تجزیه‌کننده عملگر اولویت

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو

در علوم کامپیوتر تجزیه گر عملگر اولویت یک تجزیه کننده پایین به بالاست که گرامر عملگر اولویت را تفسیر می کند.برای مثال بسیاری از ماشین حساب ها از تجزیه کننده عملگر اولویت برای تبدیل از نشانه گذاری میانوندی که برای انسان قابل خواندن است، با توجه به ترتیب عملگرها به فرمتی که برای محاسبات بهینه است تبدیل می کند، مانند نشانه گذاری معکوس لهستانی .

معمولاً الگوریتم Shunting yard که توسط ادسخر دیکسترا ارائه شد، برای تجزیه عملگر اولویت استفاده می شود و الگوریتم های دیگر شامل روش بالا رفتن اولویت و روش پالا به پایین عملگر اولویت می باشند.[۱]

ارتباط با سایر تجزیه کننده ها[ویرایش]

تجزیه کننده عملگر اولویت یک تجزیه کننده انتقال - کاهش است که قادر به تجزیه زیر مجموعه گرامر های (LR(1 نیست.به طور دقیق تر تجزیه کننده های عملگر اولویت می توانند تنها آن دسته از گرامر های (LR(1 که در آن ها هیچ دو متغیر کنار هم نیستند را تجزیه کنند.

اگر چه گرامر های عملگر اولویت ویژگی هایی دارند که آنها را برای طرح خای بزرگتر مفید می کند ولی در عمل از آن ها استفاده نمی‌شود.اول انکه آن ها به قدری ساده هستند که می توان آن ها را با دست نوشت به طوریکه آن ها در موارد تجزیه کننده های انتقال - کاهش با پیچیدگی زیاد عمومی نیستند.دوم آنکه تجزیه کننده های عملگر اولویت با کمک جدول عملگرها در زمان اجرا نوشته می شوند و آنها را برای زبان هایی که امکان تغییر و یا افزودن عملگرهایشان را در زمان تحلیل دارند مناسب می کند.(به عنوان مثال هسکل (زبان برنامه‌نویسی) که اپراتور عملگر اولویت باید در برنامه بعد از تجزیه همه ماژول های مرجع اجرا شود)

روش اولویت بالا رفتن[ویرایش]

الگوریتم روش اولویت بالارفتن پیوسته ، کارآمد است و برای تجزیه عباراتی که اولین بار توسط ریچارد و کولین تعریف شده اند انعطاف پذیر است.[۲]


گرامر عبارت نشانه گذاری میانوندی در فرمتEBNF عموماً مانند زیر خواهد بود:

   expression ::= equality-expression
   equality-expression ::= additive-expression ( ( '==' | '!=' ) additive-expression ) *
   additive-expression ::= multiplicative-expression ( ( '+' | '-' ) multiplicative-expression ) *
   multiplicative-expression ::= primary ( ( '*' | '/' ) primary ) *
   primary ::= '(' expression ')' | NUMBER | VARIABLE | '-' primary</sub><sub>right hand side''=3''</sub>

با بسیاری از سطوح اولویت امکان دارد اجرای این گرامر با تجزیه کننده پیشگوی بازگشتی نزولی غیر کارآمد شود.به عنوان مثال تجزیه یک عدد می تواند به پنج تابع نیاز داشته باشد.یکی برای هر متغیر تا رسیدن به متغیر ابتدایی. تجزیه کننده عملگر اولویت می تواند می تواند بسیار کارآمدتر باشد.[۳]

ایده این است که ما می توانیم بگذاریم تا عملگرهای حسابی کار کنند تا زمانی که عملگرهای با اولویت یکسان پیدا کنیم.اما ما باید نتایج موقت را برای ارزیابی عملگرهای اولویت بالاتر نگه داریم.الگوریتمی که در اینجا ارائه شد به یک پشته ساده نیاز ندارد در عوض از یک روش بازگشتی برای اجرای پشته استفاده می کند.

این الگوریتم یک تجزیه کننده عملگر اولویت خاص مثل الگوریتم shunting yard ادسخر دیکسترا نیست.این تصور به وجود می آید که متغیر ابتدایی با یک روال جداگانه مانند تجزیه کننده بازگشتی نزولی تجزیه می شود.

شبه کد[ویرایش]

شبه کد برای الگوریتم به شرح زیر است.تجزیه کننده در تابع عبارت تجزیه شروع می شود. سطح اولویت بیشتر و یا برابر با 0 است.

parse_expression ()
   return parse_expression_1 (parse_primary (), 0)
parse_expression_1 (lhs, min_precedence)
    while the next token is a binary operator whose precedence is>= min_precedence
        op := next token
        rhs := parse_primary ()
        while the next token is a binary operator whose precedence is greater
                 than op's, or a right-associative operator
                 whose precedence is equal to op's
            lookahead := next token
            rhs := parse_expression_1 (rhs, lookahead's precedence)
        lhs := the result of applying op with operands lhs and rhs
   return lhs

مثال اجرای الگوریتم[ویرایش]

به عنوان مثال اجرای عبارت 19==5+4*3+2 به شرح زیر است.به عبارت مساوی اولویت 0 و به عبارت جمع اولویت 1 و به عبارت ضرب اولویت 2 رااختصاص می دهیم.

عبارت تجزیه 1(left hand side=2 و کمترین اولویت =0)

  • توکن بعدی + است با اولویت 1 (پس وارد حلقه while می شود.)
  • عملگر + با اولویت 1
  • right hand side=3
  • توکن بعدی * است با اولویت 2 پس فراخوانی بازگشتی داریم.
    عبارت تجزیه 1(right hand side=2 و کمترین اولویت =2 است)
  • توکن بعدی * با اولویت 2 (پس وارد حلقه می شود)
  • عملگر * با اولویت 2
  • right hand side=4
  • توکن بعدی + با اولویت 1 (پس فراخوانی بازگشتی نداریم)
  • به left hand side اختصاص داده می شود 12=4*3
  • توکن بعدی + با اولویت 1 است (حلقه while را ترک می کند.)
  • 12 را برمی گرداند.
  • توکن بعدی + است با اولویت 1(پس فراخوانی بازگشتی نداریم)
  • به left hand side اختصاص داده می شود 14=12+2
  • توکن بعدی + است با اولویت 1 (حلقه while را ترک نمی‌کند.)
  • عملگر + با اولویت 1
  • right hand side=5
  • توکن بعدی== است با اولویت 0 (پس فراخوانی بازگشتی نداریم)
  • به left hand side اختصاص داده می شود 19=5+14
  • توکن بعدی == است با اولویت 0 (حلقه while رو ترک نمی‌کند)
  • عملگر == (اولویت 0)
  • right hand side=19
  • توکن بعدی آخر خط است ، عملگری نداریم پس فراخوانی بازگشتی هم نداریم.
  • نتیجه ارزیابی 19==19 به left hand side اختصاص داده شده است.
  • توکن بعدی آخر خط است و هیچ عملگری نداریم پس حلقه while را ترک میکند.

1 را بر می گرداند.

روش های جایگزین[ویرایش]

روش های مختلفی برای اجرای قوانین عملگر اولویت وجود دارد.یکی از راه ها ساختن درخت از عبارت اصلی و اجرای درخت و باز نویسی قوانین آن است.چنین درختانی لزوما برای اجرا نباز به ساختمان داده های متداول که برای درختان مورد استقاده قرار می گیرند ندارند.در عوض توکن می تواند در ساختارهای مسطح مانند جدول ها به طور همزمان توسط ایجاد یک لیست اولویت که مشخص می کند که عناصر با چه ترتیبی پردازش شوند.

روش دیگر این است که اول به طور کامل عبارت را پرانتز گذاری کنیم و اطراف هر عملگر تعدادی پرانتز قرار دهیم.به طوری که آنها حتی زمانی که به صورت خطی تجزیه می شوند و پارسرهای چپ به راست هم با اولویت درست هدایت شوند.این الگوریتم در کامپایلرهای فورترن اولیه استفاده شده است.[نیازمند منبع]

کد نمونه ای از یک برنامه ساده به زبان c است که عملیات پرانتزگذاری عملگرهای اصلی ریاضی(* + - / ^ پرانتز) را handle می کند .

#include <stdio.h>
#include <string.h>
 
int main(int argc, char *argv[]){
  int i;
  printf("((((");
  for(i=1;i!=argc;i++){
    if(argv[i] && !argv[i][1]){
      switch(*argv[i]){
          case '(': printf("(((("); continue;
          case ')': printf("))))"); continue;
          case '^': printf(")^("); continue;
          case '*': printf("))*(("); continue;
          case '/': printf("))/(("); continue;
          case '+':
            if (i == 1 || strchr("(^*/+-", *argv[i-1]))
              printf("+");
            else
              printf(")))+(((");
            continue;
          case '-':
            if (i == 1 || strchr("(^*/+-", *argv[i-1]))
              printf("-");
            else
              printf(")))-(((");
            continue;
      }
    }
    printf("%s", argv[i]);
  }
  printf("))))\n");
  return 0;
}

به عنوان مثال زمانی که کامپایل به اتمام رسید ، از خط فرمان و پارامترهایش خواسته می شود که خروجی را در کنسول تولید کند.

a * b + c ^ d / e
((((a))*((b)))+(((c)^(d))/((e))))

محدودیتی که در این استراتژی وجود دارد این است که همیشه عملگرهای یگانی اولویت بالاتری نسبت به عملگرهای میانی دارند.در اجرای برنامه با ورودی زیر می بینیم که عملگر منفی اولویت بالتری نسبت به عملگر توان دارد.

- a ^ 2

و این خروجی را تولید می کند.که احتمالا همان چیزی است که در نظر گرفته می شود.

((((-a)^(2))))

منابع[ویرایش]

  1. Norvell, Theodore (2001). "Parsing Expressions by Recursive Descent". Retrieved 2012-01-24. 
  2. Richards, Martin; Whitby-Stevens, Colin (1979). BCPL — the language and its compiler. Cambridge University Press. ISBN 9780521219655. 
  3. Harwell, Sam (2008-08-29). "Operator precedence parser". ANTLR3 Wiki. Retrieved 2012-01-24. 

پیوند به بیرون[ویرایش]