herbivorous ungulates can sleep while standing, but must necessarily lie down for REM sleep (which causes muscular atony) for short periods. Giraffes, for example, only need to lie down for REM sleep for a few minutes at a time. Bats sleep while hanging upside down. Some aquatic mammals and some birds can sleep with one half of the brain while the other half is awake, so-called unihemispheric slow-wave sleep.[112] Birds and mammals have cycles of non-REM and REM sleep (as described above for humans), though birds' cycles are much shorter and they do not lose muscle tone (go limp) to the extent that most mammals do.

Many mammals sleep for a large proportion of each 24-hour period when they are very young.[113] However, killer whales and some other dolphins do not sleep during the first month of life.[114] Instead, young dolphins and whales frequently take rests by pressing their body next to their mother’s while she swims. As the mother swims she is keeping her offspring afloat to prevent them from drowning. This allows young dolphins and whales to rest, which will help keep their immune system healthy; in turn, protecting them from illnesses.[115] During this period, mothers often sacrifice sleep for the protection of their young from predators. However, unlike other mammals, adult dolphins and whales are able to go without sleep for a month.[115][116]

Also unlike terrestrial mammals, dolphins, whales, and pinnipeds (seals) cannot go into a deep sleep. The consequences of falling into a deep sleep for marine mammalian species can be suffocation and drowning, or becoming easy prey for predators. Thus, dolphins, whales, and seals engage in unihemispheric sleep, which allows one brain hemisphere to remain fully functional, while the other goes to sleep. The hemisphere that is asleep, alternates so that both hemispheres can be fully rested.[115][117]

Just like terrestrial mammals, pinnipeds that sleep on land fall into a deep sleep and both hemispheres of their brain shut down and are in full sleep mode.[118][119]

See also

Positions, practices, and rituals

References

  1. ^ Macmillan Dictionary for Students Macmillan, Pan Ltd. (1981), p. 936. Retrieved 1 October 2009.
  2. ^ Bingham, Roger; Terrence Sejnowski, Jerry Siegel, Mark Eric Dyken, Charles Czeisler, Paul Shaw, Ralph Greenspan, Satchin Panda, Philip Low, Robert Stickgold, Sara Mednick, Allan Pack, Luis de Lecea, David Dinges, Dan Kripke, Giulio Tononi (February 2007). "Waking Up To Sleep" (Several conference videos). The Science Network. Retrieved 25 January 2008. 
  3. ^ "Sleep Syllabus. B. The Phylogeny of Sleep". Sleep Research Society, Education Committee. Retrieved 26 September 2010. 
  4. ^ "Function of Sleep.". Scribd.com. Retrieved on 1 December 2011.
  5. ^ a b Daan S, Barnes BM, Strijkstra AM (1991). "Warming up for sleep? Ground squirrels sleep during arousals from hibernation". Neurosci. Lett. 128 (2): 265–8. doi:10.1016/0304-3940(91)90276-Y. PMID 1945046. 
  6. ^ a b {National Institute of Neurological Disorders and Stroke. (21 May 2007). Brain basics: Understanding sleep. Retrieved 25 November 2013, from http://www.ninds.nih.gov/disorders/brain_basics/understanding_sleep.htm#dreaming}
  7. ^ Silber MH, Ancoli-Israel S, Bonnet MH, Chokroverty S, Grigg-Damberger MM, Hirshkowitz M, Kapen S, Keenan SA, Kryger MH, Penzel T, Pressman MR, Iber C (March 2007). "The visual scoring of sleep in adults". Journal of Clinical Sleep Medicine 3 (2): 121–31. PMID 17557422. 
  8. ^ a b Schacter, Daniel L.; Gilbert, Daniel T. and Wegner, Daniel M. (2009) Psychology, Worth Publishers, ISBN 1429206152
  9. ^ a b Saladin, Kenneth S. (2012). Anatomy and Physiology: The Unity of Form and Function, 6th Edition. McGraw-Hill. p. 537. ISBN 978-0-07-337825-1. 
  10. ^ Carlson NR, Miller HL, Heth DS, Donahoe JW, Martin GN (2010). Psychology The Science of Behavior, Books a La Carte Edition. Pearson College Div. ISBN 0205762239. 
  11. ^ Loomis AL, Harvey EN, Hobart GA (1937). "III Cerebral states during sleep, as studied by human brain potentials". J Exp Psychol. 21 (2): 127–44. doi:10.1037/h0057431. 
  12. ^ Dement W, Kleitman N (1957). "Cyclic variations in EEG during sleep and their relation to eye movements, body motility and dreaming". Electroencephalogr Clin Neurophysiol 9 (4): 673–90. doi:10.1016/0013-4694(57)90088-3. PMID 13480240. 
  13. ^ Rechtschaffen A, Kales A, editors. (1968). A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects. (PDF). Washington: Public Health Service, US Government Printing Office. 
  14. ^ Iber, C; Ancoli-Israel, S; Chesson, A; Quan, SF for the American Academy of Sleep Medicine (2007). The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications. Westchester: American Academy of Sleep Medicine. 
  15. ^ Psychology World (1998). "Stages of Sleep" (PDF). Retrieved 15 June 2008. (includes illustrations of "sleep spindles" and "K-complexes") 
  16. ^ Schulz H (April 2008). "Rethinking sleep analysis". Journal of Clinical Sleep Medicine 4 (2): 99–103. PMC 2335403. PMID 18468306. 
  17. ^ Guilleminault, C. and Kreutzer, M.L. (30 September 2003). "Chapter 1 – Normal Sleep". In Michael Billiard. Sleep: Physiology, Investigations, and Medicine (Google eBook). Springer. p. 5. ISBN 978-0-306-47406-4. Retrieved 7 April 2012. The average length of the first sleep cycle is approximately 90 minutes and 100 to 120 minutes from the second to the fourth cycle, which is usually the last one. 
  18. ^ Fenton, Reuven (29 August 2007). "Bio-alarm clocks set for perfect wake-up". Reuters. Retrieved 9 June 2008. 
  19. ^ David G. Myers (22 September 2003). Psychology, Seventh Edition, in Modules (High School Version). Macmillan. pp. 268–. ISBN 978-0-7167-8595-8. Retrieved 22 August 2012. 
  20. ^ Molecules that build up and make you sleep. thebrain.mcgill.ca
  21. ^ Wyatt JK, Ritz-De Cecco A, Czeisler CA, Dijk DJ (1 October 1999). "Circadian temperature and melatonin rhythms, sleep, and neurobehavioral function in humans living on a 20-h day". Am J Physiol 277 (4): R1152–R1163. PMID 10516257. 
  22. ^ Zisapel N (2007). "Sleep and sleep disturbances: biological basis and clinical implications". Cell Mol Life Sci 64 (10): 1174–86. doi:10.1007/s00018-007-6529-9. PMID 17364142. 
  23. ^ a b de Benedictis, Tina, PhD; Heather Larson, Gina Kemp, MA, Suzanne Barston, Robert Segal, MA (2007). "Understanding Sleep: Sleep Needs, Cycles, and Stages". Helpguide.org. Retrieved 25 January 2008. 
  24. ^ "Gene Cuts Need for Sleep - Sleep Disorders Including, Sleep Apnea, Narcolepsy, Insomnia, Snoring and Nightmares on MedicineNet.com". Archived from the original on 14 July 2011. Retrieved 11 June 2010. 
  25. ^ He Y, Jones CR, Fujiki N, Xu Y, Guo B, Holder JL, Rossner MJ, Nishino S, Fu YH (2009). "The transcriptional repressor DEC2 regulates sleep length in mammals". Science 325 (5942): 866–70. doi:10.1126/science.1174443. PMC 2884988. PMID 19679812. 
  26. ^ Reference list is found on image page in Commons: Commons:File:Effects of sleep deprivation.svg#References
  27. ^ Dijk DJ, Lockley SW (February 2002). "Functional Genomics of Sleep and Circadian Rhythm Invited Review: Integration of human sleep-wake regulation and circadian rhythmicity". J Appl Physiol 92 (2): 852–62. doi:10.1152/japplphysiol.00924.2001 (inactive 23 March 2014). PMID 11796701. Consolidation of sleep for 8 h or more is only observed when sleep is initiated ~6–8 h before the temperature nadir. 
  28. ^ Wyatt JK, Ritz-De Cecco A, Czeisler CA, Dijk DJ (1 October 1999). "Circadian temperature and melatonin rhythms, sleep, and neurobehavioral function in humans living on a 20-h day". Am J Physiol 277 (4): R1152–R1163. PMID 10516257. ... significant homeostatic and circadian modulation of sleep structure, with the highest sleep efficiency occurring in sleep episodes bracketing the melatonin maximum and core body temperature minimum 
  29. ^ Lauderdale DS, Knutson KL, Yan LL, Liu K, Rathouz PJ (2008). "Self-Reported and Measured Sleep Duration: How Similar Are They?". Epidemiology 19 (6): 838–45. doi:10.1097/EDE.0b013e318187a7b0. PMC 2785092. PMID 18854708. 
  30. ^ Insomnia Causes. Healthcommunities.com. Original Publication: 1 December 2000, Updated: 1 December 2007.
  31. ^ Rhonda Rowland (15 February 2002). "Experts challenge study linking sleep, life span". CNN. Retrieved 29 October 2013. 
  32. ^ Patel SR, Ayas NT, Malhotra MR, White DP, Schernhammer ES, Speizer FE, Stampfer MJ, Hu FB (May 2004). "A prospective study of sleep duration and mortality risk in women". Sleep 27 (3): 440–4. PMID 15164896. 
  33. ^ Patel SR, Malhotra A, Gottlieb DJ, White DP, Hu FB (July 2006). "Correlates of long sleep duration". Sleep 29 (7): 881–9. PMC 3500381. PMID 16895254. ; cf. Irwin MR, Ziegler M (February 2005). "Sleep deprivation potentiates activation of cardiovascular and catecholamine responses in abstinent alcoholics". Hypertension 45 (2): 252–7. doi:10.1161/01.HYP.0000153517.44295.07. PMID 15642774. 
  34. ^ Ferrie JE, Shipley MJ, Cappuccio FP, Brunner E, Miller MA, Kumari M, Marmot MG (December 2007). "A prospective study of change in sleep duration: associations with mortality in the Whitehall II cohort". Sleep 30 (12): 1659–66. PMC 2276139. PMID 18246975. Lay summaryUniversity of Warwick. 
  35. ^ Thase ME (2006). "Depression and sleep: pathophysiology and treatment" (Free full text). Dialogues in clinical neuroscience 8 (2): 217–226. ISSN 1294-8322. PMC 3181772. PMID 16889107. 
  36. ^ Mann, Joseph John; David J. Kupfer (1993). Biology of Depressive Disorders: Subtypes of depression and comorbid disorders, Part 2 (Google books). Springer. p. 49. ISBN 0-306-44296-5. Retrieved 24 July 2009. 
  37. ^ Dahl RE (2009). "The regulation of sleep and arousal: Development and psychopathology". Development and Psychopathology 8 (01): 3–27. doi:10.1017/S0954579400006945. 
  38. ^ Jenni OG, Dahl RE (2008). "Sleep, cognition, and neuron, and emotion: A developmental review.". In Nelson CA, Luciana M. Handbook of developmental cognitive neuroscience (2nd ed.). Cambridge, Mass.: MIT Press. pp. 807–817. ISBN 0262141043. 
  39. ^ a b Scher A (2005). "Infant sleep at 10 months of age as a window to cognitive development". Early Human Development 81 (3): 289–92. doi:10.1016/j.earlhumdev.2004.07.005. PMID 15814211. 
  40. ^ Spruyt K, Aitken RJ, So K, Charlton M, Adamson TM, Horne RS (2008). "Relationship between sleep/wake patterns, temperament and overall development in term infants over the first year of life". Early Human Development 84 (5): 289–96. doi:10.1016/j.earlhumdev.2007.07.002. PMID 17707119. 
  41. ^ a b c Bernier A, Carlson SM, Bordeleau S, Carrier J (2010). "Relations between physiological and cognitive regulatory systems: infant sleep regulation and subsequent executive functioning". Child Development 81 (6): 1739–52. doi:10.1111/j.1467-8624.2010.01507.x. PMID 21077861. 
  42. ^ Hupbach A, Gomez RL, Bootzin RR, Nadel L (2009). "Nap-dependent learning in infants". Developmental Science 12 (6): 1007–12. doi:10.1111/j.1467-7687.2009.00837.x. PMID 19840054. 
  43. ^ Siegel, Jerome M (1999). "Sleep". Encarta Encyclopedia. Microsoft. Archived from the original on 14 December 2007. Retrieved 25 January 2008. 
  44. ^ a b c d e f g "How Much Sleep Do We Really Need?". National Sleep Foundation. n.d. Retrieved 16 April 2012. 
  45. ^ "Backgrounder: Later School Start Times". National Sleep Foundation. n.d. Retrieved 2 October 2009. Teens are among those least likely to get enough sleep; while they need on average 914 hours of sleep per night... 
  46. ^ Naska A, Oikonomou E, Trichopoulou A, Psaltopoulou T, Trichopoulos D (2007). "Siesta in healthy adults and coronary mortality in the general population". Archives of Internal Medicine 167 (3): 296–301. doi:10.1001/archinte.167.3.296. PMID 17296887. 
  47. ^ a b Zaregarizi M, Edwards B, George K, Harrison Y, Jones H, Atkinson G (2007). "Acute changes in cardiovascular function during the onset period of daytime sleep: comparison to lying awake and standing". Journal of Applied Physiology (Bethesda, Md. : 1985) 103 (4): 1332–8. doi:10.1152/japplphysiol.00474.2007. PMID 17641220. 
  48. ^ a b MohammadReza Zaregarizi. Effects of Exercise & Daytime Sleep on Human Haemodynamics: With Focus on Changes in Cardiovascular Function during Daytime Sleep Onset. ISBN 978-3-8484-1726-1. 
  49. ^ Kaul P, Passafiume J, Sargent CR, O'Hara BF (2010). "Meditation acutely improves psychomotor vigilance, and may decrease sleep need". Behav Brain Funct 6: 47. doi:10.1186/1744-9081-6-47 (inactive 23 March 2014). PMC 2919439. PMID 20670413. 
  50. ^ Gottselig JM, Adam M, Rétey JV, Khatami R, Achermann P, Landolt HP (March 2006). "Random number generation during sleep deprivation: effects of caffeine on response maintenance and stereotypy". Journal of Sleep Research 15 (1): 31–40. doi:10.1111/j.1365-2869.2006.00497.x. PMID 16490000. 
  51. ^ Iglowstein I, Jenni OG, Molinari L, Largo RH (February 2003). "Sleep duration from infancy to adolescence: reference values and generational trends". Pediatrics 111 (2): 302–7. doi:10.1542/peds.111.2.302. PMID 12563055. Thus, the shift in the evening bedtime across cohorts accounted for the substantial decrease in sleep duration in younger children between the 1970s and the 1990s... [A] more liberal parental attitude toward evening bedtime in the past decades is most likely responsible for the bedtime shift and for the decline of sleep duration... 
  52. ^ He Y, Jones CR, Fujiki N, Xu Y, Guo B, Holder JL, Rossner MJ, Nishino S, Fu YH (2009). "The Transcriptional Repressor DEC2 Regulates Sleep Length in Mammals". Science 325 (5942): 866–70. doi:10.1126/science.1174443. PMC 2884988. PMID 19679812. 
  53. ^ "The ABCC9 of Sleep: A Genetic Factor Regulates How Long We Sleep". Science Daily. Retrieved 21 August 2012. 
  54. ^ a b Max, D. T. The Secrets of Sleep National Geographic Magazine, May 2010.
  55. ^ Cirelli C, Tononi G (26 August 2008). "Is Sleep Essential?". PLoS Biol (Public Library of Science) 6 (8): e216. doi:10.1371/journal.pbio.0060216. PMC 2525690. PMID 18752355. ... it would seem that searching for a core function of sleep, particularly at the cellular level, remains a worthwhile exercise 
  56. ^ Lulu Xie, Hongyi Kang1, Qiwu Xu, Michael J. Chen, Yonghong Liao, Meenakshisundaram Thiyagarajan, John O'Donne, Daniel J. Christensen, Charles Nicholson, Jeffrey J. Iliff, Takahiro Takano, Rashid Deane, Maiken Nedergaard (2013). "Sleep Drives Metabolite Clearance from the Adult Brain". Science 342 (6156): 373–377. doi:10.1126/science.1241224. PMID 24136970. Retrieved 18 October 2013. 
  57. ^ Gümüştekín K, Seven B, Karabulut N, Aktaş O, Gürsan N, Aslan S, Keleş M, Varoglu E, Dane S (2004). "Effects of sleep deprivation, nicotine, and selenium on wound healing in rats". Int J Neurosci 114 (11): 1433–42. doi:10.1080/00207450490509168. PMID 15636354. 
  58. ^ Zager A, Andersen ML, Ruiz FS, Antunes IB, Tufik S (2007). "Effects of acute and chronic sleep loss on immune modulation of rats". American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 293 (1): R504–9. doi:10.1152/ajpregu.00105.2007. PMID 17409265. 
  59. ^ Opp MR (January 2009). "Sleeping to fuel the immune system: mammalian sleep and resistance to parasites" (Full text, Creative Commons Attribution License). BMC Evolutionary Biology (BioMed Central Ltd.) 9: 1471–2148. doi:10.1186/1471-2148-9-8. PMC 2633283. PMID 19134176. 
  60. ^ Peres, Judy (14 March 2012) A good reason to get your zzz's Chicago Tribune Health, retrieved 26 March 2014
  61. ^ Reimund E (October 1994). "The free radical flux theory of sleep". Medical Hypotheses 45 (4): 231–3. doi:10.1016/0306-9877(94)90071-X. PMID 7838006. 
  62. ^ Jenni OG, Molinari L, Caflisch JA, Largo RH (2007). "Sleep duration from ages 1 to 10 years: Variability and stability in comparison with growth". Pediatrics 120 (4): e769–e776. doi:10.1542/peds.2006-3300. PMID 17908734. 
  63. ^ Van Cauter E, Leproult R, Plat L (2000). "Age-related changes in slow-wave sleep and REM sleep and relationship with growth hormone and cortisol levels in healthy men". Journal of the American Medical Association 284 (7): 861–868. doi:10.1001/jama.284.7.861. PMID 10938176. 
  64. ^ "Brain may flush out toxins during sleep". National Institutes of Health. Retrieved 25 October 2013. 
  65. ^ Siegel JM (2005). "Clues to the functions of mammalian sleep". Nature 437 (7063): 1264–1271. Bibcode:2005Natur.437.1264S. doi:10.1038/nature04285. PMID 16251951. 
  66. ^ Guidelines for the Care and Use of Mammals in Neuroscience and Behavioral Research. Institute for Laboratory Animal Research (ILAR), National Research Council. The National Academies Press. 2003. p. 121. ISBN 978-0-309-08903-6. Sleep deprivation of over 7 days with the disk-over-water system results in the development of ulcerative skin lesions, hyperphagia, loss of body mass, hypothermia, and eventually septicemia and death in rats (Everson, 1995; Rechtschaffen et al., 1983). 
  67. ^ Guilio Tononi and Chiara Cirelli. "Perchance to Prune" Scientific American. August 2013. Pgs 34-39. Print.
  68. ^ Marks GA, Shaffery JP, Oksenberg A, Speciale SG, Roffwarg HP (1995). "A functional role for REM sleep in brain maturation". Behavioural Brain Research 69 (1-2): 1–11. doi:10.1016/0166-4328(95)00018-o. PMID 7546299. 
  69. ^ Mirmiran M, Scholtens J, van de Poll NE, Uylings HB, van der Gugten J, Boer GJ (April 1983). "Effects of experimental suppression of active (REM) sleep during early development upon adult brain and behavior in the rat". Brain Research 283 (2-3): 277–86. PMID 6850353. 
  70. ^ Morrissey MJ, Duntley SP, Anch AM, Nonneman R (2004). "Active sleep and its role in the prevention of apoptosis in the developing brain". Medical Hypotheses 62 (6): 876–9. doi:10.1016/j.mehy.2004.01.014. PMID 15142640. 
  71. ^ Amanda Schaffer (27 May 2007). "Why do we Sleep?". Slate.com. Retrieved 23 August 2008. 
  72. ^ Turner TH, Drummond SP, Salamat JS, Brown GG (2007). "Effects of 42 hr sleep deprivation on component processes of verbal working memory". Neuropsychology 21 (6): 787–795. doi:10.1037/0894-4105.21.6.787. PMID 17983292. 
  73. ^ Daltrozzo J, Claude L, Tillmann B, Bastuji H, Perrin F (2012). Zang, Yu-Feng, ed. "Working Memory Is Partially Preserved during Sleep". PLoS ONE 7 (12): e50997. doi:10.1371/journal.pone.0050997. PMC 3517624. PMID 23236418. 
  74. ^ cited in Born J, Rasch B, Gais S (2006). "Sleep to remember". Neuroscientist 12 (5): 410–24. doi:10.1177/1073858406292647. PMID 16957003. 
  75. ^ Datta S (2000). "Avoidance task training potentiates phasic pontine-wave density in the rat: A mechanism for sleep-dependent plasticity". The Journal of Neuroscience 20 (22): 8607–8613. PMID 11069969. 
  76. ^ Kudrimoti HS, Barnes CA, McNaughton BL (1999). "Reactivation of hippocampal cell assemblies: Effects of behavioral state, experience, and EEG dynamics". The Journal of Neuroscience 19 (10): 4090–4101. PMID 10234037. 
  77. ^ Marshall et al., 2006, as cited in Walker MP (2009). "The role of sleep in cognition and emotion". Annals of the New York Academy of Sciences 1156: 168–97. doi:10.1111/j.1749-6632.2009.04416.x. PMID 19338508. 
  78. ^ Saper CB, Scammell TE, Lu J (2005). "Hypothalamic regulation of sleep and circadian rhythms". Nature 437 (7063): 1257–63. doi:10.1038/nature04284. PMID 16251950. 
  79. ^ Stickgold R (2005). "Sleep-dependent memory consolidation". Nature 437 (7063): 1272–8. doi:10.1038/nature04286. PMID 16251952. 
  80. ^ Capellini I, McNamara P, Preston BT, Nunn CL, Barton RA (2009). Sporns, Olaf, ed. "Does sleep play a role in memory consolidation? A comparative test". PLoS ONE 4 (2): 4609. Bibcode:2009PLoSO...4.4609C. doi:10.1371/journal.pone.0004609. PMC 2643482. PMID 19240803. 
  81. ^ Cirelli C, Gutierrez CM, Tononi G (2004). "Extensive and divergent effects of sleep and wakefulness on brain gene expression". Neuron 41 (1): 35–43. doi:10.1016/S0896-6273(03)00814-6. PMID 14715133. 
  82. ^ Choi, Charles Q. (25 August 2009) New Theory Questions Why We Sleep, LiveScience.com.
  83. ^ Hock, R. R. (2013). To sleep, no doubt to dream… In Forty studies that changed psychology (7th ed., pp. 42–49). Upper Saddle River, NJ: Pearson Education. ISBN 0205918395.
  84. ^ Naiman, Rubin (2007). "How To Interpret Your Dreams". Allure 17 (5): n/a. 
  85. ^ Pinel, John P. J. (2011). Biopsychology, 8th Edition. Pearson Education, Inc. p. 359. ISBN 978-0-205-83256-9. 
  86. ^ Connor, Steve (3 April 2009). "Revealed: why we need a good night's sleep". The Independent. Retrieved 2 December 2010. 
  87. ^ Hobson JA, McCarley RW (1977). "The brain as a dream state generator: An activation-synthesis hypothesis of the dream process". American Journal of Psychiatry 134 (12): 1335–1348. PMID 21570. 
  88. ^ Tsoukalas, Ioannis (2012). "The origin of REM sleep: A hypothesis". Dreaming 22 (4): 253. doi:10.1037/a0030790. 
  89. ^ Vitelli, R. (2013). Exploring the Mystery of REM Sleep. Psychology Today, On-line blog, 25 March
  90. ^ Low PS, Shank SS, Sejnowski TJ, Margoliash D (2008). "Mammalian-like features of sleep structure in zebra finches". Proceedings of the National Academy of Sciences of the United States of America 105 (26): 9081–9086. Bibcode:2008PNAS..105.9081L. doi:10.1073/pnas.0703452105. PMC 2440357. PMID 18579776. 
  91. ^ Rial RV, Akaârir M, Gamundí A, Nicolau C, Garau C, Aparicio S, Tejada S, Gené L, González J, De Vera LM, Coenen AM, Barceló P, Esteban S (2010). "Evolution of wakefulness, sleep and hibernation: From reptiles to mammals". Neuroscience and Biobehavioral Reviews 34 (8): 1144–1160. doi:10.1016/j.neubiorev.2010.01.008. PMID 20109487. 
  92. ^ Capellini I, Nunn CL, McNamara P, Preston BT, Barton RA (2008). "Energetic constraints, not predation, influence the evolution of sleep patterning in mammals". Functional Ecology 22 (5): 847–853. doi:10.1111/j.1365-2435.2008.01449.x. PMC 2860325. PMID 20428321. 
  93. ^ Buman, M.P. and King, A.C.: "Exercise as a Treatment to Enhance Sleep", American Journal of Lifestyle Medicine, Nov–Dec 2010.
  94. ^ López HH, Bracha AS, Bracha HS (2002). "Evidence based complementary intervention for insomnia". Hawaii Med J 61 (9): 192, 213. PMID 12422383. 
  95. ^ Dugdale, David, C. (22 May 2011). Sleepwalking. US National institutes of health.
  96. ^ How Aging Changes Sleep Patterns by Allison Aubrey. Morning Edition, 3 Aug 2009.
  97. ^ a b Lee-chiong, Teofilo (24 April 2008). Sleep Medicine: Essentials and Review. Oxford University Press, USA. p. 52. ISBN 0-19-530659-7. 
  98. ^ Alcohol and Sleep. Sleepdex.org. Retrieved on 1 December 2011.
  99. ^ Alcohol and Sleep. Alcoholism.about.com (10 January 2011). Retrieved on 1 December 2011.
  100. ^ Sleep Medications: Barbituates. Sleepdex.org. Retrieved on 1 December 2011.
  101. ^ Marijuana, Sleep and Dreams. psychologytoday.com. Retrieved on 10 February 2012.
  102. ^ Abarca C, Albrecht U, Spanagel R (June 2002). "Cocaine sensitization and reward are under the influence of circadian genes and rhythm". Proceedings of the National Academy of Sciences of the United States of America 99 (13): 9026–30. doi:10.1073/pnas.142039099. PMC 124417. PMID 12084940. 
  103. ^ Primary hypersomnia: Diagnostic Features. mindsite.com
  104. ^ Causes of Sleep Deprivation. Sleep.com.
  105. ^ Lindseth, Gelinda, Paul Lindseth, and Mark Thompson. "Nutritional Effects on Sleep."Western Journal of Nursing Research (2011): n. pag. Web.
  106. ^ Peuhkuri, Katri, Nora Sihvola, and Riitta Korpela. "Diet Promotes Sleep Duration and Quality." Nutrition Research 32.5 (2012): 309-19. Print.
  107. ^ a b c d e f g h i j k Carol M. Worthman and Melissa K. Melby. "6. Toward a comparative developmental ecology of human sleep". A comparative developmental ecology (PDF). Emory University. 
  108. ^ Slumber's Unexplored Landscape. Science News Online (25 September 1999). Retrieved on 1 December 2011.
  109. ^ a b Hegarty, Stephanie (22 February 2012). "The myth of the eight-hour sleep". BBC News. Retrieved 22 February 2012. 
  110. ^ Ellsworth Huntington, Civilization and Climate - Page 126
  111. ^ Dilara Hafiz, Imran Hafiz, Yasmine Hafiz (2009). The American Muslim Teenager's Handbook. ISBN 978-1416986997. 
  112. ^ Mukhametov LM, Supin AY, Polyakova IG (14 October 1977). "Interhemispheric asymmetry of the electroencephalographic sleep patterns in dolphins". Brain Research 134 (3): 581–584. doi:10.1016/0006-8993(77)90835-6. PMID 902119. 
  113. ^ Faraco, Juliette (1 August 2000). "Re: Are there animals who don't sleep or that sleep very little?". MadSci Network: Zoology. Retrieved 25 January 2008. 
  114. ^ The giraffe only sleeps 2 hours a day in about 5–15 minute sessions. Koalas are the longest sleeping-mammals, about 20–22 hours a day.Insomnia Mania: Newborn Mammals Don't Sleep for a Month. LiveScience.com
  115. ^ a b c Hecker, Bruce (2 February 1998). "How do Whales and Dolphins Sleep without Drowning?". Scientific American.  mirror
  116. ^ Britt, Robert (29 June 2005). "Insomnia Mania: Newborn Mammals Don’t Sleep for a Month". Live Science. 
  117. ^ "Seals Sleep with Only Half of Their Brain at a Time". Oceana.org. 12 March 20133.  Check date values in: |date= (help)
  118. ^ Lapierre JL, Kosenko PO, Lyamin OI, Kodama T, Mukhametov LM, Siegel JM (2007). "Cortical Acetylcholine Release Is Lateralized during Asymmetrical Slow-Wave Sleep in Northern Fur Seals". The Journal of Neuroscience 27 (44): 11999–12006. doi:10.1523/JNEUROSCI.2968-07.2007. PMID 17978041. 
  119. ^ "Study Seals Sleep with Half Their Brain". upi.com. 19 February 2013. 

External links