توزیع بر

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو
Burr
پارامترها c> 0\!
k> 0\!
‫تکیه‌گاه x> 0\!
تابع چگالی احتمال ck\frac{x^{c-1}}{(1+x^c)^{k+1}}\!
تابع توزیع تجمعی‫ (سی‌دی‌اف) 1-\left(1+x^c\right)^{-k}
میانگین k\operatorname{B}(k-1/c,\, 1+1/c) where B() is the تابع بتا
میانه \left(2^{\frac{1}{k}}-1\right)^\frac{1}{c}
مُد \left(\frac{c-1}{kc+1}\right)^\frac{1}{c}
واریانس
چولگی
کشیدگی
انتروپی
‫تابع مولد گشتاور (ام‌جی‌اف)
تابع مشخصه

توزیع بر در نظریه احتمال و آمار یک توزیع پیوسته احتمال برای متغیرهای تصادفی غیرمنفی است. تایع چگالی احتمال آن بصورت زیر است:

f(x,c,k) = ck\frac{x^{c-1}}{(1+x^c)^{k+1}}\!

تابع توزیع تجمعی آن بصورت زی است:

F(x,c,k) = 1-\left(1+x^c\right)^{-k}

منابع[ویرایش]

  1. http://web.archive.org/web/20040906165513/http://www.fisica.ufc.br/psis/abstract/4p.pdf