آزمایش اشترن-گرلاخ

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو
تابلوی یادبودی بر در دانشکده فیزیک دانشگاه فرانکفورت.

در مکانیک کوانتومی، آزمایش اشترن-گرلاخ که به نام اتو اشترن و والتر گرلاخ نامیده شده است، آزمایش مهمی است که انحراف ذرات را در میدان مغناطیسی نشان می‌دهد. این آزمایش به خوبی اصول پایه‌ای مکانیک کوانتومی را نشان می‌دهد. این آزمایش نشان می‌دهد که الکترون‌ها ذاتاً ویژگی‌های کوانتومی دارند، و این که چه طور اندازه‌گیری در مکانیک کوانتومی روی چیزی که اندازه‌اش می‌گیریم تأثیر می‌گذارد.

پایه‌های نظری و شرح آزمایش[ویرایش]

اتو اشترن و والتر گرلاخ سال ۱۹۲۲ در دانشگاه فرانکفورت آزمایشی ابداع کردند تا ببینند که آیا ذرات تکانه زاویه‌ای ذاتی دارند یا نه. در یک سیستم کلاسیکی مانند زمین که به دور خورشید می‌گردد، زمین دارای تکانه زاویه‌ای است که هم به خاطر چرخش زمین به دور خورشید و هم به خاطر چرخش زمین به دور محور خود است. اگر الکترون مانند یک دوقطبی کلاسیک باشد که به دور محور خود می‌چرخد، در یک میدان مغناطیسی به خاطر گشتاور ناشی از میدان به دور راستای میدان می‌چرخد.

اجزای اصلی یک آزمایش اشترن-گرلاخ.

اگر ذره در یک میدان مغناطیسی یکنواخت باشد، نیروی وارد بر دو سوی دوقطبی یکدیگر را خنثی می‌کنند و مسیر ذره راست می‌ماند. (برای پرهیز از نیروی لورنتس که به ذرات باردار درحال‌حرکت وارد می‌شود، می‌توانیم آزمایش را به جای الکترون‌های باردار با اتم‌های خنثای نقره که یک الکترون در لایهٔ بیرونی دارند انجام دهیم. هر چند که اگر ذره باردار باشد، با اِعمال یک میدان الکتریکی در جهت مناسب به‌سادگی می‌توان اثر نیروی لورنتس را از بین برد. از آن‌جا که آزمایش اشترن-گرلاخ تنها تکانه زاویه‌ای را می‌سنجد، بار ذرات نقشی در نتیجهٔ آزمایش ندارد.)

اما اگر ذره در یک میدان مغناطیسی نایکنواخت باشد، نیروی وارد بر یک سوی دوقطبی کمی بیشتر از سوی دیگر است و نیروی خالصی به آن وارد می‌شود. این نیرو ذره را در یک جهت منحرف می‌کند. جهت انحراف را معمولاً در راستای محور "z" می‌گیرند.

اگر ذره‌های آزمایش، ذرات چرخان کلاسیک باشند، سوی بردار تکانه زاویه‌ای آن‌ها تصادفی خواهد بود. از همین رو، هر ذره مقدار متفاوتی به سمت بالا یا پایین منحرف خواهد شد. در این صورت، باریکهٔ ورودی ذره‌ها روی پرده نوار یکنواختی تشکیل می‌دهد. ولی در آزمایش دیده می‌شود که ذره‌ها تنها به سمت بالا یا پایین و آن هم به مقدار مشخصی منحرف می‌شوند. این نتیجه نشان می‌دهد که تکانه زاویه‌ایِ اسپینی گسسته است، و فقط مقدارهای مشخصی به خود می‌گیرد. طیف پیوسته‌ای از تکانه زاویه‌ای وجود ندارد.

برای توصیف ریاضی ذره‌ها که اسپین +\frac{1}{2} دارند، بهترین راه به‌کاربردن نمادگذاری برا-کت است. وقتی که ذرات از دستگاه اشترن-گرلاخ می‌گذرند، آن‌ها «اندازه‌گرفته می‌شوند.» عمل مشاهده در مکانیک کوانتومی معادل است با سنجش آن‌ها. دستگاه اندازه‌گیری آن‌ها همان آشکارساز اشترن-گرلاخ است که می‌تواند یکی از دو مقدار ممکن، اسپین بالا یا پایین، را بسنجد. عمل مشاهده متناظر است با اثردادن عملگر Jz. به زبان ریاضی،

|\psi\rangle = c_1\left|\psi_{j = +\frac{\hbar}{2}}\right\rangle + c_2\left|\psi_{j = -\frac{\hbar}{2}}\right\rangle.

آزمایش‌های پی‌درپی[ویرایش]

اگر چند آزمایش اشترن-گرلاخ را پشت سر هم قرار دهیم، به روشنی می‌فهمیم که آن‌ها با دستگاه‌های اندازه‌گیری کلاسیک فرق دارند و حالت ذرهٔ مشاهده‌شده را مطابق قوانین کوانتومی تغییر می‌دهند:

Sg-seq.svg