آب

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو
فارسی English
آب
ساختار ملوکولیمدل فضاپرکن.
آب در سه شکل مایع، گاز و جامد

آب مایه حیات است و در سطح زمین به وفور یافت می‌شود.
آب در سه حالت جامد، یخ، مایع و بخار که نامرئی‌است.
ابرها شامل قطرات آب معلق در هوا و بخار آب اشباع است.

مشخصات و اطلاعات
نام مرسوم آب
نامIUPAC oxidane
نام‌های قابل توجه aqua, دی‌هیدروژن منوکسید,
هیدروژنهیپروکسید، (بیشتر)
فرمول ملوکولی H۲O
شماره CAS ۷۷۳۲-۱۸-۵
InChI InChI=۱/H۲O/h۱H۲
جرم مولی ۱۸٫۰۱۵۳ g/mol
چگالی و فاز ۰٫۹۹۸ g/cm³ (مایع در ۲۰ °C, ۱ atm)
۰٫۹۱۷ g/cm³ (جامد در ۰ °C, ۱ atm)
دمای انجماد
۰ °C (۲۷۳٫۱۵ K) (۳۲ °F)
دمای جوش
۹۹٫۹۷۴ °C (۳۷۳٫۱۲۴ K) (۲۱۱٫۹۵ °F)
ظرفیت گرمایی ویژه
۴٫۱۸۴ J/(g·K) (۲۰°C در)
اطلاعات بیشتر

آب یکی از مواد مایع و فراوان‌ترین مادهٔ مرکب بر روی سطح کره زمین و بستر اولیه حیات به شکلی که امروزه می‌شناسیم، است. بیش از ۷۵٪ وزن یک انسان از آب تشکیل شده‌است و نیز بیش از ۷۰٪ سطح کره زمین را آب پوشانده است (نزدیک به ۳۶۰ میلیون از ۵۱۰ میلیون کیلومتر مربع) با وجود این حجم عظیم آب تنها ۲ درصد از آبهای کره زمین شیرین و قابل شرب است و باقی آن به علت محلول بودن انواع نمک‌ها خصوصاً نمک طعام غیر قابل استفاده است. از همین دو درصد آب شیرین بیش از ۹۰ درصد به صورت منجمد در دو قطب زمین و دور از دسترس بشر واقع شده‌است.

بیشترین چگالی آب خالص در دمای ۳٫۹۸ درجه سلسیوس (۳۹٫۱۶ درجه فارنهایت) حاصل می‌شود که برابر ۱ گرم بر سانتی‌متر مکعب[۱] یا ۱۰۰۰ کیلوگرم بر متر مکعب است.[۲]

نام‌گذاری آب[ویرایش]

آب در زبان های مختلف به نام‌های گوناگون یاد می‌شود. برای مثال در زبان کردی گویش سورانی به آن آو(Aw)می‌گویند که شباهت بسیاری با واژه آب در فارسی و آکوا در لاتین دارد. ؛ همچنین واژه آب در علوم مختلف کاربردهای متفاوتی دارد که بر اساس آن به گروه‌های زیر تقسیم‌بندی می‌شود:

فیزیک[ویرایش]

در فیزیک بر اساس حالت ماده آب معمولاً به این نام‌ها خوانده می‌شود:

هواشناسی[ویرایش]

در علم هواشناسی حالت‌های مختلف آب بر اساس نوع بارش یا معلق بودن آن در جو طبقه‌بندی می‌شود:

محیط زیست[ویرایش]

در علم محیط زیست:

منابع آبی[ویرایش]

بر اساس منبعی که آب در آن قرار دارد و یا از آن به دست می‌آید:

مصارف مختلف[ویرایش]

بر اساس نوع مصرف:

کیفیت فیزیکی[ویرایش]

بر اساس کیفیت فیزیکی:

مشخصات شیمیایی[ویرایش]

بر اساس مشخصات شیمیایی:

مسائل مذهبی[ویرایش]

بر اساس مسائل مذهبی:

ویژگی‌های فیزیکی و شیمیایی[ویرایش]

مولکول‌های آب و پیوند هیدروژنی

مولکول[ویرایش]

نوشتار اصلی: آب (مولکول)

فرمول شیمیایی آب، H۲O است؛ مولکول آب از دو اتم هیدروژن و یک اتم اکسیژن تشکیل شده‌است که با پیوندهای کووالانس به هم متصل شده‌اند. اتم‌های هیدروژن دارای بار مثبت هستند و با زاویه نزدیک به ۱۰۵ درجه در اطراف اتم اکسیژن قرار گرفته‌اند که این موضوع باعث قطبی شدن پیوندهای مولکول آب شده‌است.[۳] جرم مولی آب برابر ۱۸ گرم بر مول می‌باشد.[۴]

خاصیت مویینگی آب و جیوه به صورت کاو و کوژ

وزن مولکولی آب ۱۸ است. با این وزن مولکولی در شرایط کره زمین (از نظر فشار و دما) آب می‌بایستی به‌حالت گاز باشد.

امونیاک با وزن مولکولی ۱۷ در ۳۳ درجه سانتیگراد زیر صفر به حالت بخار است. سولفید هیدروژن Hydrogen sulfide (گاز فاضلاب) که وزن مولکولی آن ۳۴ است در پایین‌تر از ۵۹ درجه سانتیگراد زیر صفر هنوز بخار است.

توجه کنیم که آب تقریباً سه چهارم مساحت زمین را پوشانیده و تاثیر مهمی روی حرارت هوا و شرایط جوی دارد. اگر آب این حالت استثنایی را نداشت تغییرات جوی، شکل بلای آسمانی به‌خود می‌گرفت. و حیات در آن پایدار نمی‌ماند.

خواص فیزیکی آب (مقطر)[ویرایش]

بی‌بو، بی‌رنگ و بی‌طعم. آب خواص ویژه‌ای دارد که آن را از دیگر مایعات متمایز کرده‌است. از این خواص ویژه می‌توان به ظرفیت گرمایی بالا، افزایش غیرعادی حجم به هنگام انجماد، کشش سطحی بالا، گرانروی بسیار پایین و بالا بودن گرمای نهان تغییر فاز اشاره نمود. دلیل بسیاری از این خاصیت‌ها وجود پیوند هیدروژنی در میان مولکولهای آب است. از خواص فیزیکی اعجاب آور آب این است که این ماده در هر دمایی در حالت مایع بخار می‌شود.[۵] چگالی آب در دمای ۲۵ درجه سانتی‌گراد و فشار ۱ آتمسفر برابر ۰٫۹۹۸ گرم بر سانتمیتر مکعب است. آب در فشار ۱ آتمسفر در دمای ۱۰۰ درجه سانتی‌گراد می‌جوشد و در دمای صفر درجه سانتی‌گراد منجمد می‌شود.[۳]

همچنین آب در ۴ درجه سانتی گراد بیشترین چگالی یعنی ۱ گرم بر سانتیمتر مکعب را دارد، که این مسئله از لحاظ علمی بسیار جالب است و یک استثنا به شمار می‌آید.

منابع آب در کره زمین[ویرایش]

اگر کسی از فضا به زمین نگاه کند، آن را یک سیاره آبی رنگ و پر از آب خواهد دید. حجم کل آب‌های موجود در کره زمین، رقمی در حدود ۱٬۳۶۰ میلیون کیلومتر مکعب تخمین زده شده‌است. این حجم با توجه به چرخهٔ آب به طور دائم در بین منابع مختلف در حال جابه‌جایی‌است.[۶]

مهمترین منابع آب در کره زمین عبارتند از:[۷]

همچنین بخشی از آب موجود در کره زمین به‌صورت بخار در آتمسفر و بخش دیگری نیز به‌صورت جامد در یخچال‌های طبیعی وجود دارد.

حجم تقریبی میزان آب ذخیره شده در این منابع به این شرح است[۶]:

  • اقیانوس‌ها: حدود ۱٬۳۲۰ میلیون کیلومتر مکعب (۹۷٫۲٪)
  • یخچال‌های طبیعی: حدود ۲۵ میلیون کیلومتر مکعب (۱٫۷٪)
  • سفره‌های زیرزمینی: ۱۳ میلیون کیلومتر مکعب (۰٫۹٪)
  • آب‌های شیرین موجود در در دریاها، دریاچه‌ها و رودها: ۲۵۰ هزار کیلومتر مکعب (۰٫۰۲٪)
  • بخار آب در هواکره حدود ۱۳ هزار کیلومتر مکعب (۰٫۱۰٪)

استفاده از آب[ویرایش]

میانگین جهانی توزیع میزان استفادهٔ آب در بخش‌های مختلف در سال ۲۰۰۳ به صورت زیر بود:[۸]

بخش کشاورزی به دلیل آبیاری محصولات میزان زیادی آب مورد استفاده قرار می‌دهد. از سال ۱۹۶۰ میانگین جهانی میزان برداشت آب از منابع به منظور آبیاری زمین‌ها ۶۰٪ افزایش یافته‌است و این در حالی‌است که بین ۲۰٪ تا ۳۰٪[۹] آن تبخیر یا جاری می‌شود و به هدر می‌رود . میزان برداشت آب در کشورهای درحال توسعه به علت نداشتن ابزار مناسب دوبرابر کشورهای توسعه‌یافته برای هر هکتار است، درحالی که میزان محصولات کشاورزی آن‌ها یک‌سوم می‌باشد. به‌علاوه، در اکثر نقاط خشک و نیمه‌خشک، به علت کمبود بارش‌های جوی، ۹۰٪ آب مورد نیاز برای آبیاری زمین‌ها از آب شیرین تأمین می‌گردد، درحالی که کشورهای توسعه‌یافته این رقم را به ۴۰٪ رسانده‌اند.[۱۰][نیازمند منبع]

توزیع میزان استفادهٔ آب به‌منظور مصارف خانگی نیز در نواحی گوناگون مختلف می‌باشد. به طور مثال و طبق آمار منتشر شده توسط برنامه عمران سازمان ملل متحد در سال ۲۰۰۶، میانگین میزان آب مصرفی در ایالات متحده حدود ۵۷۵ لیتر و در اروپا بین ۲۰۰ تا ۳۰۰ لیتر در روز برای هر شخص می‌باشد، درحالی که در کشور موزامبیک این رقم حدود ۱۰ لیتر می‌باشد.[۱۱]

کمبود آب[ویرایش]

وضعیت کنونی بحران آب در جهان

اگرچه حجم کلی آب‌های موجود برروی زمین نسبتاً زیاد می‌نماید اما متجاوز از ۹۷٪ این آب‌ها در دریاها و اقیانوسها متمرکز هستند و حدود ۲٪ نیز به صورت یخ و یخچال‌ها در مناطق قطبی تجمع یافته‌است. از یک درصد آب باقی‌مانده نیز بخش زیادی در اعماق زمین بوده که استخراج آن مشکل و از دسترس انسان به دور است.[۱۲]

به‌علاوه، منابع آب شیرین در سطح زمین به طور یک‌نواخت توزیع نشده‌اند. درحال حاضر، ۹ کشور ۶۰٪ کل منابع آب شیرین را به خود اختصاص می‌دهند: کانادا، چین، کلمبیا، پرو، برزیل، روسیه، ایالات متحده آمریکا، اندونزی و هند.

در مقابل حدود ۸۰ کشور با کمبود آب مواجه‌اند که برخی از آن‌ها تقریباً به هیچ منبع آب شیرین قابل توجهی دسترسی ندارند: کویت، بحرین، مالت، امارات متحده عربی، سنگاپور، اردن و لیبی.

با توجه به افزایش روزافزون جمعیت، توسعهٔ صنایع و افزایش آلودگی منابع آب شیرین، دسترسی به آب کافی و مناسب در برخی از کشورها به یک بحران جدی تبدیل شده‌است.[۱۰]

آلودگی آب‌های رودخانهٔ تیته در برزیل. در بسیاری از کشورها، علارغم وجود منابع کافی آب شیرین، تأمین آب آشامیدنی سالم با مشکل روبه‌رو است.

طبق آمار برنامه عمران سازمان ملل متحد در سال ۲۰۰۶:

  • ۱٫۱ میلیارد نفر به آب آشامیدنی دسترسی ندارند.[۱۳]
  • ۲٫۶ میلیارد نفر به آب کافی برای بهداشت دسترسی ندارند.[۱۳]
  • ۷۰۰ میلیون نفر در ۴۳ کشور با مشکل کمبود پیوستهٔ آب مواجه هستند.[۱۴]
  • ۱٫۸ میلیون کودک زیر ۵ سال هر روز از ابتلا به اسهال به علت آشامیدن آب ناسالم می‌میرند.[۱۵]

آلودگی آب شرب و اهمیت تصفیه آب[ویرایش]

آب بیش از دوسوم سطح کره زمین را پوشانده‌است. ۹۷٫۶۳ درصد از آب‌های موجود در این سیاره در اقیانوس‌ها و دریاها انباشته شده‌اند، لیکن تنها حدود ۸/۲ درصد از آب‌های موجود قابل شرب می‌باشد. مقدار قابل توجهی از کل آب‌های سطح کره زمین به‌صورت مناطق قطبی، یخچال‌های طبیعی، رطوبت هوا و خاک می‌باشد که عملاً غیرقابل دسترسی‌است و تنها ۰٫۶۲ درصد از آن در رودخانه‌ها جاری بوده و یا به‌صورت دریاچه‌های آب شیرین و منابع زیرزمینی قرار گرفته‌اند و انسان‌ها آب آشامیدنی خود را از این منابع تأمین می‌نمایند.

Fresh water fountain.jpg

امروزه این منابع محدود آب شیرین قابل دسترس در معرض انواع آلودگی‌های میکروبی و شیمیائی قرار گرفته، و آلاینده‌های فراوانی از طریق فاضلاب‌های صنعتی و کودهای شیمیائی منابع حیاتی انسان‌ها را به طور جدی تهدید می‌نماید.

۱) متأسفانه با توسعه تمدن جدید و صنعتی شدن جوامع، فاضلاب‌های صنعتی، مواد سمی، فلزات سنگین و آلودگی‌های مضر که برای سلامتی موجود تهدید به شمار می‌آید، از قبیل اسیدیته آزاد، مواد قلیائی، گازهای سمی، مواد رادیواکتیو، میکروارگانیسم‌های بیماری‌زا، چربی و روغن و... را وارد آب‌های شیرین قابل دسترس می‌نمایند.

۲) مواد شوینده که در عصر ما بسیار توسعه یافته و حجم وسیعی را تشکیل می‌دهد، هر روز و هر ساعت از طریق چاه‌های فاضلاب وارد آب‌های زیرزمینی گردیده و مولکول‌های کربن‌دار حلقوی (هیدروکربورها) موجود در آنکه به آسانی قابل استحاله و تغییر نیستند، را وارد آب‌های زیرزمینی می‌گردانند و آلودگی شیمیائی ایجاد می‌نمایند. متأسفانه با تمام تلاشی که به عمل آمده در حال حاضر فقط ۲۵ درصد از پاک کننده‌ها (دترجنت‌ها) در شرایط معمولی تجزیه می‌گردند (جزء انواع تجزیه شونده می‌باشند) و ۷۵ درصد آن‌ها استحاله نمی‌گردد و مولکول‌های حلقوی کربن‌دار آن‌ها شکسته نمی‌شوند.

۳) تصفیه‌خانه‌های آب شرب جهت مبارزه با آلودگی‌ها با اضافه کردن مقداری کلر که ارزان‌ترین و قابل دسترس‌ترین آنتی‌اکسیدان است، میکروب‌ها و ویروس‌ها را در شرایطی خاص (نه به طور کامل) از بین می‌برند. هنگامی که کلر به عنوان گندزدائی کننده در تصفیه آب به کار می‌رود، در اثر ترکیب کلر با مواد آلی مثل اسید هیومیک تولید تری‌هالومتان‌ها THMs یا هالوفرم‌ها را می‌نماید، تری‌هالومتان‌های اصلی عبارتند از: کلروفرم (CHCL3)، برمودی کلرومتان (CHBrCL2)، دی‌برموکلرومتان (CHBr2CL) و برموفرم (CHBr3). شواهدی در دست است که این ترکیبات خاصیت سرطان‌زائی دارند، که برای سلامتی انسان‌ها جداً زیان‌بخش تشخیص داده شده‌اند. در شکل تصفیه آب به‌صورت رایج این‌گونه مواد همچنان در آب باقی می‌مانند و کلر اضافی باقی‌مانده نیز اثر زیان‌آور خود را بر سلامتی انسان‌ها وارد می‌سازد. در هر حال تصفیه‌های اولیه تأثیر زیادی در رابطه با مقابله با آلودگی شیمیائی و عناصر محلول در آب نمی‌توانند انجام دهند. فلزات مضر و نمک‌های زیان‌آور همچنان از طریق آب آشامیدنی وارد بدن انسان‌ها می‌گردند و اثرات تخریبی خود را به‌جای خواهند گذاشت.

۴) آب حاوی محلول نمک‌ها و فلزات زیان‌آور، که میزان آن با: رسانایی الکتریکی و مجموع جامدات محلول،[۱۶] مشخص می‌گردد، متابولیسم سلولی و سوخت و ساز سلول‌های بدن انسان را تحت تأثیر قرار می‌دهد و دررسیدن غذا و اکسیژن کافی به نسوج و بافت‌های بدن اختلال ایجاد می‌نماید. این اختلال به‌صورت خستگی مفرط، ناراحتی‌های پوستی، ضعف در عضلات بدن، سردرد و... ظاهر می‌گردد. مواد زائد آب در سیستم گردش خون به‌صورت رسوباتی در جداره رگ‌ها باقی می‌مانند و موجب تصلب شرائین، فشار خون، کاهش کارائی کلیه‌ها و کاهش ترشحات مفید غدد بدن و نهایتاً سکته‌های قلبی، مغزی و سایر عوارض خطرناک می‌گردند.

۵) میزان آب موجود در بدن انسان ۶۶ درصد تا ۸۵ درصد است که مقدار آن در خون ۷۹ درصد می‌باشد. آب سالم و بهداشتی آبی‌است که قادر به انجام مأموریت‌های ضروری برای حیات پرنشاط و سالم باشد. سوخت و ساز سلولی عمدتاً توسط آب صورت می‌پذیرد و آب به طور دائم سلول‌ها و بافت‌ها را با حمل مواد غذائی تغذیه کرده و سپس مواد زائد آن‌ها را به خارج از بدن حمل می‌کند، که در صورت اشباع بودن مولکول‌های آب از عناصر زائد این توانائی کاهش می‌یابد و عوارض آن به‌صورت‌های گوناگون در زندگی ما ظاهر می‌گردد.

۶) توجه به امر بهداشت آب آشامیدنی و مضرات ناشی از آلودگی‌های مختلف آب در سال ۷۸ توجه همراهان گروه تصفیه آب را به خود جلب نمود. آنان جهت پرهیز دادن از امراض و ناراحتی‌های ناشی از این آلودگی‌ها، و توسعه آگاهی عمومی نسبت به آن‌ها تلاش‌های خود را آغاز کردند. استفاده گسترده از سیستم‌های تصفیه اسمز معکوس از نتایج این فعالیت‌هاست. اسمز معکوس سیستمی‌است که با بهره‌گیری از قانون اسمز در طبیعت می‌تواند آب‌های آلوده و ناسالم با عبور دادن از فیلتری مخصوص به نام غشاء به آب سالم بهداشتی تبدیل نماید، که نزدیک به مختصات استاندارد سازمان بهداشت جهانی می‌باشد. این سیستم مولکول‌های آب را غربال کرده و مولکول‌های اشباع نشده و سالم را از مولکول‌های اشباع شده جدا می‌نماید. انواع میکروب‌ها و ویروس‌ها که در اندازه‌های فیزیکی ۰۳/۰ تا ۳ میکرون مشخص می‌گردد و همچنین انواع فلزات سنگین و نمک‌های زیان‌آور را به‌صورت پساب خارج می‌نماید و تنها به آب سالم و بهداشتی اجازه عبور و خروج از سامانه را می‌دهد که قابل شرب و اطمینان‌آور است.

جنبه دینی[ویرایش]

آب که از دیرباز به سبب حیاتی بودن مقدس شمرده می‌شود در یک آیین معنوی کاربردی تقدسبخش پیدا می‌کند. تقدس آن بهگونه‌ای است که از یک سوی نماد زیست و زندگی و از سوی دیگر نماد پالایش و طهارت می‌باشد. آب در ترکیب با یک آیین‌های پاکیزگی و طهارت تبدیل به رکن اساسی در آیینهای مذهبی می‌شود.[۱۷] بر اساس باورهای اسلامی آب تنها مایع پاک کننده است. البته پاکی تنها به تمیزی اشاره نمی‌کند و مفهومی گسترده‌تر را فرا می‌گیرد. بر اساس دستور اسلام، هر مسلمان در روز باید ۵ بار با آب وضو بگیرد. وضو گرفتن قبل از خواندن نماز واجب است. همچنین در موارد بسیاری مسلمانان باید بدن خود را بطور کامل با آب شست‌وشو دهند که به آن غسل می‌گویند. البته غسل‌های مستحبی نیز در برخی روزهای عید و مناسبت‌های خاص از سوی رهبران اسلامی توصیه شده که موجب پاکی و طهارت جسم و در نتیجه ارامش روحی نیز می‌شود. این متن برداشتی است که منبع آن راهنمای فتاوای آیت‌الله خامنه‌ای است.[۱۸]

برخی باورهای دینی برای این عنصر مادی به خاطر پالایندگی جسم مرتبه پالایندگی روح نیز قائل شده‌اند. در بیان اسطوره ایزیس از ایزدان مصری آمده‌است که پیکر مرده ایزیس در آبهای نیل شناور بود و به زندگی برگشت به این خاطر که در آبهای نیل غسل داده شد. ایزدبانوی ماه، در اساطیر قبایل مائوری نیوزیلند، به نام مارما پس از اینکه به طور کامل از بین می‌رود، هرگاه در آبهای زندگانی خود را شست‌وشو می‌دهد دوباره شکوه گذشته خود را بازمی‌یابد.[۱۷]

نام وایورا،[۱۹] ایزدبانوی تندرستی در جزایر پلی‌نزی مرکزی، به معنای «آب زندگانی» است. در داستان حماسی گیلگمش، وقتی گیلگمش خسته و درمانده به دنبال زندگی جاودان رهسپار می‌شود، با سیدوری برخورد می‌کند. او در پاسخ گیلگمش که زندگی جاودان را خواستار است، نخست به او گوشزد می‌کند که زندگی جاودان ویژه ایزدان است و در این میان سهم انسان، لذت بردن از مواهب زندگی است. او خطاب به گیلگمش می‌گوید پوشاک نو به تن کن، تن را در آب بشوی و...[۱۷]

در این اسطوره شستن تن در آب، جزیی از سهم و قسمت انسان از زندگی، و از مواهب ارزشمندی که خدایان به انسانها بخشیدهاند، محسوب می‌شود.[۱۷]

جستارهای وابسته[ویرایش]

پانویس[ویرایش]

  1. “water”. Encyclopædia Britannica. Retrieved 2 April 2014. 
  2. Denny and American Society of Zoologists. Meeting, Air and Water: The Biology and Physics of Life's Media, 27.
  3. ۳٫۰ ۳٫۱ نامعلوم. «ویژگی‌ها و خصوصیات آب»(فارسی)‎. وبگاه iranhydrology.com. بایگانی‌شده از نسخهٔ اصلی در ۱۸ فوریه ۲۰۱۳. بازبینی‌شده در 22 خرداد 1387. 
  4. کتاب شیمی سال اول دبیرستان دانش‌آموزان ایران فصل سوم (روش به دست آوردن جرم مولی)
  5. کتاب شیمی سال اول دبیرستان دانش‌آموزان ایران فصل اول
  6. ۶٫۰ ۶٫۱ ویکی‌پدیای فرانسوی، بازدید تاریخ ۷ ژوئن ۲۰۰۸
  7. خادم، حسین. «منابع تأمین آب»(فارسی)‎. مدخل. دانشنامه رشد، ۱۷ فروردین ۱۳۸۵. بایگانی‌شده از نسخهٔ اصلی در ۱۸ فوریه ۲۰۱۳. بازبینی‌شده در ۱۹ خرداد ۱۳۸۷. 
  8. آمار یونسکو
  9. ourplanet فرانسوی
  10. ۱۰٫۰ ۱۰٫۱ فرانسوی Société Publique de la Gestion de l'Eau
  11. بیش از کمبود: قدرت، فقر و بحران جهانی آب، فصل اول، ص۳۴
  12. Davie, T. Fundamentals of hydrology, Routedage publication, london, ۲۰۰۲
  13. ۱۳٫۰ ۱۳٫۱ بیش از کمبود: قدرت، فقر و بحران جهانی آب، فصل اول، ص۳۳
  14. بیش از کمبود: قدرت، فقر و بحران جهانی آب، فصل چهارم، ص۱۳۵
  15. بیش از کمبود: قدرت، فقر و بحران جهانی آب، فصل اول، ص۴۳
  16. TDS
  17. ۱۷٫۰ ۱۷٫۱ ۱۷٫۲ ۱۷٫۳ بلمکی، بهزاد - تقوایی، آزاده: هنر، اسطوره و کارکردهای آیینی در شکل‌گیری حمام. در: مجله «کتاب ماه هنر» آبان ۱۳۸۷ - شماره ۱۲۲. (از صفحه ۱۰۶ تا ۱۱۳).
  18. «رهنمای فتاوا». پایگاه اطلاع رسانی دفتر مقام معظم رهبری، ۱۱ مرداد 1392. بازبینی‌شده در 3 آگوست ۲۰۱۳. 
  19. Waiora

منابع[ویرایش]

جستجو در ویکی‌انبار در ویکی‌انبار پرونده‌هایی دربارهٔ آب موجود است.
جستجو در ویکی‌گفتاورد مجموعه‌ای از گفتاوردهای مربوط به آب در ویکی‌گفتاورد موجود است.
"H2O" and "HOH" redirect here. For other uses, see H2O (disambiguation) and HOH (disambiguation).
This article is about general aspects of water. For a detailed discussion of its physical and chemical properties, see Properties of water. For other uses, see Water (disambiguation).
Water in three states: liquid, solid (ice), and gas (invisible water vapor in the air). Clouds are accumulations of water droplets, condensed from vapor-saturated air.
Video demonstrating states of water present in domestic life.

Water is a transparent fluid which forms the world's streams, lakes, oceans and rain, and is the major constituent of the fluids of living things. As a chemical compound, a water molecule contains one oxygen and two hydrogen atoms that are connected by covalent bonds. Water is a liquid at standard ambient temperature and pressure, but it often co-exists on Earth with its solid state, ice; and gaseous state, steam (water vapor).

Water covers 71% of the Earth's surface.[1] It is vital for all known forms of life. On Earth, 96.5% of the planet's water is found in seas and oceans, 1.7% in groundwater, 1.7% in glaciers and the ice caps of Antarctica and Greenland, a small fraction in other large water bodies, and 0.001% in the air as vapor, clouds (formed of solid and liquid water particles suspended in air), and precipitation.[2][3] Only 2.5% of the Earth's water is freshwater, and 98.8% of that water is in ice and groundwater. Less than 0.3% of all freshwater is in rivers, lakes, and the atmosphere, and an even smaller amount of the Earth's freshwater (0.003%) is contained within biological bodies and manufactured products.[2]

Water on Earth moves continually through the water cycle of evaporation and transpiration (evapotranspiration), condensation, precipitation, and runoff, usually reaching the sea. Evaporation and transpiration contribute to the precipitation over land. Water used in the production of a good or service is known as virtual water.

Safe drinking water is essential to humans and other lifeforms even though it provides no calories or organic nutrients. Access to safe drinking water has improved over the last decades in almost every part of the world, but approximately one billion people still lack access to safe water and over 2.5 billion lack access to adequate sanitation.[4] There is a clear correlation between access to safe water and gross domestic product per capita.[5] However, some observers have estimated that by 2025 more than half of the world population will be facing water-based vulnerability.[6] A report, issued in November 2009, suggests that by 2030, in some developing regions of the world, water demand will exceed supply by 50%.[7] Water plays an important role in the world economy, as it functions as a solvent for a wide variety of chemical substances and facilitates industrial cooling and transportation. Approximately 70% of the fresh water used by humans goes to agriculture.[8]

Chemical and physical properties

Model of hydrogen bonds (1) between molecules of water.
Impact from a water drop causes an upward "rebound" jet surrounded by circular capillary waves.
Dew drops adhering to a spider web.
Capillary action of water compared to mercury.

Water is the chemical substance with chemical formula H
2
O
: one molecule of water has two hydrogen atoms covalently bonded to a single oxygen atom.

Water appears in nature in all three common states of matter (solid, liquid, and gas) and may take many different forms on Earth: water vapor and clouds in the sky, seawater in the oceans, icebergs in the polar oceans, glaciers in the mountains, fresh and salt water lakes, rivers, and aquifers in the ground.

The major chemical and physical properties of water are:

  • Water is a liquid at standard temperature and pressure. It is tasteless and odorless. The intrinsic colour of water and ice is a very slight blue hue, although both appear colorless in small quantities. Water vapour is essentially invisible as a gas.[9]
  • Since the water molecule is not linear and the oxygen atom has a higher electronegativity than hydrogen atoms, the oxygen atom carries a slight negative charge, whereas the hydrogen atoms are slightly positive. As a result, water is a polar molecule with an electrical dipole moment. Water also can form an unusually large number of intermolecular hydrogen bonds (four) for a molecule of its size. These factors lead to strong attractive forces between molecules of water, giving rise to water's high surface tension[10] and capillary forces. The capillary action refers to the tendency of water to move up a narrow tube against the force of gravity. This property is relied upon by all vascular plants, such as trees.[11]
  • All of the components in cells (proteins, DNA and polysaccharides) are dissolved in water, deriving their structure and activity from their interactions with the water.
  • The boiling point of water (and all other liquids) is dependent on the barometric pressure. For example, on the top of Mount Everest water boils at 68 °C (154 °F), compared to 100 °C (212 °F) at sea level at a similar latitude (since latitude modifies atmospheric pressure slightly). Conversely, water deep in the ocean near geothermal vents can reach temperatures of hundreds of degrees and remain liquid.
  • At 4181.3 J/(kg·K), water has a high specific heat capacity, as well as a high heat of vaporization (40.65 kJ·mol−1), both of which are a result of the extensive hydrogen bonding between its molecules. These two unusual properties allow water to moderate Earth's climate by buffering large fluctuations in temperature.
  • The density of liquid water is 1,000 kg/m3 (62.43 lb/cu ft) at 4 °C. Ice has a density of 917 kg/m3 (57.25 lb/cu ft).
ADR label for transporting goods dangerously reactive with water
  • The maximum density of water occurs at 3.98 °C (39.16 °F).[12] Most known pure substances become more dense as they cool, however water has the anomalous property of becoming less dense when it is cooled to its solid form, ice. During cooling water becomes more dense until reaching 3.98 °C. Below this temperature, the open structure of ice is gradually formed in the low temperature water; the random orientations of the water molecules in the liquid are maintained by the thermal motion, and below 3.98 °C there is not enough thermal energy to maintain this randomness. As water is cooled there are two competing effects: 1) decreasing volume, and 2) increase overall volume of the liquid as the molecules begin to orient into the organized structure of ice. Between 3.98 °C and 0 °C, the second effect will cancel the first effect so the net effect is an increase of volume with decreasing temperature.[13] Water expands to occupy a 9% greater volume as ice, which accounts for the fact that ice floats on liquid water, as in icebergs.
  • Water is miscible with many liquids, such as ethanol, in all proportions, forming a single homogeneous liquid. On the other hand, water and most oils are immiscible, usually forming layers with the least dense liquid as the top layer, and the most dense layer at the bottom.
  • Water forms an azeotrope with many other solvents.
  • Water can be split by electrolysis into hydrogen and oxygen. The energy required to split water into hydrogen and oxygen by electrolysis or any other means is greater than the energy that can be collected when the hydrogen and oxygen recombine.[14]
  • As an oxide of hydrogen, water is formed when hydrogen or hydrogen-containing compounds burn or react with oxygen or oxygen-containing compounds. Water is not a fuel, it is an end-product of the combustion of hydrogen.
Property Remarks Importance to the environment
Physical state Only substance occurring naturally in all three phases as solid, liquid, and gas on Earth's surface Transfer of heat between ocean and atmosphere by phase change
Dissolving ability Dissolves more substances in greater quantities than any other common liquid Important in chemical, physical, and biological processes
Density: mass per unit volume Density is determined by (1) temperature, (2) salinity, and (3) pressure, in that order of importance. The temperature of maximum density for pure water is 4 °C. For seawater, the freezing point decreases with increasing salinity Controls oceanic vertical circulation, aids in heat distribution, and allows seasonal stratification
Surface tension Highest of all common liquids Controls drop formation in rain and clouds; important in cell physiology
Conduction of heat Highest of all common liquids Important on the small scale, especially on cellular level
Heat capacity Highest of all common solids and liquids Prevents extreme range in Earth's temperatures (i.e., great heat moderator)
Latent heat of fusion Highest of all common liquids and most solids Thermostatic heat-regulating effect due to the release of heat on freezing and absorption on melting
Latent heat of vaporization Highest of all common substances Immense importance: a major factor in the transfer of heat in and between ocean and atmosphere, driving weather and climate
Refractive index Increases with increasing salinity and decreases with increasing temperature Objects appear closer than in air
Transparency Relatively great for visible light; absorption high for infrared and ultraviolet Important for photosynthesis
Sound transmission Good compared with other fluids Allows for sonar and precision depth recorders to rapidly determine water depth, and to detect subsurface features and animals; sounds can be heard great distances underwater
Compressibility Only slight Density changes only slightly with pressure/depth
Boiling and melting points Unusually high Allows water to exist as a liquid on most of Earth

Taste and odor

Pure H2O is tasteless and odorless.

Water can dissolve many different substances, giving it varying tastes and odors. Humans, and other animals, have developed senses that enable them to evaluate the potability of water by avoiding water that is too salty or putrid.

The taste of spring water and mineral water, often advertised in marketing of consumer products, derives from the minerals dissolved in it. The advertised purity of spring and mineral water refers to absence of toxins, pollutants, and microbes, not to the absence of naturally occurring minerals.

Distribution in nature

In the universe

Much of the universe's water is produced as a byproduct of star formation. When stars are born, their birth is accompanied by a strong outward wind of gas and dust. When this outflow of material eventually impacts the surrounding gas, the shock waves that are created compress and heat the gas. The water observed is quickly produced in this warm dense gas.[15]

On 22 July 2011 a report described the discovery of a gigantic cloud of water vapor containing "140 trillion times more water than all of Earth's oceans combined" around a quasar located 12 billion light years from Earth. According to the researchers, the "discovery shows that water has been prevalent in the universe for nearly its entire existence".[16][17]

Water has been detected in interstellar clouds within our galaxy, the Milky Way.[citation needed] Water probably exists in abundance in other galaxies, too, because its components, hydrogen and oxygen, are among the most abundant elements in the universe.[citation needed] Based on models of the formation and evolution of the Solar System and that of other star systems, most other planetary systems are likely to have similar ingredients.

Water vapor

Water is present as vapor in:

Liquid water

Turquoise water with a bit of Sun.

Liquid water is known to be present on Earth, covering 71% of our planet's surface. Scientists believe liquid water is present in the Saturnian moons of Enceladus, as a 10 kilometre thick ocean approximately 30-40 kilometres below Enceladus' south polar surface,[36][37] and Titan, as a subsurface layer, possibly mixed with ammonia.[38] Liquid water may also exist on Jupiter's moon Ganymede as a layer sandwiched between high pressure ice and rock.[39]

Water ice

Water is present as ice on:

  • Mars: under the regolith and at the poles
  • Earth-Moon system: mainly as ice sheets on Earth and in Lunar craters and volcanic rocks[40] NASA reported the detection of water molecules by NASA's Moon Mineralogy Mapper aboard the Indian Space Research Organization's Chandrayaan-1 spacecraft in September 2009.[41]
  • Jupiter's moons: Europa's surface and also that of Ganymede
  • Saturn: in the planets ring system[42] and on the surface and mantle of Titan and Enceladus
  • Pluto-Charon system[42]
  • Comets and related (Kuiper belt and Oort cloud objects).

And may also be present on:

Exotic forms

Water and other volatiles probably comprise much of the internal structures of Uranus and Neptune and the water in the deeper layers may be in the form of ionic water in which the molecules break down into a soup of hydrogen and oxygen ions, and deeper down as superionic water in which the oxygen crystallises but the hydrogen ions float around freely within the oxygen lattice.[44]

Water and habitable zone

Further information: Water distribution on Earth

The existence of liquid water, and to a lesser extent its gaseous and solid forms, on Earth are vital to the existence of life on Earth as we know it. The Earth is located in the habitable zone of the solar system; if it were slightly closer to or farther from the Sun (about 5%, or about 8 million kilometers), the conditions which allow the three forms to be present simultaneously would be far less likely to exist.[45][46]

Earth's gravity allows it to hold an atmosphere. Water vapor and carbon dioxide in the atmosphere provide a temperature buffer (greenhouse effect) which helps maintain a relatively steady surface temperature. If Earth were smaller, a thinner atmosphere would allow temperature extremes, thus preventing the accumulation of water except in polar ice caps (as on Mars).

The surface temperature of Earth has been relatively constant through geologic time despite varying levels of incoming solar radiation (insolation), indicating that a dynamic process governs Earth's temperature via a combination of greenhouse gases and surface or atmospheric albedo. This proposal is known as the Gaia hypothesis.

The state of water on a planet depends on ambient pressure, which is determined by the planet's gravity. If a planet is sufficiently massive, the water on it may be solid even at high temperatures, because of the high pressure caused by gravity, as it was observed on exoplanets Gliese 436 b[47] and GJ 1214 b.[48]

On Earth

Water covers 71% of the Earth's surface; the oceans contain 96.5% of the Earth's water. The Antarctic ice sheet, which contains 61% of all fresh water on Earth, is visible at the bottom. Condensed atmospheric water can be seen as clouds, contributing to the Earth's albedo.

Hydrology is the study of the movement, distribution, and quality of water throughout the Earth. The study of the distribution of water is hydrography. The study of the distribution and movement of groundwater is hydrogeology, of glaciers is glaciology, of inland waters is limnology and distribution of oceans is oceanography. Ecological processes with hydrology are in focus of ecohydrology.

The collective mass of water found on, under, and over the surface of a planet is called the hydrosphere. Earth's approximate water volume (the total water supply of the world) is 1,338,000,000 km3 (321,000,000 mi3).[2]

Liquid water is found in bodies of water, such as an ocean, sea, lake, river, stream, canal, pond, or puddle. The majority of water on Earth is sea water. Water is also present in the atmosphere in solid, liquid, and vapor states. It also exists as groundwater in aquifers.

Water is important in many geological processes. Groundwater is present in most rocks, and the pressure of this groundwater affects patterns of faulting. Water in the mantle is responsible for the melt that produces volcanoes at subduction zones. On the surface of the Earth, water is important in both chemical and physical weathering processes. Water, and to a lesser but still significant extent, ice, are also responsible for a large amount of sediment transport that occurs on the surface of the earth. Deposition of transported sediment forms many types of sedimentary rocks, which make up the geologic record of Earth history.

Water cycle

Main article: Water cycle

The water cycle (known scientifically as the hydrologic cycle) refers to the continuous exchange of water within the hydrosphere, between the atmosphere, soil water, surface water, groundwater, and plants.

Water moves perpetually through each of these regions in the water cycle consisting of following transfer processes:

  • evaporation from oceans and other water bodies into the air and transpiration from land plants and animals into air.
  • precipitation, from water vapor condensing from the air and falling to earth or ocean.
  • runoff from the land usually reaching the sea.

Most water vapor over the oceans returns to the oceans, but winds carry water vapor over land at the same rate as runoff into the sea, about 47 Tt per year. Over land, evaporation and transpiration contribute another 72 Tt per year. Precipitation, at a rate of 119 Tt per year over land, has several forms: most commonly rain, snow, and hail, with some contribution from fog and dew.[49] Dew is small drops of water that are condensed when a high density of water vapor meets a cool surface. Dew usually forms in the morning when the temperature is the lowest, just before sunrise and when the temperature of the earth's surface starts to increase.[50] Condensed water in the air may also refract sunlight to produce rainbows.

Water runoff often collects over watersheds flowing into rivers. A mathematical model used to simulate river or stream flow and calculate water quality parameters is a hydrological transport model. Some water is diverted to irrigation for agriculture. Rivers and seas offer opportunity for travel and commerce. Through erosion, runoff shapes the environment creating river valleys and deltas which provide rich soil and level ground for the establishment of population centers. A flood occurs when an area of land, usually low-lying, is covered with water. It is when a river overflows its banks or flood comes from the sea. A drought is an extended period of months or years when a region notes a deficiency in its water supply. This occurs when a region receives consistently below average precipitation.

Fresh water storage

Bay of Fundy High Tide.jpgBay of Fundy Low Tide.jpg
The Bay of Fundy at high tide (left) and low tide (right)
Main article: Water resources

Some runoff water is trapped for periods of time, for example in lakes. At high altitude, during winter, and in the far north and south, snow collects in ice caps, snow pack and glaciers. Water also infiltrates the ground and goes into aquifers. This groundwater later flows back to the surface in springs, or more spectacularly in hot springs and geysers. Groundwater is also extracted artificially in wells. This water storage is important, since clean, fresh water is essential to human and other land-based life. In many parts of the world, it is in short supply.

Sea water

Main article: Seawater

Sea water contains about 3.5% salt on average, plus smaller amounts of other substances. The physical properties of sea water differ from fresh water in some important respects. It freezes at a lower temperature (about −1.9 °C) and its density increases with decreasing temperature to the freezing point, instead of reaching maximum density at a temperature above freezing. The salinity of water in major seas varies from about 0.7% in the Baltic Sea to 4.0% in the Red Sea.

Tides

Main article: Tide

Tides are the cyclic rising and falling of local sea levels caused by the tidal forces of the Moon and the Sun acting on the oceans. Tides cause changes in the depth of the marine and estuarine water bodies and produce oscillating currents known as tidal streams. The changing tide produced at a given location is the result of the changing positions of the Moon and Sun relative to the Earth coupled with the effects of Earth rotation and the local bathymetry. The strip of seashore that is submerged at high tide and exposed at low tide, the intertidal zone, is an important ecological product of ocean tides.

Effects on life

An oasis is an isolated water source with vegetation in a desert.
Overview of photosynthesis and respiration. Water (at right), together with carbon dioxide (CO2), form oxygen and organic compounds (at left), which can be respired to water and (CO2).

From a biological standpoint, water has many distinct properties that are critical for the proliferation of life that set it apart from other substances. It carries out this role by allowing organic compounds to react in ways that ultimately allow replication. All known forms of life depend on water. Water is vital both as a solvent in which many of the body's solutes dissolve and as an essential part of many metabolic processes within the body. Metabolism is the sum total of anabolism and catabolism. In anabolism, water is removed from molecules (through energy requiring enzymatic chemical reactions) in order to grow larger molecules (e.g. starches, triglycerides and proteins for storage of fuels and information). In catabolism, water is used to break bonds in order to generate smaller molecules (e.g. glucose, fatty acids and amino acids to be used for fuels for energy use or other purposes). Without water, these particular metabolic processes could not exist.

Water is fundamental to photosynthesis and respiration. Photosynthetic cells use the sun's energy to split off water's hydrogen from oxygen. Hydrogen is combined with CO2 (absorbed from air or water) to form glucose and release oxygen. All living cells use such fuels and oxidize the hydrogen and carbon to capture the sun's energy and reform water and CO2 in the process (cellular respiration).

Water is also central to acid-base neutrality and enzyme function. An acid, a hydrogen ion (H+, that is, a proton) donor, can be neutralized by a base, a proton acceptor such as a hydroxide ion (OH) to form water. Water is considered to be neutral, with a pH (the negative log of the hydrogen ion concentration) of 7. Acids have pH values less than 7 while bases have values greater than 7.

Aquatic life forms

Main articles: Hydrobiology and Aquatic plant
Some of the biodiversity of a coral reef
Some marine diatoms – a key phytoplankton group

Earth surface waters are filled with life. The earliest life forms appeared in water; nearly all fish live exclusively in water, and there are many types of marine mammals, such as dolphins and whales. Some kinds of animals, such as amphibians, spend portions of their lives in water and portions on land. Plants such as kelp and algae grow in the water and are the basis for some underwater ecosystems. Plankton is generally the foundation of the ocean food chain.

Aquatic vertebrates must obtain oxygen to survive, and they do so in various ways. Fish have gills instead of lungs, although some species of fish, such as the lungfish, have both. Marine mammals, such as dolphins, whales, otters, and seals need to surface periodically to breathe air. Some amphibians are able to absorb oxygen through their skin. Invertebrates exhibit a wide range of modifications to survive in poorly oxygenated waters including breathing tubes (see insect and mollusc siphons) and gills (Carcinus). However as invertebrate life evolved in an aquatic habitat most have little or no specialisation for respiration in water.

Effects on human civilization

Water fountain

Civilization has historically flourished around rivers and major waterways; Mesopotamia, the so-called cradle of civilization, was situated between the major rivers Tigris and Euphrates; the ancient society of the Egyptians depended entirely upon the Nile. Large metropolises like Rotterdam, London, Montreal, Paris, New York City, Buenos Aires, Shanghai, Tokyo, Chicago, and Hong Kong owe their success in part to their easy accessibility via water and the resultant expansion of trade. Islands with safe water ports, like Singapore, have flourished for the same reason. In places such as North Africa and the Middle East, where water is more scarce, access to clean drinking water was and is a major factor in human development.

Health and pollution

An environmental science program - a student from Iowa State University sampling water

Water fit for human consumption is called drinking water or potable water. Water that is not potable may be made potable by filtration or distillation, or by a range of other methods.

Water that is not fit for drinking but is not harmful for humans when used for swimming or bathing is called by various names other than potable or drinking water, and is sometimes called safe water, or "safe for bathing". Chlorine is a skin and mucous membrane irritant that is used to make water safe for bathing or drinking. Its use is highly technical and is usually monitored by government regulations (typically 1 part per million (ppm) for drinking water, and 1–2 ppm of chlorine not yet reacted with impurities for bathing water). Water for bathing may be maintained in satisfactory microbiological condition using chemical disinfectants such as chlorine or ozone or by the use of ultraviolet light.

In the USA, non-potable forms of wastewater generated by humans may be referred to as greywater, which is treatable and thus easily able to be made potable again, and blackwater, which generally contains sewage and other forms of waste which require further treatment in order to be made reusable. Greywater composes 50–80% of residential wastewater generated by a household's sanitation equipment (sinks, showers and kitchen runoff, but not toilets, which generate blackwater.) These terms may have different meanings in other countries and cultures.

This natural resource is becoming scarcer in certain places, and its availability is a major social and economic concern. Currently, about a billion people around the world routinely drink unhealthy water. Most countries accepted the goal of halving by 2015 the number of people worldwide who do not have access to safe water and sanitation during the 2003 G8 Evian summit.[51] Even if this difficult goal is met, it will still leave more than an estimated half a billion people without access to safe drinking water and over a billion without access to adequate sanitation. Poor water quality and bad sanitation are deadly; some five million deaths a year are caused by polluted drinking water. The World Health Organization estimates that safe water could prevent 1.4 million child deaths from diarrhea each year.[52]

Water, however, is not a finite resource, but rather re-circulated as potable water in precipitation in quantities many degrees of magnitude higher than human consumption. Therefore, it is the relatively small quantity of water in reserve in the earth (about 1% of our drinking water supply, which is replenished in aquifers around every 1 to 10 years), that is a non-renewable resource, and it is, rather, the distribution of potable and irrigation water which is scarce, rather than the actual amount of it that exists on the earth. Water-poor countries use importation of goods as the primary method of importing water (to leave enough for local human consumption), since the manufacturing process uses around 10 to 100 times products' masses in water.

In the developing world, 90% of all wastewater still goes untreated into local rivers and streams.[53] Some 50 countries, with roughly a third of the world's population, also suffer from medium or high water stress, and 17 of these extract more water annually than is recharged through their natural water cycles.[54] The strain not only affects surface freshwater bodies like rivers and lakes, but it also degrades groundwater resources.

Human uses

Further information: Water supply

Agriculture

Water distribution in subsurface drip irrigation
Irrigation of field crops

The most important use of water in agriculture is for irrigation, which is a key component to produce enough food. Irrigation takes up to 90% of water withdrawn in some developing countries[55] and significant proportions in more economically developed countries (United States, 30% of freshwater usage is for irrigation).[56]

Fifty years ago, the common perception was that water was an infinite resource. At this time, there were fewer than half the current number of people on the planet. People were not as wealthy as today, consumed fewer calories and ate less meat, so less water was needed to produce their food. They required a third of the volume of water we presently take from rivers. Today, the competition for the fixed amount of water resources is much more intense, giving rise to the concept of peak water.[57] This is because there are now nearly seven billion people on the planet, their consumption of water-thirsty meat and vegetables is rising, and there is increasing competition for water from industry, urbanisation and biofuel crops. In future, even more water will be needed to produce food because the Earth's population is forecast to rise to 9 billion by 2050.[58]

An assessment of water management in agriculture was conducted in 2007 by the International Water Management Institute in Sri Lanka to see if the world had sufficient water to provide food for its growing population.[59] It assessed the current availability of water for agriculture on a global scale and mapped out locations suffering from water scarcity. It found that a fifth of the world's people, more than 1.2 billion, live in areas of physical water scarcity, where there is not enough water to meet all demands. A further 1.6 billion people live in areas experiencing economic water scarcity, where the lack of investment in water or insufficient human capacity make it impossible for authorities to satisfy the demand for water. The report found that it would be possible to produce the food required in future, but that continuation of today's food production and environmental trends would lead to crises in many parts of the world. To avoid a global water crisis, farmers will have to strive to increase productivity to meet growing demands for food, while industry and cities find ways to use water more efficiently.[60]

As a scientific standard

On 7 April 1795, the gram was defined in France to be equal to "the absolute weight of a volume of pure water equal to a cube of one hundredth of a meter, and at the temperature of melting ice."[61] For practical purposes though, a metallic reference standard was required, one thousand times more massive, the kilogram. Work was therefore commissioned to determine precisely the mass of one liter of water. In spite of the fact that the decreed definition of the gram specified water at 0 °C — a highly reproducible temperature — the scientists chose to redefine the standard and to perform their measurements at the temperature of highest water density, which was measured at the time as 4 °C (39 °F).[62]

The Kelvin temperature scale of the SI system is based on the triple point of water, defined as exactly 273.16 K or 0.01 °C. The scale is an absolute temperature scale with the same increment as the Celsius temperature scale, which was originally defined according the boiling point (set to 100 °C) and melting point (set to 0 °C) of water.

Natural water consists mainly of the isotopes hydrogen-1 and oxygen-16, but there is also a small quantity of heavier isotopes such as hydrogen-2 (deuterium). The amount of deuterium oxides or heavy water is very small, but it still affects the properties of water. Water from rivers and lakes tends to contain less deuterium than seawater. Therefore, standard water is defined in the Vienna Standard Mean Ocean Water specification.

For drinking

Main article: Drinking water
A young girl drinking bottled water
Water availability: fraction of population using improved water sources by country

The human body contains from 55% to 78% water, depending on body size.[63] To function properly, the body requires between one and seven liters of water per day to avoid dehydration; the precise amount depends on the level of activity, temperature, humidity, and other factors. Most of this is ingested through foods or beverages other than drinking straight water. It is not clear how much water intake is needed by healthy people, though most specialists agree that approximately 2 liters (6 to 7 glasses) of water daily is the minimum to maintain proper hydration.[64] Medical literature favors a lower consumption, typically 1 liter of water for an average male, excluding extra requirements due to fluid loss from exercise or warm weather.[65]

For those who have healthy kidneys, it is rather difficult to drink too much water, but (especially in warm humid weather and while exercising) it is dangerous to drink too little. People can drink far more water than necessary while exercising, however, putting them at risk of water intoxication (hyperhydration), which can be fatal.[66][67] The popular claim that "a person should consume eight glasses of water per day" seems to have no real basis in science.[68] Similar misconceptions concerning the effect of water on weight loss and constipation have also been dispelled.[69]

Hazard symbol for non-potable water

An original recommendation for water intake in 1945 by the Food and Nutrition Board of the United States National Research Council read: "An ordinary standard for diverse persons is 1 milliliter for each calorie of food. Most of this quantity is contained in prepared foods."[70] The latest dietary reference intake report by the United States National Research Council in general recommended (including food sources): 3.7 liters for men and 2.7 liters of water total for women.[71]

Specifically, pregnant and breastfeeding women need additional fluids to stay hydrated. The Institute of Medicine (U.S.) recommends that, on average, men consume 3.0 liters and women 2.2 liters; pregnant women should increase intake to 2.4 liters (10 cups) and breastfeeding women should get 3 liters (12 cups), since an especially large amount of fluid is lost during nursing.[72] Also noted is that normally, about 20% of water intake comes from food, while the rest comes from drinking water and beverages (caffeinated included). Water is excreted from the body in multiple forms; through urine and feces, through sweating, and by exhalation of water vapor in the breath. With physical exertion and heat exposure, water loss will increase and daily fluid needs may increase as well.

Humans require water with few impurities. Common impurities include metal salts and oxides, including copper, iron, calcium and lead,[73] and/or harmful bacteria, such as Vibrio. Some solutes are acceptable and even desirable for taste enhancement and to provide needed electrolytes.[74]

The single largest (by volume) freshwater resource suitable for drinking is Lake Baikal in Siberia.[75]

Washing

The propensity of water to form solutions and emulsions is useful in various washing processes. Many industrial processes rely on reactions using chemicals dissolved in water, suspension of solids in water slurries or using water to dissolve and extract substances. Washing is also an important component of several aspects of personal body hygiene.

Transportation

The use of water for transportation of materials through rivers and canals as well as the international shipping lanes is an important part of the world economy.

Chemical uses

Water is widely used in chemical reactions as a solvent or reactant and less commonly as a solute or catalyst. In inorganic reactions, water is a common solvent, dissolving many ionic compounds. In organic reactions, it is not usually used as a reaction solvent, because it does not dissolve the reactants well and is amphoteric (acidic and basic) and nucleophilic. Nevertheless, these properties are sometimes desirable. Also, acceleration of Diels-Alder reactions by water has been observed. Supercritical water has recently been a topic of research. Oxygen-saturated supercritical water combusts organic pollutants efficiently.

Heat exchange

Water and steam are a common fluid used for heat exchange, due to its availability and high heat capacity, both for cooling and heating. Cool water may even be naturally available from a lake or the sea. It's especially effective to transport heat through vaporization and condensation of water because of its large latent heat of vaporization. A disadvantage is that metals commonly found in industries such as steel and copper are oxidized faster by untreated water and steam. In almost all thermal power stations, water is used as the working fluid (used in a closed loop between boiler, steam turbine and condenser), and the coolant (used to exchange the waste heat to a water body or carry it away by evaporation in a cooling tower). In the United States, cooling power plants is the largest use of water.[56]

In the nuclear power industry, water can also be used as a neutron moderator. In most nuclear reactors, water is both a coolant and a moderator. This provides something of a passive safety measure, as removing the water from the reactor also slows the nuclear reaction down. However other methods are favored for stopping a reaction and it is preferred to keep the nuclear core covered with water so as to ensure adequate cooling.

Fire extinction

Water is used for fighting wildfires.

Water has a high heat of vaporization and is relatively inert, which makes it a good fire extinguishing fluid. The evaporation of water carries heat away from the fire. It is dangerous to use water on fires involving oils and organic solvents, because many organic materials float on water and the water tends to spread the burning liquid.

Use of water in fire fighting should also take into account the hazards of a steam explosion, which may occur when water is used on very hot fires in confined spaces, and of a hydrogen explosion, when substances which react with water, such as certain metals or hot carbon such as coal, charcoal, or coke graphite, decompose the water, producing water gas.

The power of such explosions was seen in the Chernobyl disaster, although the water involved did not come from fire-fighting at that time but the reactor's own water cooling system. A steam explosion occurred when the extreme overheating of the core caused water to flash into steam. A hydrogen explosion may have occurred as a result of reaction between steam and hot zirconium.

Recreation

Grand Anse Beach, St. George's, Grenada, West Indies

Humans use water for many recreational purposes, as well as for exercising and for sports. Some of these include swimming, waterskiing, boating, surfing and diving. In addition, some sports, like ice hockey and ice skating, are played on ice. Lakesides, beaches and water parks are popular places for people to go to relax and enjoy recreation. Many find the sound and appearance of flowing water to be calming, and fountains and other water features are popular decorations. Some keep fish and other life in aquariums or ponds for show, fun, and companionship. Humans also use water for snow sports i.e. skiing, sledding, snowmobiling or snowboarding, which require the water to be frozen.

Water industry

A water-carrier in India, 1882. In many places where running water is not available, water has to be transported by people.
A manual water pump in China

The water industry provides drinking water and wastewater services (including sewage treatment) to households and industry. Water supply facilities include water wells, cisterns for rainwater harvesting, water supply networks, and water purification facilities, water tanks, water towers, water pipes including old aqueducts. Atmospheric water generators are in development.

Drinking water is often collected at springs, extracted from artificial borings (wells) in the ground, or pumped from lakes and rivers. Building more wells in adequate places is thus a possible way to produce more water, assuming the aquifers can supply an adequate flow. Other water sources include rainwater collection. Water may require purification for human consumption. This may involve removal of undissolved substances, dissolved substances and harmful microbes. Popular methods are filtering with sand which only removes undissolved material, while chlorination and boiling kill harmful microbes. Distillation does all three functions. More advanced techniques exist, such as reverse osmosis. Desalination of abundant seawater is a more expensive solution used in coastal arid climates.

The distribution of drinking water is done through municipal water systems, tanker delivery or as bottled water. Governments in many countries have programs to distribute water to the needy at no charge.

Reducing usage by using drinking (potable) water only for human consumption is another option. In some cities such as Hong Kong, sea water is extensively used for flushing toilets citywide in order to conserve fresh water resources.

Polluting water may be the biggest single misuse of water; to the extent that a pollutant limits other uses of the water, it becomes a waste of the resource, regardless of benefits to the polluter. Like other types of pollution, this does not enter standard accounting of market costs, being conceived as externalities for which the market cannot account. Thus other people pay the price of water pollution, while the private firms' profits are not redistributed to the local population, victims of this pollution. Pharmaceuticals consumed by humans often end up in the waterways and can have detrimental effects on aquatic life if they bioaccumulate and if they are not biodegradable.

Wastewater facilities are storm sewers and wastewater treatment plants. Another way to remove pollution from surface runoff water is bioswale.

Industrial applications

Water is used in power generation. Hydroelectricity is electricity obtained from hydropower. Hydroelectric power comes from water driving a water turbine connected to a generator. Hydroelectricity is a low-cost, non-polluting, renewable energy source. The energy is supplied by the motion of water. Typically a dam is constructed on a river, creating an artificial lake behind it. Water flowing out of the lake is forced through turbines that turn generators.

Pressurized water is used in water blasting and water jet cutters. Also, very high pressure water guns are used for precise cutting. It works very well, is relatively safe, and is not harmful to the environment. It is also used in the cooling of machinery to prevent overheating, or prevent saw blades from overheating.

Water is also used in many industrial processes and machines, such as the steam turbine and heat exchanger, in addition to its use as a chemical solvent. Discharge of untreated water from industrial uses is pollution. Pollution includes discharged solutes (chemical pollution) and discharged coolant water (thermal pollution). Industry requires pure water for many applications and utilizes a variety of purification techniques both in water supply and discharge.

Food processing

Water can be used to cook foods such as noodles.

Boiling, steaming, and simmering are popular cooking methods that often require immersing food in water or its gaseous state, steam. Water is also used for dishwashing. Water also plays many critical roles within the field of food science. It is important for a food scientist to understand the roles that water plays within food processing to ensure the success of their products.[citation needed]

Solutes such as salts and sugars found in water affect the physical properties of water. The boiling and freezing points of water are affected by solutes, as well as air pressure, which is in turn is affected by altitude. Water boils at lower temperatures with the lower air pressure that occurs at higher elevations. One mole of sucrose (sugar) per kilogram of water raises the boiling point of water by 0.51 °C (32.918 °F), and one mole of salt per kg raises the boiling point by 1.02 °C (33.836 °F); similarly, increasing the number of dissolved particles lowers water's freezing point.[76]

Solutes in water also affect water activity that affects many chemical reactions and the growth of microbes in food.[77] Water activity can be described as a ratio of the vapor pressure of water in a solution to the vapor pressure of pure water.[76] Solutes in water lower water activity—this is important to know because most bacterial growth ceases at low levels of water activity.[77] Not only does microbial growth affect the safety of food, but also the preservation and shelf life of food.

Water hardness is also a critical factor in food processing and may be altered or treated by using a chemical ion exchange system. It can dramatically affect the quality of a product, as well as playing a role in sanitation. Water hardness is classified based on the amounts of removable calcium carbonate salt the water contains per gallon. Water hardness is measured in grains: 0.064 g calcium carbonate is equivalent to one grain of hardness.[76] Water is classified as soft if it contains 1 to 4 grains, medium if it contains 5 to 10 grains and hard if it contains 11 to 20 grains.[vague][76]

The hardness of water also affects its pH balance, which plays a critical role in food processing. For example, hard water prevents successful production of clear beverages. Water hardness also affects sanitation; with increasing hardness, there is a loss of effectiveness for its use as a sanitizer.[76]

According to a report published by the Water Footprint organization in 2010, a single kilogram of beef requires 15 thousand litres of water; however, the authors also make clear that this is a global average and circumstantial factors determine the amount of water used in beef production.[78]

Law, politics, and crisis

Main articles: Water law, Water right and Water crisis
An estimate of the share of people in developing countries with access to potable water 1970–2000

Water politics is politics affected by water and water resources. For this reason, water is a strategic resource in the globe and an important element in many political conflicts. It causes health impacts and damage to biodiversity.

1.6 billion people have gained access to a safe water source since 1990.[79] The proportion of people in developing countries with access to safe water is calculated to have improved from 30% in 1970[80] to 71% in 1990, 79% in 2000 and 84% in 2004. This trend is projected to continue.[4] To halve, by 2015, the proportion of people without sustainable access to safe drinking water is one of the Millennium Development Goals. This goal is projected to be reached.

A 2006 United Nations report stated that "there is enough water for everyone", but that access to it is hampered by mismanagement and corruption.[81] In addition, global initiatives to improve the efficiency of aid delivery, such as the Paris Declaration on Aid Effectiveness, have not been taken up by water sector donors as effectively as they have in education and health, potentially leaving multiple donors working on overlapping projects and recipient governments without empowerment to act.[82]

The authors of the 2007 Comprehensive Assessment of Water Management in Agriculture cited poor governance as one reason for some forms of water scarcity. Water governance is the set of formal and informal processes through which decisions related to water management are made. Good water governance is primarily about knowing what processes work best in a particular physical and socioeconomic context. Mistakes have sometimes been made by trying to apply 'blueprints' that work in the developed world to developing world locations and contexts. The Mekong river is one example; a review by the International Water Management Institute of policies in six countries that rely on the Mekong river for water found that thorough and transparent cost-benefit analyses and environmental impact assessments were rarely undertaken. They also discovered that Cambodia's draft water law was much more complex than it needed to be.[83]

The UN World Water Development Report (WWDR, 2003) from the World Water Assessment Program indicates that, in the next 20 years, the quantity of water available to everyone is predicted to decrease by 30%. 40% of the world's inhabitants currently have insufficient fresh water for minimal hygiene. More than 2.2 million people died in 2000 from waterborne diseases (related to the consumption of contaminated water) or drought. In 2004, the UK charity WaterAid reported that a child dies every 15 seconds from easily preventable water-related diseases; often this means lack of sewage disposal; see toilet.

Organizations concerned with water protection include the International Water Association (IWA), WaterAid, Water 1st, and the American Water Resources Association. The International Water Management Institute undertakes projects with the aim of using effective water management to reduce poverty. Water related conventions are United Nations Convention to Combat Desertification (UNCCD), International Convention for the Prevention of Pollution from Ships, United Nations Convention on the Law of the Sea and Ramsar Convention. World Day for Water takes place on 22 March and World Ocean Day on 8 June.

In culture

Religion

Main article: Water and religion

Water is considered a purifier in most religions. Major faiths that incorporate ritual washing (ablution) include Christianity, Hinduism, Islam, Judaism, Rastafari movement, Shinto, Taoism, and Wicca. Immersion (or aspersion or affusion) of a person in water is a central sacrament of Christianity (where it is called baptism); it is also a part of the practice of other religions, including Islam (Ghusl), Judaism (mikvah) and Sikhism (Amrit Sanskar). In addition, a ritual bath in pure water is performed for the dead in many religions including Islam and Judaism. In Islam, the five daily prayers can be done in most cases after completing washing certain parts of the body using clean water (wudu), unless water is unavailable (see Tayammum). In Shinto, water is used in almost all rituals to cleanse a person or an area (e.g., in the ritual of misogi). Water is mentioned numerous times in the Bible, for example: "The earth was formed out of water and by water" (NIV). In the Qur'an it is stated that "Living things are made of water" and it is often used to describe paradise.

Philosophy

The Ancient Greek philosopher Empedocles held that water is one of the four classical elements along with fire, earth and air, and was regarded as the ylem, or basic substance of the universe. Water was considered cold and moist. In the theory of the four bodily humors, water was associated with phlegm. The classical element of water was also one of the five elements in traditional Chinese philosophy, along with earth, fire, wood, and metal.

Water is also taken as a role model in some parts of traditional and popular Asian philosophy. James Legge's 1891 translation of the Dao De Jing states "The highest excellence is like (that of) water. The excellence of water appears in its benefiting all things, and in its occupying, without striving (to the contrary), the low place which all men dislike. Hence (its way) is near to (that of) the Tao" and "There is nothing in the world more soft and weak than water, and yet for attacking things that are firm and strong there is nothing that can take precedence of it—for there is nothing (so effectual) for which it can be changed."[84]

Thales, who was portrayed by Aristotle as an astronomer and an engineer, theorized that the earth, which is denser than water, emerged from water. Thales, a monist, believed further that all things are made from water. Plato believed the shape of water is an icosahedron which accounts for why it is able to flow easily compared to the cube shaped earth.[85]

Literature

Ophelia by John Everett Millais (1852) is part of the Tate Gallery collection. His painting influenced the image in Kenneth Branagh's Hamlet.

Water is used in literature as a symbol of purification. Examples include the critical importance of a river in As I Lay Dying by William Faulkner and the drowning of Ophelia in Hamlet.

Sherlock Holmes held that "From a drop of water, a logician could infer the possibility of an Atlantic or a Niagara without having seen or heard of one or the other."[86]

See also

Main article: Outline of water
  • The water (data page) is a collection of the chemical and physical properties of water.

Water is described in many terms and contexts:

Liquid water and ice structures
      precipitation according to movement    precipitation according to state
    

Other topics

References

  1. ^ "CIA - The world factbook". Central Intelligence Agency. Retrieved 20 December 2008. 
  2. ^ a b c Gleick, P.H., ed. (1993). Water in Crisis: A Guide to the World's Freshwater Resources. Oxford University Press. p. 13, Table 2.1 "Water reserves on the earth". 
  3. ^ Water Vapor in the Climate System[dead link], Special Report, [AGU], December 1995 (linked 4/2007). Vital Water UNEP.
  4. ^ a b "MDG Report 2008". Retrieved 25 July 2010. 
  5. ^ "Public Services", Gapminder video
  6. ^ Kulshreshtha, S.N (1998). "A Global Outlook for Water Resources to the Year 2025". Water Resources Management 12 (3): 167–184. doi:10.1023/A:1007957229865. 
  7. ^ "Charting Our Water Future: Economic frameworks to inform decision-making" (PDF). Retrieved 25 July 2010. 
  8. ^ Baroni, L.; Cenci, L.; Tettamanti, M.; Berati, M. (2007). "Evaluating the environmental impact of various dietary patterns combined with different food production systems". European Journal of Clinical Nutrition 61 (2): 279–286. doi:10.1038/sj.ejcn.1602522. PMID 17035955. 
  9. ^ Braun, Charles L.; Sergei N. Smirnov (1993). "Why is water blue?". J. Chem. Educ. 70 (8): 612. doi:10.1021/ed070p612. 
  10. ^ Campbell, Neil A.; Brad Williamson; Robin J. Heyden (2006). Biology: Exploring Life. Boston, Massachusetts: Pearson Prentice Hall. ISBN 0-13-250882-6. 
  11. ^ Capillary Action – Liquid, Water, Force, and Surface – JRank Articles
  12. ^ Kotz, J. C., Treichel, P., & Weaver, G. C. (2005). Chemistry & Chemical Reactivity. Thomson Brooks/Cole. ISBN 0-534-39597-X. 
  13. ^ Ben-Naim et al., Ariel; Ben-Naim, Roberta (2011). Alice's Adventures in Water-land. Singapore. doi:10.1142/8068. ISBN 978-981-4338-96-7. 
  14. ^ Ball, Philip (14 September 2007). "Burning water and other myths". Nature News. Retrieved 14 September 2007. 
  15. ^ Melnick, Gary, Harvard-Smithsonian Center for Astrophysics and Neufeld, David, Johns Hopkins University quoted in: "Discover of Water Vapor Near Orion Nebula Suggests Possible Origin of H20 in Solar System (sic)". The Harvard University Gazette. 23 April 1998.  "Space Cloud Holds Enough Water to Fill Earth's Oceans 1 Million Times". Headlines@Hopkins, JHU. 9 April 1998.  "Water, Water Everywhere: Radio telescope finds water is common in universe". The Harvard University Gazette. 25 February 1999. (linked 4/2007)
  16. ^ a b Clavin, Whitney; Buis, Alan (22 July 2011). "Astronomers Find Largest, Most Distant Reservoir of Water". NASA. Retrieved 25 July 2011. 
  17. ^ a b Staff (22 July 2011). "Astronomers Find Largest, Oldest Mass of Water in Universe". Space.com. Retrieved 23 July 2011. 
  18. ^ Solanki, S. K.; Livingston, W.; Ayres, T. (1994). "New Light on the Heart of Darkness of the Solar Chromosphere". Science 263 (5143): 64–66. Bibcode:1994Sci...263...64S. doi:10.1126/science.263.5143.64. PMID 17748350. 
  19. ^ "MESSENGER Scientists 'Astonished' to Find Water in Mercury's Thin Atmosphere". Planetary Society. 3 July 2008. Archived from the original on 16 October 2010. Retrieved 5 July 2008. 
  20. ^ Bertaux, Jean-Loup; Vandaele, Ann-Carine; Korablev, Oleg; Villard, E.; Fedorova, A.; Fussen, D.; Quémerais, E.; Belyaev, D. et al. (2007). "A warm layer in Venus' cryosphere and high-altitude measurements of HF, HCl, H2O and HDO". Nature 450 (7170): 646–649. Bibcode:2007Natur.450..646B. doi:10.1038/nature05974. PMID 18046397. 
  21. ^ Sridharan, R.; S.M. Ahmed, Tirtha Pratim Dasa, P. Sreelathaa, P. Pradeepkumara, Neha Naika, and Gogulapati Supriya (2010). "'Direct' evidence for water (H2O) in the sunlit lunar ambience from CHACE on MIP of Chandrayaan I". Planetary and Space Science 58 (6): 947. Bibcode:2010P&SS...58..947S. doi:10.1016/j.pss.2010.02.013. 
  22. ^ Donald Rapp (28 November 2012). Use of Extraterrestrial Resources for Human Space Missions to Moon or Mars. Springer. pp. 78–. ISBN 978-3-642-32762-9. 
  23. ^ Küppers, M.; O'Rourke, L.; Bockelée-Morvan, D.; Zakharov, V.; Lee, S.; Von Allmen, P.; Carry, B.; Teyssier, D.; Marston, A.; Müller, T.; Crovisier, J.; Barucci, M. A.; Moreno, R. (23 January 2014). "Localized sources of water vapour on the dwarf planet (1) Ceres". Nature 505 (7484): 525–527. doi:10.1038/nature12918. ISSN 0028-0836. PMID 24451541. 
  24. ^ Atreya, Sushil K.; Wong, Ah-San (2005). "Coupled Clouds and Chemistry of the Giant Planets — A Case for Multiprobes" (PDF). Space Science Reviews 116: 121–136. Bibcode:2005SSRv..116..121A. doi:10.1007/s11214-005-1951-5. ISSN 0032-0633. 
  25. ^ Cook, Jia-Rui C.; Gutro, Rob; Brown, Dwayne; Harrington, J.D.; Fohn, Joe (12 December 2013). "Hubble Sees Evidence of Water Vapor at Jupiter Moon". NASA. Retrieved 12 December 2013. 
  26. ^ Hansen, C. J. et al. (2006). "Enceladus' Water Vapor Plume". Science 311 (5766): 1422–5. Bibcode:2006Sci...311.1422H. doi:10.1126/science.1121254. PMID 16527971. 
  27. ^ Encrenaz 2003, p. 92.
  28. ^ Hubbard, W. B. (1997). "Neptune's Deep Chemistry". Science 275 (5304): 1279–1280. doi:10.1126/science.275.5304.1279. PMID 9064785. 
  29. ^ Water Found on Distant Planet 12 July 2007 By Laura Blue, Time
  30. ^ Water Found in Extrasolar Planet's Atmosphere – Space.com
  31. ^ Near-IR Direct Detection of Water Vapor in Tau Boo b: Alexandra C. Lockwood, John A. Johnson, Chad F. Bender, John S. Carr, Travis Barman, Alexander J.W. Richert, Geoffrey A. Blake
  32. ^ Clavin, Whitney; Chou, Felicia; Weaver, Donna; Villard; Johnson, Michele (24 September 2014). "NASA Telescopes Find Clear Skies and Water Vapor on Exoplanet". NASA. Retrieved 24 September 2014. 
  33. ^ Herschel Finds Oceans of Water in Disk of Nearby Star
  34. ^ Herschel Finds Oceans of Water in Disk of Nearby Star
  35. ^ Lloyd, Robin. "Water Vapor, Possible Comets, Found Orbiting Star", 11 July 2001, Space.com. Retrieved December 15, 2006.
  36. ^ Platt, Jane; Bell, Brian (3 April 2014). "NASA Space Assets Detect Ocean inside Saturn Moon". NASA. Retrieved 3 April 2014. 
  37. ^ Iess, L.; Stevenson, D.J.; Parisi, M.; Hemingway, D.; Jacobson, R.A.; Lunine, J.I.; Nimmo, F.; Armstrong, J.w.; Asmar, S.w.; Ducci, M.; Tortora, P. (4 April 2014). "The Gravity Field and Interior Structure of Enceladus". Science 344 (6179): 78–80. Bibcode:2014Sci...344...78I. doi:10.1126/science.1250551. Retrieved 3 April 2014. 
  38. ^ http://www.lpi.usra.edu/meetings/lpsc2013/pdf/2454.pdf
  39. ^ http://in.reuters.com/article/2014/05/03/us-space-ganymede-idINKBN0DJ00H20140503
  40. ^ Versteckt in Glasperlen: Auf dem Mond gibt es Wasser – Wissenschaft – Der Spiegel – Nachrichten
  41. ^ Water Molecules Found on the Moon, NASA, 24 September 2009
  42. ^ a b Sparrow, Giles (2006). The Solar System. Thunder Bay Press. ISBN 1-59223-579-4. 
  43. ^ NASA, "MESSENGER Finds New Evidence for Water Ice at Mercury's Poles", 29 November 2012.
  44. ^ Weird water lurking inside giant planets, New Scientist, 1 September 2010, Magazine issue 2776.
  45. ^ Ehlers, E.; Krafft, T, ed. (2001). "J. C. I. Dooge. "Integrated Management of Water Resources"". Understanding the Earth System: compartments, processes, and interactions. Springer. p. 116. 
  46. ^ "Habitable Zone". The Encyclopedia of Astrobiology, Astronomy and Spaceflight. 
  47. ^ Shiga, David (6 May 2007). "Strange alien world made of "hot ice"". New Scientist. Retrieved 28 March 2010. 
  48. ^ Aguilar, David A. (16 December 2009). "Astronomers Find Super-Earth Using Amateur, Off-the-Shelf Technology". Harvard-Smithsonian Center for Astrophysics. Retrieved 28 March 2010. 
  49. ^ Gleick, P.H., ed. (1993). Water in Crisis: A Guide to the World's Freshwater Resources. Oxford University Press. p. 15, Table 2.3. 
  50. ^ Ben-Naim, A. and Ben-Naim, R., P.H. (2011). Alice's Adventures in Water-land. World Scientific Publishing. p. 31. doi:10.1142/8068. ISBN 978-981-4338-96-7. 
  51. ^ "G8 "Action plan" decided upon at the 2003 Evian summit". G8.fr. 2 June 2003. Retrieved 25 July 2010. 
  52. ^ "World Health Organization. Safe Water and Global Health". Who.int. 25 June 2008. Retrieved 25 July 2010. 
  53. ^ UNEP International Environment (2002). Environmentally Sound Technology for Wastewater and Stormwater Management: An International Source Book. IWA Publishing. ISBN 1-84339-008-6. OCLC 49204666. 
  54. ^ Ravindranath, Nijavalli H.; Jayant A. Sathaye (2002). Climate Change and Developing Countries. Springer. ISBN 1-4020-0104-5. OCLC 231965991. 
  55. ^ "WBCSD Water Facts & Trends". Retrieved 25 July 2010. 
  56. ^ a b Water Use in the United States, National Atlas.gov
  57. ^ Gleick, P.H.; Palaniappan, M. (2010). "Peak Water". Proceedings National Academy of Science (National Academy of Science) 107 (125): 11155–11162. doi:10.1073/pnas.1004812107. Retrieved 11 October 2011. 
  58. ^ United Nations Press Release POP/952, 13 March 2007. World population will increase by 2.5 billion by 2050
  59. ^ Molden, D. (Ed). Water for food, Water for life: A Comprehensive Assessment of Water Management in Agriculture. Earthscan/IWMI, 2007.
  60. ^ Chartres, C. and Varma, S. Out of water. From Abundance to Scarcity and How to Solve the World's Water Problems FT Press (USA), 2010
  61. ^ Décret relatif aux poids et aux mesures. 18 germinal an 3 (7 April 1795). Decree relating to the weights and measurements (in French). quartier-rural.org
  62. ^ here L'Histoire Du Mètre, La Détermination De L'Unité De Poids. histoire.du.metre.free.fr
  63. ^ Re: What percentage of the human body is composed of water? Jeffrey Utz, M.D., The MadSci Network
  64. ^ "Healthy Water Living". BBC. Retrieved 1 February 2007. 
  65. ^ Rhoades RA, Tanner GA (2003). Medical Physiology (2nd ed.). Baltimore: Lippincott Williams & Wilkins. ISBN 0-7817-1936-4. OCLC 50554808. 
  66. ^ Noakes TD, Goodwin N, Rayner BL, et al. (1985). "Water intoxication: a possible complication during endurance exercise". Med Sci Sports Exerc 17 (3): 370–375. doi:10.1249/00005768-198506000-00012. PMID 4021781. 
  67. ^ Noakes TD, Goodwin N, Rayner BL, Branken T, Taylor RK (2005). "Water intoxication: a possible complication during endurance exercise, 1985". Wilderness Environ Med 16 (4): 221–7. doi:10.1580/1080-6032(2005)16[221:WIAPCD]2.0.CO;2. PMID 16366205. 
  68. ^ "Drink at least eight glasses of water a day." Really? Is there scientific evidence for "8 × 8"? by Heinz Valdin, Department of Physiology, Dartmouth Medical School, Lebanon, New Hampshire
  69. ^ Drinking Water – How Much?, Factsmart.org web site and references within
  70. ^ Food and Nutrition Board, National Academy of Sciences. Recommended Dietary Allowances. National Research Council, Reprint and Circular Series, No. 122. 1945. pp. 3–18. 
  71. ^ "Are you consuming enough water? recommendations from the United States National Research Council". water softener critic. Retrieved 21 July 2014. 
  72. ^ "Water: How much should you drink every day?". Mayoclinic.com. Retrieved 25 July 2010. 
  73. ^ Conquering Chemistry 4th Ed. Published 2008
  74. ^ Maton, Anthea; Jean Hopkins; Charles William McLaughlin; Susan Johnson; Maryanna Quon Warner; David LaHart; Jill D. Wright (1993). Human Biology and Health. Englewood Cliffs, New Jersey, USA: Prentice Hall. ISBN 0-13-981176-1. OCLC 32308337. 
  75. ^ Unesco (2006). Water: a shared responsibility. Berghahn Books. p. 125. ISBN 1-84545-177-5. 
  76. ^ a b c d e Vaclavik, Vickie A. and Christian, Elizabeth W (2007). Essentials of Food Science. Springer. ISBN 0-387-69939-2. 
  77. ^ a b DeMan, John M (1999). Principles of Food Chemistry. Springer. ISBN 0-8342-1234-X. 
  78. ^ M.M. Mekonnen; A.Y. Hoekstra (December 2010). "The green, blue and grey wate r footprint of farm animals and animal products, Value of Water Research Report Series No. 48 - Volume 1: Main report". The green, blue and grey wate r footprint of farm animals and animal products, Value of Water Research Report Series No. 48 - Volume 1: Main report. UNESCO-IHE Institute for Water Education. Retrieved 30 January 2014. 
  79. ^ The Millennium Development Goals Report, United Nations, 2008
  80. ^ Lomborg, Björn (2001). The Skeptical Environmentalist. Cambridge University Press. p. 22. ISBN 0-521-01068-3. 
  81. ^ UNESCO, (2006), Water, a shared responsibility. The United Nations World Water Development Report 2.
  82. ^ Welle, Katharina; Evans, Barbara; Tucker, Josephine and Nicol, Alan (2008) Is water lagging behind on Aid Effectiveness?
  83. ^ Water governance, Water Issue Brief, Issue 5, 2010, IWMI
  84. ^ "Internet Sacred Text Archive Home". Sacred-texts.com. Retrieved 25 July 2010. 
  85. ^ Lindberg, D. (2008). The beginnings of western science: The European scientific tradition in philosophical, religious, and institutional context, prehistory to A.D. 1450. (2nd ed.). Chicago: University of Chicago Press.
  86. ^ Arthur Conan Doyle, A Study in Scarlet, Chapter 2, "The Science of Deduction"

Further reading

  • Debenedetti, PG., and HE Stanley, "Supercooled and Glassy Water", Physics Today 56 (6), p. 40–46 (2003). Downloadable PDF (1.9 MB)
  • Franks, F (Ed), Water, A comprehensive treatise, Plenum Press, New York, 1972–1982
  • Gleick, PH., (editor), The World's Water: The Biennial Report on Freshwater Resources. Island Press, Washington, D.C. (published every two years, beginning in 1998.) The World's Water, Island Press
  • Jones, OA., JN Lester and N Voulvoulis, Pharmaceuticals: a threat to drinking water? TRENDS in Biotechnology 23(4): 163, 2005
  • Journal of Contemporary Water Research & Education
  • Postel,S., Last Oasis: Facing Water Scarcity. W.W. Norton and Company, New York. 1992
  • Reisner,M., Cadillac Desert: The American West and Its Disappearing Water. Penguin Books, New York. 1986.
  • United Nations World Water Development Report. Produced every three years. UN World Water Development Report

External links